A vector fields approach to smoothing and decaying estimates for equations in anisotropic media

Mitsuru Sugimoto

Abstract

. It is well known that the vector fields $$
\Omega=x \wedge D=\left(\Omega_{i j}\right)_{i<j}, \quad \Omega_{i j}=x_{i} D_{j}-x_{j} D_{i}
$$ commute with the Laplacian $-\Delta$. Hence we have $$
P u=f \quad \Rightarrow \quad P(\Omega u)=\Omega f
$$ where P is a function of $-\Delta$, and in this way we can control the growth/decaying order of solution u to the equation $P u=f$. This fact was actually used to induce some decaying estimates for the wave equation ([3]) in a context of nonlinear analysis, and smoothing estimates for the Scrödinger equation ([6]) in a critical case. In this article, we will discuss how to trace this idea for equations with the Laplacian $-\Delta$ replaced by general elliptic (pseudo-)differential operators.

§1. Introduction

Let $-\Delta$ be the Laplacian on \mathbf{R}^{n} and let $P=p(-\Delta)$, where p is a function $(p(s)=s, \sqrt{s}$, etc.). As a general setting, let us consider the equation $P u=f$ or its non-linear version $P u=F(u)$, or even its time revolution version

$$
\left\{\begin{aligned}
\left(D_{t}-P\right) u(t, x) & =F(u(t, x)) \\
u(0, x) & =\varphi(x)
\end{aligned}\right.
$$

Received February 2, 2012.
2010 Mathematics Subject Classification. 35E15, 35L45, 35S10.
Key words and phrases. Scrödinger equation, Maxwell equation, elastic equations, anisotropic media.

Let us try to work with them on Sobolev spaces H^{s} with the norm

$$
\|g\|_{H^{s}}=\left(\int\left|\Lambda^{s} g(x)\right|^{2} d x\right)^{1 / 2} ; \quad \Lambda=\sqrt{1-\Delta}
$$

or weighted L^{2} spaces L_{k}^{2} with the norm

$$
\|g\|_{L_{k}^{2}}=\left(\int\left|\langle x\rangle^{k} g(x)\right|^{2} d x\right)^{1 / 2} ; \quad\langle x\rangle=\left(1+|x|^{2}\right)^{1 / 2}
$$

Assume that the statement

$$
P u=f \in L^{2} \quad \Rightarrow \quad u \in H^{m}
$$

is true for example. Then, since $\left[\Lambda^{s}, P\right]=0$, we have automatically a general statement

$$
P u=f \in H^{s} \quad \Rightarrow \quad u \in H^{m+s}
$$

which is sometimes called lifting property, while in general we do not have the statement

$$
P u=f \in L_{k}^{2} \quad \Rightarrow \quad u \in L_{m+k}^{2}
$$

since $\left[\langle x\rangle^{k}, P\right] \neq 0$.
On the other hand, rotational vector fields

$$
\Omega_{i j}=x_{i} D_{x_{j}}-x_{j} D_{x_{i}}, \quad x=\left(x_{1}, \ldots, x_{n}\right)
$$

satisfies $\left[\Delta, \Omega_{i j}\right]=0$ and we have the statement

$$
P u=f \quad \Rightarrow \quad P(\Omega u)(t, x)=\Omega f
$$

for $\Omega=x \wedge D=\left(\Omega_{i j}\right)_{i<j}$. In this way we can control the growth/decaying order of solution u to the equation $P u=f$. Even for the non-linear equation, we can apply this idea and have the statement

$$
P u=F(u) \quad \Rightarrow \quad P(\Omega u)(t, x)=F^{\prime}(u) \Omega u
$$

where we use the chain rule relation $\Omega F(u)=F^{\prime}(u) \Omega u$. Note that this relation is justified since Ω is a differential operator of order one.

The idea of using vector fields Ω is actually applied to inducing decaying estimates for the wave equation $\square u=F$ with 0 -initial data:

$$
|u(x, t)| \leq C(t+|x|)^{-(n-1) / 2} \sup _{0 \leq s \leq t}\langle s\rangle^{a} \sum_{|\alpha| \leq M}\left\|Z^{\alpha} F(\cdot, s)\right\|_{L^{2}},
$$

where Z is $\Omega_{i j}$ or other type of relevant vector fields. We have a time global existence result for semi-linear wave equations (Klainerman [3]) by this type of estimate. Smoothing estimates for the Scrödinger equation of the type

$$
\left\|\langle x\rangle^{-3 / 2} \Omega e^{-i t \Delta} \varphi\right\|_{L^{2}\left(\mathbf{R}_{t} \times \mathbf{R}_{x}^{n}\right)} \leq C\left\|\langle D\rangle^{1 / 2} \varphi\right\|_{L^{2}\left(\mathbf{R}_{x}^{n}\right)},
$$

suggested by Hoshiro [2], can be also given by the same idea ([6]), from which we obtain a time global existence result for Scrödinger equations with derivative non-linearity ([5]).

Let us use the idea of vector fields to more general elliptic operators:

$$
\begin{aligned}
& a(D)=F^{-1} a(\xi) F ; \quad a(\xi) \in C^{\infty}\left(\mathbf{R}^{n} \backslash 0\right) \\
& a(\xi)>0, \quad a(\lambda \xi)=\lambda^{2} a(\xi) \quad(\lambda>0)
\end{aligned}
$$

Note that $a(D)=-\Delta$ when $a(\xi)=|\xi|^{2}$. Such generalized situation naturally arises in many important equations of physics. For example the equation $D_{t}-\sqrt{a(D)}=f$ is reduced from Maxwell system in anisotropic media (6×6 system)

$$
\left(D_{t}-A\left(D_{x}\right)\right) U=0
$$

where

$$
\begin{aligned}
& A\left(D_{x}\right)=\frac{1}{i}\left(\begin{array}{cc}
0 & \varepsilon^{-1} \text { curl } \\
-\mu^{-1} \text { curl } & 0
\end{array}\right) ; \\
& \varepsilon=\left(\begin{array}{ccc}
\varepsilon_{1} & 0 & 0 \\
0 & \varepsilon_{2} & 0 \\
0 & 0 & \varepsilon_{3}
\end{array}\right), \mu=\left(\begin{array}{ccc}
\nu & 0 & 0 \\
0 & \nu & 0 \\
0 & 0 & \nu
\end{array}\right)
\end{aligned}
$$

or elastic wave equations in anisotropic media (3×3 system)

$$
\left(D_{t}^{2}-A\left(D_{x}\right)\right) U=0
$$

where

$$
A\left(D_{x}\right)=\left(A_{i j}\left(D_{x}\right)\right) ; \quad A_{i j}\left(D_{x}\right)=\sum_{p, q=1}^{3} c_{i j p q} D_{x_{p}} D_{x_{q}}
$$

assuming that the system is hyperbolic in the time direction and $c_{i j p q}=$ $c_{j i p q}=c_{i j q p}=c_{p q i j}$. But then we come across a natural question:

Question. Does a vector fields corresponding to $a(D)$ exists like $x \wedge D$ to $-\Delta$? If not, what should be the substitution?

This short article is a trial to answer this question, and after stating some useful theorems (Theorems 1 and 2), an answer will be given which says the existence of a vector field which does not commute with $a(D)$ but can control the growth/decaying order.

§2. Canonical transform

As a first step to answer our question, we introduce an idea of using canonical transform.

For the homogeneous diffeomorphism $\psi: \mathbf{R}^{n} \backslash 0 \rightarrow \mathbf{R}^{n} \backslash 0$, we set

$$
\begin{aligned}
& I u(x)=\int_{\mathbf{R}^{n}} \int_{\mathbf{R}^{n}} e^{i(x \cdot \xi-y \cdot \psi(\xi))} u(y) d y d \xi \\
& I^{-1} u(x)=\int_{\mathbf{R}^{n}} \int_{\mathbf{R}^{n}} e^{i\left(x \cdot \xi-y \cdot \psi^{-1}(\xi)\right)} u(y) d y d \xi
\end{aligned}
$$

$\left(x \in \mathbf{R}^{n}\right)$. Then we have the relation

$$
a(D)=I \cdot \sigma(D) \cdot I^{-1}, \quad a(\xi)=(\sigma \circ \psi)(\xi)
$$

In particular, if we take

$$
\sigma(\eta)=|\eta|^{2}, \quad \psi(\xi)=\sqrt{a(\xi)} \frac{\nabla a(\xi)}{|\nabla a(\xi)|}
$$

then we have $a(\xi)=(\sigma \circ \psi)(\xi)$, hence

$$
a(D)=I \cdot(-\Delta) \cdot I^{-1}
$$

under the assumption that the Gaussian curvature of

$$
\Sigma_{a}=\{\xi ; a(\xi)=1\}
$$

never vanishes. (Note that the Gauss map $\nabla a /|\nabla a|: \Sigma_{a} \rightarrow S^{n-1}$ is a global diffeomorphism by the curvature assumption, and the existence of the inverse ψ^{-1} is guaranteed.)

Then the transformed operator

$$
\Omega=I \cdot(x \wedge D) \cdot I^{-1}
$$

is expected to be a candidate of the solution to our question. By computation, we have

$$
\Omega=x \psi^{\prime}(D)^{-1} \wedge \psi(D)
$$

and it surely satisfies

$$
\begin{equation*}
[a(D), \Omega]=0 \tag{1}
\end{equation*}
$$

But this Ω is not a family of vector fields, and unfortunately we cannot have the chain rule relation

$$
\begin{equation*}
\Omega F(u)=F^{\prime}(u) \Omega u \tag{2}
\end{equation*}
$$

which is needed for the nonlinear analysis.

§3. Set of classical orbits

We investigate more properties of the operator

$$
\begin{equation*}
\Omega=x \psi^{\prime}(D)^{-1} \wedge \psi(D), \quad \psi(\xi)=\sqrt{a(\xi)} \frac{\nabla a(\xi)}{|\nabla a(\xi)|} \tag{3}
\end{equation*}
$$

to find a vector field as a good substitution of it.
Let $\{(x(t), \xi(t)): t \in \mathbf{R}\}$ be the classical orbit associated to $a(D)$, that is, the solution of the ordinary differential equation

$$
\left\{\begin{array}{l}
\dot{x}(t)=(\nabla a)(\xi(t)), \quad \dot{\xi}(t)=0 \\
x(0)=0, \quad \xi(0)=k
\end{array}\right.
$$

and consider the set of the path of all classical orbits

$$
\begin{aligned}
\Gamma_{a} & =\left\{(x(t), \xi(t)): t \in \mathbf{R}, k \in \mathbf{R}^{n} \backslash 0\right\} \\
& =\left\{(\lambda \nabla a(\xi), \xi): \lambda \in \mathbf{R}, \xi \in \mathbf{R}^{n} \backslash 0\right\} \\
& =\left\{(x, \xi) \in T^{*} \mathbf{R}^{n} \backslash 0: x \wedge \nabla a(\xi)=0\right\}
\end{aligned}
$$

For example, in the Laplacian case $a(\xi)=|\xi|^{2}$, we have

$$
\Gamma_{a}=\left\{(x, \xi) \in T^{*} \mathbf{R}^{n} \backslash 0: x \wedge \xi=0\right\}
$$

We know the following result established in [4].
Theorem 1. Let $k \in \mathbf{R}$. Suppose that $\sigma(x, \xi)$ satisfies

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\gamma} \sigma(x, \xi)\right| \leq C_{\alpha \gamma}\langle x\rangle^{1-|\alpha|}\langle\xi\rangle^{1-|\gamma|},
$$

for all α, γ and vanishes outside $|\xi| \geq C>0$. Assume the structural condition

$$
(x, \xi) \in \Gamma_{a} \quad \Rightarrow \quad \sigma(x, \xi)=0
$$

Then we have

$$
\|\sigma(X, D) g\|_{L_{k}^{2}\left(\mathbf{R}^{n}\right)} \leq C\left(\|\Omega g\|_{L_{k}^{2}\left(\mathbf{R}^{n}\right)}+\|g\|_{L_{k}^{2}\left(\mathbf{R}^{n}\right)}\right)
$$

where Ω is the operator given by (3).

Note that

$$
\Gamma_{a}=\left\{(x, \xi) \in \mathbf{R}^{n} \times\left(\mathbf{R}^{n} \backslash 0\right): \Omega(x, \xi)=0\right\}
$$

with the symbol $\Omega(x, \xi)$ of the operator Ω, hence $\Omega(x, \xi)$ is an example of $\sigma(x, \xi)$ in Theorem 1 which satisfies the structural condition.

§4. Geometric structure

Another straightforward example of $\sigma(x, \xi)$ which satisfies the structural condition in Theorem 1 is

$$
\sigma(x, \xi)=x \wedge \nabla a(\xi)
$$

which also commutes with $a(D)$ but is not a vector field. We will construct a vector field which satisfy the structural condition in Theorem 1 by considering a geometric structure of Γ_{a}.

For $a(\xi)$, the dual function $a^{*}(\xi) \in C^{\infty}\left(\mathbf{R}^{n} \backslash 0\right)$ is uniquely determined, which satisfies the same property as $a(\xi)$ and

$$
\Sigma_{a}^{*}=\Sigma_{a^{*}}, \quad \Sigma_{a^{*}}^{*}=\Sigma_{a}
$$

Here we have used the notation

$$
\Sigma_{q}=\left\{\xi \in \mathbf{R}^{n} \backslash 0: q(\xi)=1\right\}, \quad \Sigma_{q}^{*}=\left\{\frac{1}{2} \nabla q(\xi): \xi \in \Sigma_{q}\right\}
$$

Moreover,

$$
\frac{1}{2} \nabla a: \Sigma_{a} \rightarrow \Sigma_{a^{*}}
$$

is a C^{∞}-diffeomorphism and

$$
\frac{1}{2} \nabla a^{*}: \Sigma_{a^{*}} \rightarrow \Sigma_{a}
$$

is its inverse. Hence we have

$$
\begin{aligned}
(x, \xi) \in \Gamma_{a} & \Rightarrow \quad x \wedge \nabla a(\xi)=0 \\
& \Rightarrow \nabla a^{*}(x) \wedge \xi=0
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\Gamma_{a} & =\left\{(\lambda \nabla a(\xi), \xi): \xi \in \mathbf{R}^{n} \backslash 0, \lambda \in \mathbf{R}\right\} \\
& =\left\{\left(\lambda x, \nabla a^{*}(x)\right): x \in \mathbf{R}^{n} \backslash 0, \lambda \in \mathbf{R}\right\}
\end{aligned}
$$

and the operator with the symbol

$$
\sigma(x, \xi)=\nabla a^{*}(x) \wedge \xi
$$

also satisfies the structural conditions of Theorem 1. Note that

$$
\sigma(X, D)=\nabla a^{*}(x) \wedge D
$$

is a vector field!
In the case $a(\xi)=|\xi A|^{2}$, where A is a positive definite symmetric matrix, we have $a^{*}(\xi)=\left|\xi A^{-1}\right|^{2}$. We remark that the operator with the symbol

$$
\tau(x, \xi)=\frac{a^{*}(x)}{\left|\nabla a^{*}(x)\right|^{2}}\left|\nabla a^{*}(x) \wedge \xi\right|^{2}
$$

is the homogeneous extension of the Laplace-Beltrami operator of the surface Σ_{a}^{*}. That means, $\nabla a^{*}(x) \wedge D$ is a vector field along the surface Σ_{a}^{*} in other word.

§5. Replacement argument

Now we are in a position to give a complete answer to our question. Let \mathfrak{X} be the vector field whose symbol is

$$
\begin{equation*}
\mathfrak{X}(x, \xi)=\kappa(x) \wedge \xi \kappa^{\prime}(x)^{-1}, \quad \kappa(x)=\sqrt{a^{*}(x)} \frac{\nabla a^{*}(x)}{\left|\nabla a^{*}(x)\right|} . \tag{4}
\end{equation*}
$$

Note that $\mathfrak{X}(x, \xi)$ satisfy

$$
\Gamma_{a}=\left\{(x, \xi) \in \mathbf{R}^{n} \times\left(\mathbf{R}^{n} \backslash 0\right): \mathfrak{X}(x, \xi)=0\right\}
$$

and $\mathfrak{X}(x, \xi)$ is an example of $\sigma(x, \xi)$ in Theorem 1 which satisfies the structural condition. Then we have the following result if we change the role of x and ξ in the proof of Theorem 1.

Theorem 2. Let $k \in \mathbf{R}$. Suppose that $\sigma(x, \xi)$ satisfies

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\gamma} \sigma(x, \xi)\right| \leq C_{\alpha \gamma}\langle x\rangle^{1-|\alpha|}\langle\xi\rangle^{1-|\gamma|}
$$

for all α, γ and vanishes outside $|x| \geq C>0$. Assume the structural condition

$$
(x, \xi) \in \Gamma_{a} \quad \Rightarrow \quad \sigma(x, \xi)=0
$$

Then we have

$$
\|\sigma(X, D) g\|_{L_{k}^{2}\left(\mathbf{R}^{n}\right)} \leq C\left(\|\mathfrak{X} g\|_{L_{k}^{2}\left(\mathbf{R}^{n}\right)}+\|g\|_{L_{k}^{2}\left(\mathbf{R}^{n}\right)}\right)
$$

where \mathfrak{X} is the vector field given by (4).

Roughly speaking, we have the following equivalence:

$$
\|\mathfrak{X} g\|_{L_{k}^{2}\left(\mathbf{R}^{n}\right)}+\|g\|_{L_{k}^{2}\left(\mathbf{R}^{n}\right)} \sim\|\Omega g\|_{L_{k}^{2}\left(\mathbf{R}^{n}\right)}+\|g\|_{L_{k}^{2}\left(\mathbf{R}^{n}\right)}
$$

as a corollary of Theorems 1 and 2. In this way, we can anytime replace the operator Ω in (3) by the vector field \mathfrak{X} in (4) at an estimate level, and vice versa. We use Ω for the commutativity (1), and \mathfrak{X} for the chain rule (2). Theorems 1 and 2 guarantee such replacement argument.

§6. Works to be done

Further applications of the idea explained here will be expected. We end this article by listing our ongoing/future works:

- Application to non-linear problems: We expect to establish decaying estimates and some time global existence result for semi-linear Maxwell system and elastic wave equations in an anisotropic media (cf. Georgiev-Lucent-Ziliotti [1]).
- Generalization to the case of variable coefficients: We need more serious consideration of canonical transform and geometric structure.

References

[1] V. Georgiev, S. Lucente and G. Ziliotti, Decay estimates for hyperbolic systems, Hokkaido Math. J., 33 (2004), 83-113.
[2] T. Hoshiro, On weighted L^{2} estimates of solutions to wave equations, J. Anal. Math., 72 (1997), 127-140.
[3] S. Klainerman, Uniform decay estimates and Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), 321-332.
[4] M. Ruzhansky and M. Sugimoto, A smoothing property of Schrödinger equations in the critical case, Math. Ann., 335 (2006), 645-673.
[5] M. Ruzhansky and M. Sugimoto, Structural resolvent estimates and derivative nonlinear Schrödinger equations, Comm. Math. Phys., 314 (2012), 281-304.
[6] M. Sugimoto, A smoothing property of Schrödinger equations along the sphere, J. Anal. Math., 89 (2003), 15-30.

Graduate School of Mathematics
Nagoya University
Furo-cho, Chikusa-ku
Nagoya 464-8602
Japan
E-mail address: sugimoto@math.nagoya-u.ac.jp

