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Diffusion phenomena for partially dissipative 
hyperbolic systems 

Jens Wirth 

Abstract. 

In this note we provide some precise estimates explaining the dif­
fusive structure of partially dissipative systems with time-dependent 
coefficients satisfying a uniform Kalman rank condition. Precisely, we 
show that under certain (natural) conditions solutions to a partially dis­
sipative hyperbolic system are asymptotically equivalent to solutions 
of a corresponding parabolic equation. 

The approach is based on an elliptic WKB analysis for small fre­
quencies in combination with exponential stability for large frequencies 
due to results of Beauchard and Zuazua and arguments of perturbation 
theory. 

§1. Introduction 

The classical diffusion phenomenon observed by Hsiao and Liu [2] 
and later Nishihara [6] provides an asymptotic equivalence for solutions 
to damped wave equations (or porous media equations) and correspond­
ing solutions to the heat equation. To be precise, for any solution to the 
Cauchy problem for the damped wave equation 

(1) Utt - ~U + Ut = 0, u(O, ·) = Ut, Ut(O, ·) = U2 

on JR.n we find a corresponding solution to the heat equation 

(2) Wt = ~w, 

such that their difference satisfies 

(3) 
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On the other hand, both solutions do not decay in general. By this we 
mean, that the estimates 

(4) 

are both sharp. The diffusion phenomenon makes the diffusive nature 
of dissipation apparent. See also [4] and [7], [5] for a detailed study of 
estimates in this spirit. 

Our aim is to show that this statement has a natural counterpart 
in the language of differential hyperbolic systems with time-dependent 
coefficients. Our main tools will be a block-diagonalisation of the (full) 
symbol for small frequencies combined with an exponential decay rate 
for large frequencies deduced from methods of [8] and [1]. 

§2. Main results 

Before stating the main results, we will introduce the classes of co­
efficient functions we are going to use later on. For a parameter r E lR 
we denote by 'T{r} the class of C 00-functions on a : JR+ -+ c satisfying 
the symbolic estimates 

(5) 

We consider a Cauchy problem of the form 

(6) U(O, ·) = Uo 

for an unknown vector-valued function U : JR+ X JRn -+ ([:d and with 
coefficient matrices 

(7) Ak(t), B(t) E 7{0} 0 Cdxd 

satisfying the following assumptions: 

(8) 

(9) 

(Bl): the matrices Ak(t) are self-adjoint; 
(B2): the matrix B(t) is non-negative and 0 E specB(t) is a 

simple eigenvalue uniformly separated from the remaining part 
of the spectrum, 

dist(O,specB(t) \ {0}) ~ 1 > 0; 

and 
(B3): the matrices B(t) and A(t, ~) = :Z:::~=l Ak(t)~k satisfy 
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for any choice of numbers ao, ... , ad-1 > 0 and suitable con­
stants c and t0 depending on them. 

Assumption (B1) guarantees that the system (6) is hyperbolic. The 
non-negativity of B(t) implies dissipativity. The non-triviality of the 
null space of B(t) in (B2) is not the crucial assumption as this can 
always be achieved by multiplying U ( t, x) with a scalar function and 
the main result remains true modulo the obvious modifications. Crucial 
point for our result is that the lowest eigenvalue is uniformly separated 
from the others. 

The last assumption is used to treat non-zero frequencies. We refer 
to (B3) as uniform Kalman rank condition. It allows to construct a 
Lyapunov functional in order to prove that the Fourier transform of 
solutions to (6) with respect to spacial variables satisfies 

(10) [~] = 1~1/(~) ~ min{l~l, 1}, 

with suitable non-negative constants C, c > 0. The proof for this fact 
is essentially the same one given in [1] with the obvious modification 
that the Lyapunov functional has coefficients in 7{0} such that heir 
argument works only if t is large. 

If assumptions (B1)-(B3) are satisfied then we can associate to (6) 
a parabolic equation 

(11) 8tw = V' · a(t)V'w + f3(t) · V'w + 'Y(t)w, w(to, ·) = wo 

with coefficients a(t) E /{O}®<Cdxd, f3(t) E 7{1}®<Cd and 'Y(t) E 7{1}, 
a smoothing linear operator mapping W : U0 t-t w0 and a vector K(t, D) 
of second order differential operators with coefficients in 7{0} such that 
the following theorem holds true. 

Theorem 1. For any solution U ( t, x) to ( 6) to initial data U0 E 

L2 (1Rn; <Cd) the corresponding solution w(t, x) to (11) with w0 = WU0 

satisfies 

(12) IIU(t, ·)- K(t, D)w(t, ·)112::::; Cr112 log(t)IIUoll2, t ?: to. 

The coefficients of the parabolic problem (11) as well as of the oper­
ators Wand K(t, D) will be made precise in the following section. They 
arise naturally within a decoupling procedure of the system. 

§3. Proof 

The proof is divided into several parts. First we will asymptotically 
block-diagonalise the full symbol of the problem ( 6) for small frequencies 
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within the so-called elliptic zone Zeu(E) = {(t,~) : t ~ c\ 1~1 ~ E} 
for sufficiently small E. Similar to [10], this will allow us to obtain 
asymptotic formulas for the fundamental solution for bounded tl~l ~ 
8 within this zone. In a second step we will use main terms of this 
asymptotic representation to deduce the coefficients of (11). In a final 
step we will prove the desired estimate of Theorem 1 chosing k and 8 
sufficiently large. For full details and further information we refer to [9, 
Chapter 5]. 

3.1. Block-diagonalising A(t, ~) + B(t) 

The consideration follows partly [3] and [11]. In the sequel we will 
use the notation 

(13) P{m} = {p(t,~) ='"' p,,(t)~a: Pa(t) E T{m -lal}} L.....lai::Om 

for polynomials of degree m with coefficients in the T-classes. We will 
use the same notation for the matrix-valued case. Clearly P{ m + 1} C 

P{ m} such that these classes constitute a hierarchy. Condition (7) guar­
antees that A(t, ~) E P{1 }, while B(t) E P{O}. Furthermore, due to (8) 
we also know that there exists an invertible matrix M(t) E P{O} such 
that 

(14) M-1 (t)B(t)M(t) = b-diag(l,d-l) (0, B(t)) = 'D(t) 

is block-diagonal. Denoting VC0l(t,~) = M-1 (t)U(t,~), fJ being the 
partial Fourier transform of U with respect to spatial variables, we obtain 
for vCo) the ordinary differential equation 

(15) 

with R1 (t,~) = M-1 (t)A(t,~)M(t) + (DtM-1(t))M(t) E P{1} oflower 
order in the P-hierarchy. By induction we show the following lemma. 

Lemma 2. Let k E N, k ~ 1. Then there exists a constant 
Ck and matrices Nk(t, ~) E P{O}, block-diagonal Fk(t, ~) E P{1} and 
Rk+1(t,~) E P{k+ 1} such that 
(16) 
(Dt- 'D(t) -R1 (t, ~) )Nk(t, ~) = Nk(t, ~) (Dt- 'D(t) -Fk(t, ~)-Rk+l (t, ~)) 

holds true within Zeu(ck)· The matrix Nk(t,~) is uniformly invertible 
within this zone. 
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Proof. We explain the k = 1 step in detail. We construct a matrix 
N(1) (t, ~) E P{1} such that 

(17) (Dt-D(t)-R1 (t,~))(I+NC1l(t,~)) 

-(I+ NC1l(t, ~))(Dt- D(t, ~)- F1(t, ~)) E P{2} 

holds true for some diagonal matrix F1 ( t, 0 E P { 1}. Collecting all terms 
not belonging to the right class yields again conditions for the matrices 
NCll(t,~) and F1 (t,~). Indeed, 

(18) [D(t), N(1) (t, ~)] = -R1 (t, ~) + F1 (t, ~) 

must be satisfied and therefore it is reasonable to set 

(19) 

and to denote by N(l) ( t ~) = ( 0 n 1'1 (t,.;) T) the matrix with entries 
' n1,2(t,.;) 0 

(20) 

n1,j(t,~) = 1= e-sB(t)fl1,j(t,~)ds, R _ F = ( _ 0 k{1) 
1 1 R 0 ' 1,2 

solving Sylvester's equation (18). This implies that NC 1l(t,~),F1 (t,~) E 

P{1}. Recursively, we will then construct matrices N(kl(t,O E P{k} 
and F(kl(t,~) E P{k} block-diagonal, such that for 

K K 
(21) NK(t,O =I+ Lk=1 N(k)(t,~), FK(t,~) = Lk=1 F(k)(t,~), 

the estimate 

(22) BK(t,~) = (Dt -D(t) -R1(t,~))NK(t,~) 

- NK(t,~)(Dt- D(t)- FK(t,~)) E P{K + 1} 

is valid. As we just did this for K = 1, it remains to do the recursion 
k H k + 1. Assume Bk(t, ~) E P{k + 1 }. The requirement to be met is 
that 
(23) 
Bk+1(t, ~)-Bk(t, ~) = -[D(t), N(k+1) (t, ~)]+F(k+ll(t, ~) mod P{k+2}, 

which yields again a Sylvester equation and its solution is given in 
analogy to the above case. It is evident that the construction implies 
F(k+ll(t,~),N(k+l)(t,~) E P{k+1}togetherwithBk+l(t,~) E P{k+2}. 
The matrices Nk(t, ~) E P{O} are invertible with inverse N;;1(t, ~) E 
P { 0} if we restrict our consideration to a sufficiently small elliptic zone 
Zen(ck)· Q.E.D. 
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3.2. Asymptotic integration 
We consider the transformed problem in V(k)(t, ~) = Nk(t, ~)V<0)(t, 0, 

(24) DtV(k)(t,~) = (V(t) +Fk(t,~) +Rk+l(t,~))V(k)(t,~), 

and reformulate this as integral equation for its fundamental solution. 
Denoting it by £k(t,s,~), we know that it solves the above equation to 
initial data £k(s, s, ~) =IE Cdxd_ 

Let Gk(t, s, ~)be the fundamental solution to the block-diagonalised 
system Dt- V(t)- Fk(t,~). Then 
(25) 

( ) (Bk(t,s,~) 0 ) 11 - ( )II< '"It-s 
ek t,s,~ = 0 fh(t,s,~) ) ek t,s,~ rve- -2 

holds true for t 2 s uniformly within Zeu (E) for E :S ck sufficiently small. 
Furthermore, £k ( t, s, ~) satisfies 

We solve this Volterra integral equation using the Neumann series 

(27) 

This series converges based on the estimates for the remainder term 
Rk+l(t,O E P{k + 1}. It can be estimated by 

(28) 

The series converges uniformly within Zeu(ck) n { tl~l(k+l)/2 :S o} for any 
constant o and ll£k(t, s, ~)- Gk(t, s, ~)II ~ 0 as Ck ~ 0 for fixed o > 0 
as soon as we choose k 2 1. 

We can do slightly better. Let W(s) = limt-too eJ £k(t, s, 0). Then 
the following lemma holds true. The full proof can be found in [9]. 

Lemma 3. The fundamental solution £k ( t, s, ~), k sufficiently large, 
satisfies the estimate 

uniformly in 1~1 :S Ek. 
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3.3. The parabolic reference problem 

The parabolic reference problem is defined in terms of the upper left 
corner entry of the matrix Fk(t, ~) modulo terms from P{3}, 

with ai,j(t) E T{O}, f3i(t) E T{O} and "Y(t) E T{1}. Now the uniform 
Kalman rank condition (B3) implies a structural property. It follows 
that /3i(t) has to decay, f3i(t) E T{1}, and also that the quadratic ma­
trix (ai,j(t))i,j is positive definite modulo T{1}. The latter is a direct 
consequence of the estimate (10). 

This defines the coefficients a(t), f3(t) and "Y(t) in (11). The corner 
entry B2(t, s, ~) of 82(t, s, ~) is the fundamental solution to this Cauchy 
problem. Furthermore, we define K(t, ~) = M(t)N2 (t, ~)e1, where e1 = 
(1, 0, ... , O)T E Cd. By definition we have K(t, ~) E P{2}. 

3.4. The final estimate 

We define wo = WUo in such a way that we cancel the main term 
of the solution within Zeu(ck) n {tl~l:::; 8}, i.e., we define 

(31) wo = W2(to, ~)N21 (to, ~)M-1 (to)£(to, 0, ~)x(~)Uo 

with x(~) E C0 (JR.n), x(~) = 1 near~= 0 and supp x c Bc2 (0). Then 
the estimates of Lemma 3 imply the following statement. The logarith­
mic term is caused by comparing Sk(t,s,~) with 32 (t,s,~). 

Lemma 4. The solution w(t, x) to (11) satisfies 

(32) IIU(t, ·)- K(t, ·)w(t, ·)ll2:::; C'(1 + t)- 112log(e + t). 

§4. Concluding remarks 

We used that ker B(t) is one-dimensional. The result can be gen­
eralised to situations where a (stable) higher-dimensional null-space ap­
pears and further diagonalisability conditions on appearing lower order 
terms in the diagonalisation hierarchy are satisfied. This corresponds 
to the block-diagonalisation in [3] and again yields a parabolic reference 
system for these diffusive modes. 

If assumption (B3) is violated, a variety of other asymptotic scenar­
ios may appear. If n = 1, the results of [1] hint to a decomposition of 
solutions into traveling waves, parabolic type modes and exponentially 
decaying modes. 
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