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Topology of curves on a surface and lattice-theoretic 
invariants of coverings of the surface 

Ichiro Shimada 

AbstraCt. 

Let S be a smooth simply-connected complex projective surface, 
and let A be a finite abelian group. We define invariants TA, FA 
and u A for curves B on S by means of etale Galois coverings of the 

. complement of B with the Galois group A, and show that they are 
useful in finding examples of Zariski pairs of curves on S. We also 
investigate the relation between these invariants and the fundamental 
group of the complement of B. 

§1. Introduction 

We work over the complex number field IC. Let S be a smooth 
projective surface. Throughout this paper, we assume that Sis simply­
connected. By a curve on S, we mean a reduced (possibly reducible) 
curve on S. 

Let B and B'be curves on S. 

Definition 1.1. We say that a homeomorphism/ : B ~ B' pre­
serves the classes of irreducible components if we have [Bi] = [f(Bi)] in 
H 2(S, Z) for any irreducible component Bi of B. 

Note that, since Sis simply-connected, the equality [Bi] = [f(Bi)] 
in H 2 (S, Z) is equivalent to the equality [Bi] = [f(Bi)] in the Picard 
group Pic(S) of S. 

Following [5, Definition 2], we make the following: 
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Definition 1.2. We say that B and B' have the same embedding 
topology and write B "'top B' if there exists a homeomorphism between 
(8, B) and (8, B') such that the induced homeomorphism B ~ B' pre­
serves the classes of irreducible components. 

Definition 1.3. A map of equi-conjiguration is a homeomorphism 
(T,B) ~ (T',B'), where T c 8 is a tubular neighborhood of Band 
T' c 8 is a tubular neighborhood of B', such that the induced homeo­
morphism B ~ B' preserves the classes of irreducible components. 

Definition 1.4. We say that B and B' are of the same configuration 
type and write B "'cfg B' if there exist a tubular neighborhood T c 8 of 
B, a tubular neighborhood T' C 8 of B', and a map of equi-configuration 
(T,B) ~ (T',B'). 

It is obvious that B "'top B' implies B "'cfg B'. 

Definition 1.5. A pair [B, B'] of curves on 8 is said to be a Zariski 
pair if B "'cfg B' but BrftopB'. 

By a plane curve, we mean a curve on lP'2 • Since the work of Artal­
Bartolo [2], Zariski pairs of plane curves have been studied by many 
authors. See the survey paper [5]. The most classical example of Zariski 
pairs is the following (Zariski [28], see also Oka [13] and Shimada [15]): 

Example 1.6. There exist irreducible plane curves B and B' of 
degree 6 with six ordinary cusps as their only singularities such that 
rr1 (1P'2 \ B) ~ Z/271.. * Z/371.., while rr1 (1P'2 \ B') ~ Z/271.. x Z/371... 

As in this example, the fundamental group rr1 (1P'2 \ B) has been a 
main tool in finding the examples of Zariski pairs of plane. curves. 

In this paper, we fix a finite abelian group A and define three in­
variants TA(8,B,"f), FA(8,B,"f) and aA(8,B,"f) of curves Bon 8 by 
means of etale Galois coverings W7 ---+ 8 \ B with the Galois group A, 
where 'Y is a homomorphism H 2 (B, Z)---+ A describing the Galois cover­
ing. The invariants FA (8, B, 'Y) and a A ( 8, B, 'Y) are defined in terms of 
the algebraic cycles on a smooth projective completion X of W7 , while 
the invariant TA(8, B,"f) involves the transcendental cycles of X. Using 
these invariants, we can distinguish topological types of curves on 8 in 
the same configuration type, and find many Zariski pairs. 

The idea of the invariant TA(8, B, 'Y) comes fromShioda's observa­
tion [20, Lemma 3.1] that the transcendental lattice of a smooth projec­
tive surface is a birational invariant. 

These invariants have been defined and studied for the double cov­
erings of the projective plane branching along plane curves of degree 6 
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with only simple singularities ([1], [19], [16], [18]). In particular, the in­
variant FA(S, B, 'Y) was intensively studied in [18] in terms of Z-splitting 
curves. 

The plan of this paper is as follows. In §2, we describe all etale 
Galois coverings of S \ B with the Galois group A, and define the invari­
ants FA(S,B,"f) and TA(S,B,"f) in Definition 2.3. In §3, we investigate 
TA(S, B, "f), and show that, under certain conditions, TA(S, B, 'Y) is an 
invariant of the embedding topology of curves (Theorem 3.1). In §4, 
we define a new invariant O" A ( S, B, 'Y), and show that it is an invari­
ant of the configuration types of curves (Theorem 4.3). The invari­
ants FA(S,B,"f) and TA(S,B,"f) are related via O"A(S,B,"f) (Proposi­
tion 4. 7). We then present a method of finding examples of Zariski pairs 
by means of these invariants (Corollary 4.9). In §5, a relation between 
TA(S,B,"f), FA(S,B,"f), O"A(S,B,"f) and 1r1(S\B) is presented. We 
then give several sufficient conditions for n 1 (S \ B) to be non-abelian 
(Corollaries 5.11 and 5.12). This result generalizes the theory of dihedral 
coverings, which has been studied by several authors. (See, for exam­
ple, Artal et al. [3], [4], [6], Tokunaga [22], [23], [24], Degtyarev [8], [9], 
Degtyarev-Oka [10]). We conclude this paper by a remark on the com­
putation of these invariants in §6. 

Thanks are due to Professor Alex Degtyarev and the referee for 
their valuable comments. I also thank Professor Igor Dolgachev for 
teaching me the history and the references about non-conical six-cuspidal 
sextics (Example 4.10). 

Conventions. 
• A lattice is a free if:-module L of finite rank with a non-degenerate 

symmetric bilinear form L x L ---> Z. For a subset R of a lattice 
L, we denote by (R) the submodule generated by R. 

• Every (co )homology group is the singular (co )homology group 
with coefficients in Z, unless otherwise stated. 

• Let A be a finite abelian group. For a prime number p, we 
denote by Ap the p-part of A, and by lengp(A) the minimal 
number of generators of Av-

• For a smooth projective surface Y, we denote by NS(Y) c 
H 2 (Y)/(the torsion part) the Neron-Severi lattice of Y. 

§2. Definition of the invariants FA(S, B, "f) and TA(S, B, "f) 

We fix a finite abelian group A once and for all. 
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LetS be a smooth simply-connected projective surface, and let B be 
a curve on S with the irreducible components B1, ... , Bm. We classify 
all etale Galois coverings of S \ B with the Galois group A; that is, we 
describe all surjective homomorphisms 1r1(S \B)-» A. We have 

m 

H 2 (B) = EB Z[Bi]· 
i=l 

Since Sis smooth and projective, we have H 1 (S \B) ~ H 3 (S, B). Since 
Sis simply-connected, we have H 3 (S) = 0 and obtain an exact sequence 

where r is the restriction homomorphism. Hence all etale Galois cover­
ings of S \ B with the Galois group A are in one-to-one correspondence 
with the set 

C (S B) ·- { I 'Y is a surjective homomorphism } 
A ' .- 'Y H 2(B)-» A such that Im r C Keq · 

For an element 'Y of C A ( S, B), we denote by 

the etale Galois covering corresponding to 'Y. 
Since S is simply-connected, H 2 (S) is torsion-free and we have a 

canonical isomorphism 

(2.1) 

by the cup-product. The restriction homomorphism 

ri : H 2 (S) ----+ H 2 (Bi) = Z[Bi] ~ Z 

is given by [Bi] E H 2 (S) under (2.1). If T : (T, B) .'::::+ (T', B') is a map 
of equi-configuration, then [Bi] = [T(Bi)] holds in H 2(S) and hence we 
have the following commutative diagram: 

~ H 2 (B') 

l r* 

~ H 2 (B). 

Therefore T induces a bijection 
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Let 

h : (S, B) ~ (S, B') 

be a homeomorphism. Restricting h to a tubular neighborhood T of B, 
we obtain a map of equi-configuration hiT, and hence we have a bijection 

For"( E CA(S, B'), the etale Galois covering 

corresponding to h*"f E CA(S,B) is obtained as the pull-back of the 
etale Galois covering r.p"~ : W"~ ----> S \ B' by the homeomorphism of the 
complement h : S \ B ~ S \ B'. In particular, we see that Wh*'Y is 
homeomorphic to WT 

Definition 2.1. A smooth projective completion of r.p"~ : W"~ ----> S\B 
is a morphism 

from a smooth projective surface X such that X contains W'Y as a Zariski 
open dense subset, and that ¢extends r.p"~ : W"~ ----> S \B. 

Definition 2.2. A smooth projective completion ¢ : X ----> S of 
r.p"~ : W"~ ----> S \ B is said to be A-equivariant if the action of A on W"~ is 
extended to the action on X. 

We choose a smooth projective completion ¢ : X ----> S of r.p'Y (not 
necessarily A-equivariant), and put 

E(X) := { E C X I E is a reduced irreducible curve on } 
X such that ¢(E) is a point on S · 

We consider 
H 2 (X)' := H 2 (X)/(the torsion part) 

as a lattice under the cup-product. In this lattice, we have two submod­
ules 

¢*NS(S) 

(E(X)) 
( [¢*C] I Cis a curve on S ), and 

( [E] I E E E(X)), 

which are perpendicular to each other by the cup-product. Note that 
¢*NS(S) is a hyperbolic lattice by the Hodge index theorem, and that 
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the intersection pairing on (e(X)) is negative-definite by Mumford's 
result [11]. In particular, the cup-product is non-degenerate on 

I;(X) := ¢*NS(S) EB (e(X)) c H 2 (X)', 

that is, I;(X) is a sublattice of H 2 (X)'. We denote by 

A(X) := (I;(X) ® Q) n H 2 (X)' 

the primitive closure of I;(X) in H 2 (X)'. 

Definition 2.3. We put 

FA(S,B,'Y) := A(X)fi;(X), 

which is a finite abelian group, and denote by 

TA(S, B, 'Y) := I;(X).L = A(X).L c 1I2 (X)' 

the orthogonal complement of I;(X), which is a primitive sublattice of 
H2 (X)'. 

Proposition 2.4. Neither the isomorphism class of the finite abelian 
group FA(S,B,'Y) nor the isomorphism class of the lattice TA(S,B,'Y) 
does depend on the choice of the smooth projective completion ¢> : X - S 
of 'P'Y : W'Y - S \ B. 

Proof. Suppose that ¢' : X' - S is another smooth projective 
completion of cp'Y : W'Y - S \ B. Then there is a commutative diagram 

X" 

X 

s 
""' 
,/ 

X' 

where X" is a smooth projective surface, and X" - X and X" - X' 
are birational morphisms that are isomorphisms over S \ B. Since a 
birational morphism between smooth surfaces are composite of blowing­
ups at points, we obtain orthogonal direct-sum decompositions 

(2.2) I;(X") = I;(X) EB (e1) EB · · · EB (eN) and 

(2.3) H 2 (X")' = H 2 (X)' EB (e1) EB · · · EB (eN), 

where e1, ... , eN are classes withe~= -1. Hence we obtain 

A(X)ji;(X) ~ A(X")ji;(X") and I;(X).L c,; I;(X").L. 

The same isomorphisms hold between X' and X". Q.E.D. 
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We investigate the action of A on these invariants. 

Proposition 2.5. There always exists an A-equivariant smooth pro­
jective completion. 

For the proof, we need the following: 

Lemma 2.6. There exist a vector bundle 'TJ"' : V'Y ---+ S on S and 
a closed subvariety W "~ c V"~ finite over S such that A acts on V"~ 

over S, that W"' is stable under this action, and that there exists an 
A-equivariant isomorphism W"~ ~ W "~ n ry;:; 1(S \B). 

Proof. First we prove the case where A is cyclic of order d. We 
choose a generator g of A and fix an isomorphism A ~ 7l/ d7l by g ~---+ 1. 
We also embed A into rex by g I-+ exp (2nH/d). Let ai be an integer 
such that 

'Y([Bi]) = ai mod d 

in A= 7l/d7l. Recall that the restriction map ri : H 2 (S) ---+ H 2 (Bi) ~ 7l 
is given by [Bi] E H 2 (S) under (2.1). The condition Imr c Keq for 1' 
implies that there exists a line bundle 'TJ'Y : v'Y ---+ s on s such that 

holds in Pic( S) c H 2 ( S). We have a section s of V"'0 d such that s = 0 
defines the divisor 

a1B1 + · · · + amBm. 

We denote by S"~ c V"~0d the image of the section s : S ---+ V"~. We have 
a morphism 

15 : v"~ ---+ v"'0 d 

given by ~ ~---+ ~d, where ~ is a fiber coordinate of V"~' Let W "~ be the 
pull-back of S"~ by 15. Then W"~ is isomorphic to W "~ n ry:;- 1 (S \B). The 
natural action of rex on V"~ and the embedding A '-----' rex induces an 
A-action on V"' over S, under which W"' is stable and the isomorphism 
W"~ ~ W "~ n ry;:; 1 (S \B) is A-equivariant. 

In the general case, we decompose A into a direct sum of cyclic 
groups A~ A1 x · · · x Az, and let 

be the composite of 1' with the projection A---+ Aj. We put 
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on which A acts overS, and define the closed subvariety W 'Y C V'Y by 

w'Y = { {6, ... ,ez) E v'Y I ej E w'Y(j) c v'Y(j) for j = l, ... ,l }, 

which is stable under the action of A. Then W'Y is A-equivariantly 
isomorphic to W 'Y n ry~ 1 (S \B). Q.E.D. 

Proof of Proposition 2.5. By means of the celebrated theorem of 
Villamayor [25, Corollary 7.6.3], we can make an equivariant embedded 
desingularization of W 'Y c V'Y. Q.E.D. 

Combining Propositions 2.4 and 2.5, we obtain the following: 

Corollary 2.7. The Galois group A acts on the finite abelian group 
FA(S, B, '"Y) and on the lattice TA(S, B, '"Y)· 

§3. The invariant TA(S, B, '"Y) 

The invariant TA ( S, B, '"Y) is a topological invariant. Recall that a 
homeomorphism 

h : (S, B) ~ (S, B') 

induces a bijection h*: CA(S,B') ~CA(S,B). 

Theorem 3.1. Suppose that the classes [Bi] of the irreducible com­
ponents of B span NS(S) 18) Q over Q. If h : (S, B) ~ (S, B') is a 
homeomorphism, then the lattices T A ( S, B, h* '"Y) and T A ( S, B', '"Y) are 
isomorphic. 

Proof. Remark that the classes [h{Bi)] of the irreducible compo­
nents of B' also span NS{S) 18) Q over Q. 

Since Wh*'Y is homeomorphic to W'Y, it is enough to show that the 
lattice TA(S, B, '"Y) is determined by the homeomorphism type of the 
open surface W'Y. We consider the intersection pairing 

which may be degenerate since W'Y is not compact. We put 

Ker(tw) :={ x E H2{W'Y) I tw(x,y) = 0 for all y E H2(W'Y) }. 

Then tw induces a non-degenerate symmetric bilinear form 

i:w : H2(W'Y)jKer(tw) x H2(W'Y)jKer(tw) -t Z 

on the free Z-module H2(W'Y)jKer(tw). Since the lattice 

(H2(W'Y)/Ker(tw), rw) 
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is determined by the homeomorphism type of W-y, the proof is com­
pleted by Proposition 3.2 below, which was proved in a slightly different 
situation in [16] and [19]. Q.E.D. 

Proposition 3.2. Suppose that the classes [Bi] span NS(S)®<Q over 
<Q. Then the lattice H2(W-y)/Ker(tw) is isomorphic to TA(S,B,!)· 

Proof. We put D :=X\ W-y, and let D~, ... , DM be the reduced 
irreducible components of D. Since the classes [Bi] span NS(S) ®<Q, the 
classes [D1], ... , [DM] span E(X) ® <Q over <Q. We put 

f := { x E H2(X) I (x, [Di])x = 0 for all i = 1, ... , M }, 

where ( , )xis the intersection pairing on X. Then we have an isomor­
phism 

TA(S,B,!) ~ T/(the torsion part) 

of lattices. The image of the homomorphism 

induced by j : W-y ~ X is contained in T. Note that, by definition, 
the homomorphism j* preserves the intersection pairings. On the other 
hand, from the Poincare-Lefschetz duality isomorphisms 

and the cohomology exact sequence 

we see that every homology class in T is represented by a topological 
2-cycle on W-y. Thus the inclusion j induces a surjective homomorphism 

which preserves the intersection pairings. Since the symmetric bilinear 
form on TA(S, B, 1) is non-degenerate, we can easily prove that Ker]* 
is equal to Ker(tw ). Q.E.D. 

Definition 3.3. A plane curve B c JP>2 of degree 6 is called a simple 
sextic if B has only simple singularities. A simple sextic B is called a 
maximizing sextic if the total Milnor number J.L(B) attains the possible 
maximum 19. 
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Example 3.4. Suppose that B c JP>2 is a maximizing sextic. We 
consider the double covering of JP>2 corresponding to 

such that 'Y{(Bi)) =f. 0 for any Bi. Then we have a K3 surface with 
the Picard number being the possible maximum 20 (i.e. a singular K3 
surface in the sense of Shioda) as a smooth projective completion X of 
'P'Y : w'Y ~ JP>2 \ B' and the invariant TA (JP>2 ' B' 1') is the tmnscendental 
lattice of X, which is a positive-definite even lattice of rank 2. Using 
the result of transcendental lattices of conjugate K3 surfaces with the 
maximal Picard number (14, 17), we have obtained many arithmetic 
Zariski pairs of degree 6 in (19]. 

In (1], we have exhibited a pair (B+, B_] of maximizing sextics with 
the singularities of type Ag + A10 that are defied over Q( J5) and are 
conjugate under the action of Gal{Q( J5)/Q). The invariants TA for 
them are calculated as follows: 

TA(JP>2,B+,'Y) ~ [ i 218]' TA(JP>2,B_,'Y) ~ [ ~ ~]. 

§4. The invariants FA(S,B,')') and aA(S,B,')') 

We investigate the algebraicity of the invariant FA ( S, B, 1'). For 
a E Aut(C) and 1' E CA(S,B), we denote by 'Yu E CA(su,nu) the 
element corresponding to the etale Galois covering of su \ nu obtained 
as the pull-back of the morphism cp7 : W7 ~ S \ B over Spec C by 
a* : Spec C ~ Spec C; that is, 

'Yu : H2(Bu) ~A 

is given by 'Yu{(Bf)) = 'Y([Bi]), where Bf is the conjugate of Bi by a. 
The following is obvious from the definition: 

Proposition 4.1. For any a E Aut{C), the finite abelian groups 
FA ( s, B' 1') and FA ( su' nu' 'Yu) are isomorphic. 

Next we define a new invariant a A ( S, B, 1'), which is an invariant of 
the configuration type of B. The invariants T A ( S, B, 1') and FA ( S, B, 1') 
are related via this invariant. 

We recall the definition of the discriminant group of a lattice. Let 
L be a lattice. Then we can canonically embed L into its dual lattice 

Lv := Hom(L,Z). 
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The discriminant group disc(L) of L is defined by 

disc(L) := Lv / L. 

Proposition 4.2. The isomorphism class of the discriminant group 
disc(:E(X)) does not depend on the choice of the smooth projective com­
pletion </J : X ----+ S of r.p'Y : W'Y ----+ S \ B. 

Proof. The discriminant group of a lattice (e) of rank 1 with e2 = 
-1 is trivial. Proposition 4.2 then follows from (2.2) by the same argu­
ment as in the proof of Proposition 2.4. Q.E.D. 

Thus the following is well-defined: 

aA(S,B,"f) := disc(:E(X)). 

We will show that a A(S, B, '"'!) is an invariant of the configuration type. 

Theorem 4.3. Suppose that T : (T, B) ~ (T', B') is a map of equi­
conjiguration. Then aA(S,B,"f) is isomorphic to aA(S,B',T*"f). 

For the proof, we recall the definition of equisingularity of plane 
curve singularities. See [26, Proposition 4.3.9] for details. 

Let P E Sing B be a singular point of B, and let P' E Sing B' be a 
singular point of B'. Let B(l), ... , B(k) be the local branches of B at 
P, and let B'(1l, ... , B'(k') be the local branches of B' at P'. 

Definition 4.4. We say that the two germs (B, P) and (B', P') of 
the plane curve singularity are equisingular if k = k' holds and there 
exists a bijection from {B(ll, ... ,B(k)} to {B'(1l, ... ,B'(k'l}, given by 
B(") ~----> B'(") after permutations of indices, such that B(") and B'(~<) 
have the same Puiseux characteristic for K = 1, ... , k and that the equal­
ities of intersection numbers B(i) · B(i) = B'(i) · B'(i) hold for all i =1- j. 

Proof of Theorem 4.3. By the equivalence of (i) and (iv) in [26, 
Theorem 5.5.9], we see that (B,P) and (B',r(P)) are equisingular for 
any singular point P of B. Let J.L: (§,B) ----+ (S, B) be the minimal good 
embedded resolution of B, and let J.L1 : (S', B') ----+ (S, B') be the minimal 
good embedded resolution of B'. (See [26, §3.4] for the definition of 
minimal good embedded resolutions.) Note that J.L induces an analytic 
isomorphismS\ B ~ S \ B, and hence induces a bijection 
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via the isomorphism J.t* : 1r1(S \B) ~ 1r1(S \B). By Theorem 8.1.7 or 
Proposition 8.3.1 of [26], we have a map of equi-configuration 

T: (T, B)---> (T', B'), 

which induces a commutative diagram of bijections 

CA(S,B) 

-r. l 
CA(S', B') 

~ CA(S,B) 

l r. 
I 

~ CA(S,B'). 

A smooth projective completion X ---> S of an etale Galois covering 
W;y ---> S \ B corresponding to i E CA(S, B) is a smooth projective 
completion of WJ.L.i ---> S\ B. Therefore, by Proposition 4.2, it is enough 
to prove 

aA(S,B,i) ~ aA(S',B',i*i') 

for any i E CA(S, B); that is, we can assume that B and B' are normal 
crossing divisors on S. 

Suppose that B and B' are normal crossing divisors. Recall the 
finite covering 

cp'Y : w "! ---> s 
constructed in Lemma 2.6. Let v : Y'Y ---> W "! be the normalization of 
W "!, and consider the finite covering 

Then Sing Y'Y is located over Sing B. If P E Sing B is an intersection 
point of Bi and Bj, then the number and the analytic isomorphism 
classes of singular points of Y'Y over P are determined by '"Y([Bi]) E A 
and 'f'([Bj]) E A. We construct the finite covering 

of S by a normal surface Yr.'¥ branching along B' in the same way. Then 
there exists a bijection 

Sing Y'Y ~Sing Yr."f 

that covers the bijection Sing B ~ Sing B' by T and preserves the ana­
lytic isomorphism classes of the surface singularities. Hence there exist 
desingularizations 
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such that the sets £{Xy) and £(X.,..'Y) of exceptional curves have the 
same configuration. Therefore we have 

By Proposition 4.2, we complete the proof. Q.E.D. 

The isomorphism class of the discriminant group disc(A{X)) of the 
primitive closure A( X) of ~{X) is also independent of the choice of the 
smooth projective completion X. More precisely, we have the following: 

Proposition 4.5. The discriminant group disc{A{X)) is isomor­
phic to disc(T A ( S, B, 'Y)) for any smooth projective completion X. 

The proof follows from Lemma 4.6 below and the fact that the lattice 
H 2(X)' is unimodular. 

Lemma 4.6. Let L and L' be primitive sublattices of a unimodular 
lattice M such that L .1.. L' and that [M : L E9 L') < oo. Then disc(L) 
and disc{L') are isomorphic. 

Lemma 4.6 is (12, Proposition 1.6.1) without the assumption that 
lattices be even. See also the proof of (17, Proposition 2.1.1). 

The three invariants TA(S,B,'Y), FA(S,B,'Y) and OA(S,B,'Y) are 
related as follows: 

Proposition 4. 7. For any 'Y E C A ( S, B); we have 

Moreover, for any prime integer p, we have 

lengp{disc{TA{S, B, 'Y))) :::; lengp(aA{S, B, 'Y)) 

:::; lengp{disc(TA{S, B, 7))) + 2lengp{FA{S, B, 7)). 

This proposition follows from the following elementary lemma (12) 
and Proposition 4.5. 

Lemma 4.8. Let L be a lattice, and let M be a sublattice of L with 
finite index. Then we have 

Since Mv /Lv ~ L/M, we have I disc{M)I =I disc{L)I· [L: Mj2, and 

lengp{disc(L)):::; lengp{disc(M)):::; lengp{disc(L)) + 2lengp(L/M). 
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As a corollary of Theorems 3.1, 4.3 and Proposition 4.7, we obtain 
the following generalization of [18, Theorem 8.5] and the idea of Xie 
and Yang in [27]. This corollary shows that the algebraic invariant 
FA(S,B,f') can be used to distinguish the topological types of B. 

Corollary 4.9. Suppose that the classes [Bi] span NS(S) ® Q over 
Q. Let T : (T, B) .c:; (T', B') be a map of equi-configuration. If we 
have IFA(S,B,f')l =f. IFA(S,B',T*f')l, then T cannot be extended to a 
homeomorphism (S, B) .c:; (S, B'). 

Example 4.10. Let B and B' be the plane curves of degree 6 in 
Example 1.6. Consider the finite abelian group A= Z/2Z. Then each 
of CA(JP>2 ,B) and CA{JP>2 ,B') consists of a single element 'Y· We have 
FA(JP>2 , B,f') ~ Z/3Z while FA(JP>2 , B',f') = 0. 

The six-cuspidal sextic B is defined by the torus-type equation 

f3 + g2 = 0, 

where deg f = 2 and deg g = 3, and f and g are chosen generally. 
The conic Q defined by f = 0 passes through Sing B, and hence B 
is called a conical six-cuspidal sextic. The proper transform of Q by 
¢ : X ---+ JP>2 splits into the union two irreducible components Q+ and 
Q-. The class [Q+] is contained in the primitive closure A{ X), and 
FA(JP>2 ,B,f') ~ Z/3Z is generated by [Q+]. 

On the other hand, there exist no conics passing through the 6 cusps 
Sing B'. The existence of such a non-conical six-cuspidal sextic B' was 
stated by Del Pezzo without proof, and was proved by B. Segre (see [21, 
page 407]). Zariski also proved the existence in [28]. The explicit defining 
equation of a non-conical six-cuspidal sextics was given by Oka [13]. 

Many Zariski pairs of simple sextics have been discovered in [18] and 
by Xie and Yang in [27] using the idea of Corollary 4.9. 

We also have the following corollary, which plays an important role 
in the next section: 

Corollary 4.11. Let p be a prime integer. If we have 

lengp(disc(TA(S, B, ')'))) < lengp(a A(S, B, !')), 

then we have FA(S, B, !')p =f. 0. In particular, if 

rank{TA{S, B, !')) < lengp(aA(S, B, !')) 

holds, then FA(S, B, !')p =f. 0. 

The second assertion follows from the observation that, for a lattice 
L, we have lengp{disc(L)) ~ rank{L). 
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§5. The fundamental group n 1 (S \B) 

In this section, we give a result on a relation between n1 (S \B) and 
the invariants TA(S,B,"f), FA(S,B,"f) and aA(S,B,"f). 

Definition 5.1. Let M be an abelian group, and let G be a group. 
Suppose that there exists an exact sequence 

(5.1) 0 ______, M ______, r ______, G ______, 1. 

Then we have an action ar : G ____, Aut(M) of G on M defined by 

where ;y E G is the image of "( E r, and M is regarded as a normal 
subgroup of r. We call ar the action associated with (5.1). 

In this section, we put 

U := S\B, 

and fix a base point b E U. Let r.p : W ____, U be a finite etale Galois 
covering with the Galois group G, which is not necessarily abelian. Then 
the group G acts on W and hence on H 1 (W) in a natural way. Let 

N := Ker(p: n 1(U,b)-» G), 

be the kernel of the surjective homomorphism p: n 1 (U, b)-»G associated 
with r.p. Then N is (non-canonically) isomorphic to the fundamental 
group of W, and H 1(W) is canonically identified with Nj[N, N]. 

The following is well-known, for example, in the study of Alexander 
polynomials [7]. 

Proposition 5.2. The action ofG on H 1 (W) is associated with the 
exact sequence 

(5.2) 0 ____, H1 (W) ____, 1r1 (U, b) /[N, NJ ____, G ____, 1. 

Corollary 5.3. Suppose that there exists a finite etale Galois cov­
ering W ____, U with the Galois group G acting on H1 (W) non-trivially. 
Then n 1 (U, b) is non-abelian. 

Corollary 5.4. Let r be a group that fits in an exact sequence 

O-----tM-----tr~G-----t1 
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with M being abelian. Suppose that there is a surjective homomorphism 
'Y : 1r1 (U, b) - r. Let W ----+ U be the finite etale Galois covering as­
sociated with the composite g o 'Y : 1r1 (U, b) -+t G. Then there exists a 
surjective homomorphism of G-modules H 1 (W) - M, where M is con­
sidered as a G-module by ar. 

Proof. We have a commutative diagram 

1 ----+ 1r1(W) ----+ 1r1 (U) ----+ G ----+ 1 (exact) 

1 II 
0 ----+ M ----+ r ----+ G ----+ 1 (exact). 

Hence we have a surjective homomorphism 1r1 (W) - M, which factors 
through the homomorphism of G-modules H1(W)- M. Q.E.D. 

We now return to the finite abelian Galois covering 

with the Galois group G =A associated with an element 'Y E CA(S, B). 
Let ¢ : X ----+ S be a smooth projective completion. We put 

and let D~, ... , DM be the reduced irreducible components of D. We 
consider the submodule 

ofH2 (X)" generated by [D1], ••. , [DM], and its primitive closure 

S(X) := (8(X) ® Q) n H 2 (X)'. 

We put 

FA_(S,B,'Y) := 3(X)/8(X). 

We can prove the following by the same argument as Proposition 2.4: 

Proposition 5.5. The isomorphism class of the finite abelian group 
FA_ (8, B, 'Y) is independent of the choice of the smooth projective com­
pletion ¢ : X ----+ S. 

Therefore, by choosing an A-equivariant smooth completion, we see 
that A acts on FA_(S,B,'Y)· 
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Proposition 5.6. There exists a natural A-equivariant embedding 

F~(S,B,"f)v <---+ H1(Wy), 

where F~(S, B,"f)v := Hom(F~(S,B, "f), Q/Z). 

Proof. We have a canonical isomorphism H1(WI') C>o' H 3 (X,D). 
Hence the cokernel of the restriction homomorphism 

is contained in H1(WI'). Note that rx factors through 

s : H 2 (X)' --t H 2 (D) 

and that H 2 (X)' is a unimodular lattice by the cup-product. Hence 
H 2 (X)' is self-dual. The submodule 8(X) is the image of the dual 
homomorphism 

sv: H 2(Dt --t H 2 (X)' 

of s. Thus we have a decomposition 

H 2(Dt ------* 8(X) <---+ 3(X) <---+ H 2 (X)' 

of sv, where H 2 (D)v = Hom(H2 (D),Z). The dual homomorphism 
H 2 (X)' --t 3(X)v of the primitive embedding 3(X) <---+ H 2 (X)' is sur­
jective. The dual homomorphism 3(X)v --t 8(X)v of 8(X) <---+ 3(X) is 
injective and its cokernel is canonically isomorphic to 

F~(S,B,"f)v = Hom(3(X)/8(X),Q/Z). 

The dual homomorphism 8(X)v --t H 2 (D) of the surjective homomor­
phism H 2 (D)v------* 8(X) is injective. Thus Coker(s) = Coker(rx) con­
tains F~(S, B,"f)v in a natural way, and hence so does H 1(WI'). Q.E.D. 

We investigate the relation between F~ ( S, B, '"'() and FA ( S, B, '"'(). 

Definition 5. 7. For a reduced irreducible curve F on S, the strict 
transform of F is the total transform of F by ¢ : X --t S minus the 
components that are contracted to points by ¢. 

Remark that the class of the strict transform of any reduced irre­
ducible curve on Sis contained in ~(X). 

Suppose that A is a cyclic group of prime order l. Then, for any 
reduced irreducible curve F on S, the strict transform of F is either 
reduced, or of the form lC with C being reduced and irreducible. The 
later occurs if and only if F is an irreducible component Bi of B such 
that 'Y([Bi]) =/= 0 in A~ ZjlZ. 
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Assumption 5.8. We consider the following assumptions: 

(a) the finite abelian group A is cyclic of prime order l, 
(b) the classes [B1], ... , [Bm] span NS(S) 0 Ql over Ql, and 
(c) 'Y([Bi]) -=J- 0 fori= 1, ... , m. 

Proposition 5.9. Suppose that Assumption 5.8 holds. Then, for 
any prime p -=J- l, there exists a surjective homomorphism of A-modules 
from FA.(S,B,"f)v to FA(S,B,'Y)v· 

Proof. The assumption (b) implies that 8(X) 0 Q1 = I:(X) 0 Ql. 
Hence we have S(X) = A(X). Moreover 8(X) n I:(X) is of finite index 
in A(X). We put 

FA := A(X)/(B(X) n I:(X)). 

The assumptions (a) and (c) imply that 

8(X)/(8(X) n I:(X)) = Ker(FA- FA.(S,B,"f)) 

is an elementary l-group. Indeed, if Di E £(X), then [Di] E I:(X), while 
if Di tJ. £(X), then Di is the reduced part of the strict transform of an 
irreducible component B1 of B, and hence l[Di] E I:(X). In particular, 

the natural projection FA- FA.(S, B, 'Y) induces (FA)v ~ FA.(S, B, 'Y)v 
for p -=J- l. Therefore the natural projection 

induces a surjective homomorphism from FA.(S,B,"f)v to FA(S,B,"f)v 
for any p -=J- l. Q.E.D. 

On the other hand, we have the following: 

Proposition 5.10. Suppose that Assumption 5.8 holds. If the order 
of a non-zero element f E FA(S,B,"f) is not equal to l, then A acts on 
f non-trivially. 

Proof. We choose an A-equivariant smooth projective completion 
¢ : X --> S. Suppose that R is a divisor on X such that 

f = [R] mod I:(X). 

Let H be an ample divisor on S. Since [¢* H] E I:( X), we can replace 
R by R + n( ¢*H) with sufficiently large n if necessary, and assume that 
R is effective. We write 
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where R1, ... , RN are reduced and irreducible. Since (£(X)) C ~(X), 
we can assume that each Ri is not in £(X) and hence is mapped by 
¢ to a curve on S. Let Ri be the reduced irreducible curve on S that 
is the image of Ri. Let di be the degree of Ri -+ Ri, which is either 
1 or l. The divisor LgEA g(Ri) on X is equal to di times the strict 

transform of Ri, and hence its class is contained in ~(X). Therefore we 
have LgEA g(f) = 0. Since the order off -=/= 0 is not equal to IAI = l, 
we have g(f)-=/= f. Q.E.D. 

Combining all the results, we obtain the following: 

Corollary 5.11. Suppose that Assumption 5.8 holds. If we have 
FA(S,B,"f)p-=/= 0 for some p-=/= l, then 1r1(S \B) acts on H1(Wy) non­
trivially and hence is non-abelian. 

By Corollary 4.11, we obtain the following: 

Corollary 5.12. Suppose that Assumption 5.8 holds. If we have 

for some p -=/= l, then 1r1 (S \B) is non-abelian. In particular, if 

for some p -=/= l, then 1r1 ( S \ B) is non-abelian. 

We apply these corollaries to the double covering of lP'2 branching 
along a curve with only simple singularities. Let B c lP'2 be a plane 
curve of even degree d. Consider the double covering 'P'Y : W'Y -+ lP'2 \ B 
corresponding to 'Y: H 2 (B) -+ Z/2Z with 'Y([Bi]) -=/= 0 for any irreducible 
component Bi of B. Suppose that B has only simple singularities, and 
let J.t B be the total Milnor number of Sing B. Then the normal surface 
Y'Y constructed in the proof of Theorem 4.3 has only rational double 
points of the total Milnor number equal to /-LB· We choose the minimal 
resolution X of Y'Y as the smooth projective completion of t.p'Y : W'Y -+ 

lP'2 \B. Then we have 

rank(~(X)) = 1 + J.LB and 

b2(X) = rank(~(X)) + rank(TA(lP'2, B,"f)) = d2 - 3d+ 4. 

Therefore we obtain the following corollary, which has been proved 
in [23]. 

Corollary 5.13. If J.LB +lengp(aA(lP'2, B, 'Y)) > d2 - 3d+3 for some 

odd prime p, then 1r1 (lP'2 \B) is non-abelian. 
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See [23) also for various applications of this corollary. 

Note that lengP (a A (JP>2 , B, 'Y)) is easily calculated from the AD E­
type of SingE. Note also that J.LB and lengp(aA(JP>2 ,B,'Y)) are both 
invariants of the configuration type of B. 

Another corollary is about the relation between the existence of Z­
splitting curves and 1r1 (JP>2 \B). 

Definition 5.14. Let B c JP>2 be as above. A reduced irreducible 
curve r c JP>2 is said to be Z -splitting if the strict transform f c X of 
r splits into two irreducible components f+' r- and their classes [f+] 
and [f-) are distinct elements of A(X). The class order of a Z-splitting 
curve r is the order of [f+) in the finite abelian group FA (JP>2 , B, 'Y). 

Corollary 5.15. If B has a Z-splitting curve of class order not 
equal to a power of 2, then 1r1 (JP>2 \B) is non-abelian. 

Example 5.16. In [18), we have completely classified all Z-splitting 
curves of degree :::; 3 for simple sextics by means of period mapping for 
complex K3 surfaces. . 

For example, we have found a maximizing sextic B = C + Q of type 
A3 + A5 +An (a union of a conic C and a quartic Q with A5) with a Z­
splitting line of class order 12. By Corollary 5.15, we see that 1r1 (JP>2 \B) 
is non-abelian. 

§6. Computation of the invariants 

We close this paper with a remark on the computation of the in­
variants TA, FA and a A· Suppose that we know the structure of NS(S). 
The lattice :E(X) and hence its discriminant group aA(S,B,'Y) can be 
calculated from the configuration type of B. In [1), we have developed 
a general method of Zariski-van Kampen type to calculate the lattice 
TA(S, B, 'Y)· Hence the order of the finite abelian group FA(S, B, 'Y) can 
be also calculated. We also obtain some information about the structure 
of FA(S, B, 'Y) from the discriminant groups of TA(S, B, 'Y) and of :E(X) 
by using Lemma 4.8. 
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