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Separable endomorphisms of surfaces in positive 
characteristic 

Noboru Nakayama 

Abstract. 

The structure of non-singular projective surfaces admitting non
isomorphic surjective separable endomorphisms is studied in the pos
itive characteristic case. The case of characteristic zero is treated in 
[2], [16] ( cf. [3]). Many similar classification results are obtained also 
in this case; on the other hand, some examples peculiar to the positive 
characteristic are given explicitly. 

§1. Introduction 

We work in the category of algebraic lk-schemes for an algebraically 
closed field lk of characteristic p > 0. The main purpose of this article is 
to prove Theorems 1.1 and 1.2 below on the classification of non-singular 
projective surfaces X which admit non-isomorphic surjective separable 
endomorphisms f: X ----+ X. Here, f is a finite surjective morphism 
of deg f > 1 and the field extension lk(X)/ f*lk(X) is separable. In the 
case of characteristic zero, the non-singular projective surfaces admitting 
non-isomorphic surjective endomorphisms are classified by [2], [16] (cf. 
[3]) as follows: 

• A toric surface. 
• A IP'1-bundle over an elliptic curve. 
• A IP'1-bundle over a curve of genus 2: 2 which is trivialized after 

a finite etale base change. 
• An abelian surface. 
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• A hyperelliptic surface. 
• An elliptic surface with Kodaira dimension one and Euler num-

ber zero. 

Here, any elliptic surface in the last case admits an etale covering from 
the product of an elliptic curve and a curve of genus ;::: 2. Even in 
the positive characteristic case, the arguments in the papers above are 
effective for the classification. However, there are strange phenomena 
not covered by the arguments. For example, there is a non-toric non
singular rational surface admitting non-isomorphic surjective separable 
endomorphisms (cf. Example 4.5 below). 

Theorems 1.1 and 1. 2 below almost correspond to the classification 
in characteristic zero. For their proofs, we apply results and arguments 
in the classification theory of algebraic surfaces of characteristic p > 0, 
mainly those by Bombieri and Mumford in [14], [1]. 

Theorem 1.1. Let X be a non-singular projective surface admit
ting a non-isomorphic surjective separable endomorphism f : X ~ X. 
Assume that the Kodaira dimension K(X) = -oo. Then, the following 
hold for the irregularity q(X) =dim Alb( X): 

(1) 

(2) 
(3) 

If q(X) = 0, then X is a rational surface having at most finitely 
many negative curves and -Kx is big ( cf. Convention 3.2). If 
p f deg f or f is tame ( cf. Definition 2.1), in addition, then X 
is a toric surface. 
If q(X) = 1, then X is a !¥'1-bundle over an elliptic curve. 
If q(X) ;::: 2, then X is a l¥'1 -bundle over a non-singular projec
tive curve T of genus q(X), X has no negative curves, and the 
relative anti-canonical divisor - K X/T is numerically equiva
lent to an effective Q-divisor. If p f deg f or f is tame, in 
addition, then - K x;r is semi-ample, and there is a finite sur
jective morphism T' ~ T from a non-singular projective curve 
T' such that X x T T' ~ l¥'1 x T' over T'. 

Here, a negative curve means a prime divisor on X with negative 
self-intersection number ( cf. §3). 

Theorem 1.2. Let X be a non-singular projective surface of Ko
daira dimension K(X) 2: 0. Then, any surjective separable endomor
phism of X is etale. Moreover, X admits a non-isomorphic surjective 
separable endomorphism if and only if one of the following conditions is 
satisfied: 

(1) X is a minimal surface with K(X) = 0 and x(X, Ox) = 0; in 
other words, X is an abelian surface, a hyperelliptic surface, 
or a quasi-hyperelliptic surface ( cf. Fact 6.3 below). 
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(2) X is a minimal elliptic surface with t;;(X) = 1 and x(X, Ox) = 
0. 

There are two remarks on the theorems. First, the converse direction 
in Theorem 1.1 is not known, i.e., it is not clear whether a surface 
listed in Theorem 1.1 really admits non-isomorphic surjective separable 
endomorphisms. So, the classification is not complete in the case of 
t;;(X) = -oo. Second, similarly to the case of characteristic zero, we have 
few information on the structure of non-isomorphic surjective separable 
endomorphisms of a given surface. 

Two peculiar examples related to Theorem 1.1 are given. One is the 
example mentioned above, which is a non-toric rational surface admit
ting non-isomorphic surjective separable endomorphisms. This is given 
in Example 4.5. The other is an example of a IP'1-bundle over a curve 
of genus 2: 2 such that it admits a non-isomorphic surjective endomor
phism but the IP'1-bundle structure is not trivialized after any finite base 
change whose degree is not divisible by p. This is given by Proposi
tion 5.5 (cf. Remark 5.6). Both examples are related to Artin-Schreier 
coverings. 

This article is organized as follows. In §2, we recall some basic 
properties of "separable coverings" and "fibrations." In §3, we study 
the set of negative curves, which is the key object in the classification in 
the case of negative Kodaira dimension. The case of rational surfaces, 
the case of irrational ruled surfaces, and the case of non-negative Kodaira 
dimension are treated separately in the remaining sections. The proof 
of Theorem 1.1 is given at the end of §5, and that of Theorem 1.2 is at 
the end of §6. 

Notation and conventions 

We fix an algebraically closed field lk: of characteristic p > 0 as 
a ground field. We use standard notation of algebraic geometry ( cf. 
Table 1). By a variety, we mean an integral separated lk:-scheme of 
finite type. Note that, since lk: is algebraically closed, a variety is non
singular if and only if it is smooth over Spec lk:. A curve (resp. surface) 
means a variety of dimension one (resp. two). Additional notation and 
conventions etc. are given later ( cf. §2, Convention 3.2, Definitions 3.4, 
3.6). 
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Remark. The following formulas are well-known for non-singular 
projective surfaces X (cf. [1]): 

dimH2(X, Ox) 2: dimH1(X, Ox)- q(X) 2:0, 

12x(X, Ox)= K_k + e(X) (so-called "Noether's formula"), 

b1(X) = b3(X) = 2q(X), 1:::; p(X):::; b2(X). 

Acknowledgments. The author expresses his hearty thanks to the 
organizers of the third conference of "Algebraic Geometry in East Asia" 
held at Korea Institute of Advanced Study in November 2008. However, 
in the conference, the author gave a talk on endomorphisms of complex 
normal projective surfaces, whose subject is slightly different from that 
of the present article. The results on endomorphisms of complex normal 
projective surfaces are written in another paper [18]. 

h:(X) : The Kodaira dimension of X. 
Kx : The canonical divisor of X. 

Alb(X) : The Albanese variety of X. 
lk(X) : The function field of X. 

IP'x(£) : The projective bundle associated with a locally free sheaf 
£on X. 

bi(X) : The i-th Betti number: rankHi(Xet, Z-1), where p fl. 
e(X) :The Euler number: Li>o( -1)iMX). 
q(X) : The irregularity: dimAib(X) = (1/2)b1(X). 
N(X) : The real vector space NS(X) ® ~' where NS(X) is the 

Neron-Severi group. 
Nef(X) : The nef cone. 
NE(X) : The pseudo-effective cone. 

p(X) :The Picard number: dimNS(X). 
D1D2 : The intersection number of two divisors D 1, D2. 

D 2 : The self-intersection number: DD. 
"' : The linear equivalence relation of divisors. 
~ : The numerical equivalence relation of divisors. 

cl(D): The numerical equivalence class (E N(X)) of a divisor D. 
Pa(D) : The arithmetic genus of a complete connected reduced 

curveD(= dimH1(D, OD) = 1- x(D, OD)). 
Jk : The k-times composite f o · · · o f of an endomorphism 

f:X----tX. 
Table 1. List of notation 
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§2. Preliminaries 

In this section, we recall some basic results on separable coverings 
and fibrations of normal varieties. 

Let us begin with discussion on separable coverings. Let 'P: V1 ~ V2 

be a finite surjective morphism of varieties. If the function field t(V1) 

is a separable extension of <p*t(V2), then 'P is called separable. In this 
case, 0~t/V2 is zero at the generic point of V1. If V1 and V2 are normal, 
then the finite surjective morphism <p is called a covering (or a finite 
covering). If further t(V1 ) is a Galois extension of <p*t(V2 ), then the 
action of the Galois group on V1 is regular and the quotient variety is 
isomorphic to V2 • In this case, 'P is called a Galois covering. 

Suppose that V1 and V2 are non-singular and that 'P is separable. 
Then, 'Pis flat, and the canonical homomorphism <p*0{:,-2 ~ 0{:,-1 induced 
from the pullback of differential one-forms is injective. The determinant 
of the homomorphism is an injection t.p* ny.2 ~ ny.1 of invertible sheaves, 
where n =dim Vi =dim V2. Hence, Oy1 ~ t.p*Ov2 ® Ov1 (Rep) for an ef
fective divisor Rep, equivalently, K v1 = <p* ( K v2 ) +Rep, where K v denotes 
the canonical divisor of V. The homomorphism t.p* 0{:,-2 ~ 0{:,-1 is an iso
morphism outside Supp Rep. Thus, 'P is etale on V1 \ Supp Rep. The 
effective divisor Rep is called the ramification divisor. 

Definition 2.1 (cf. [10], §2.1). Let <p: V1 ~ V2 be a finite surjective 
separable morphism of normal varieties. It is called tame over a prime 
divisor e on V2 if the following conditions ate satisfied for any prime 
divisor r on vl with t.p(r) = e: 

(1) 

(2) 

The ramification index of <p along r is not divisible by p, where 
the ramificationindex is the multiplicity of the divisor <p*(8) 
along r. 
The induced finite surjective morphism 'Pir: r ~ e is separa
ble. 

If 'Pis tame over any prime divisor on V2, then 'Pis called tame. 

Note that if 'P is etale, then 'P is tame. As a version of Abhyankar's 
lemma (cf. [9], Exp. X, Lemma 3.6, Exp. XIII, §5, and [10], §2.3), we 
have the following: 

Lemma 2.2. Let 'P: V1 ~ V2 be a finite surjective morphism of 
normal varieties. Suppose that V2 is non-singular, 'P is etale outside 
a non-singular divisor e on v2 (i.e., vl \ <p-1(8) ~ v2 \ e is etale), 
and that 'P is tame. Then, for any point P E <p-1(8), there exist an 
etale neighborhood U1 ~ V1 of P, an affine etale neighborhood U2 = 
Spec A~ V2 of t.p(P), and an etale morphism U1 ~ U2(m, a) over V2 
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for the affine scheme 

U2(m,a) = SpecA[T]/(Tm- a), 

where m is a positive integer not divisible by p and the zero subscheme 
of a E A is the non-singular divisor e X v2 u2. In particular, v1 and 
cp-1(8) are non-singular, and cp-1(8) is etale over e. 

Lemma 2.3. Let cp: V1 -+ V2 be a finite surjective separable mor
phism of non-singular varieties. Let r be a prime divisor on V1 and m 
the ramification index of cp along r. Then, multr (Rep) ;::: m -1. If p I m, 
then multr(R10) ;::: m. If cp is tame over cp(r), then multr(Rep) = m -1. 

Proof. Let X be a general point of r such that r is non-singular at 
x and cp(r) is non~singular at cp(x). Then, there exist local coordinate 
systems (t1, ... 'tn) of v1 at X and (s1, ... '8n) of V2. at cp(x) such that 
tt is a local equation of r and 81 is a local equation of cp(r). Then, 
cp*(81) = ut''{" for a regular function u not vanishing at x. Since 

cp*(d81) = tf-1(mudtt + t1 du), 

there is a regular function v such that 

cp*(d81 1\ · · · 1\ d8n) = vt;_"-1(dt1 1\ dt2 1\ · · · 1\ dtn)· 

Hence, multr (Rep) ;::: m - 1. If p I m, then cp* ( d81) = tf du; hence, 
multr(Rep) ;::: m by the same argument above, Suppose that cp is tame 
over cp(r). By Lemma 2.2, etale locally on V1 and V2 , cp is regarded 
as a cyclic covering (h, t2, ... , tn) r-+ (8t, 82, ... , 8n) = (tf, h, ... , tn)· 
Hence, 

cp*(d81 1\ · · · 1\ d8n) = mt;_"-1(dt1 1\ dt2 1\ · · · 1\ dtn)· 

Therefore, multr(Rep) = m- 1. Q.E.D. 

Corollary 2.4. Let cp: V1 ~ V2 be a finite surjective separable 
morphism between non-singular varieties. Let D2 be a reduced divisor 
on V2 such that cp is tame over D2, and let D1 be the reduced divisor 
cp-1(D2) = cp*(D2)red· Then, A = Rep- cp*(D2) + D1 is an effective 
divisor having no common irreducible components with D 1 . 

Proof. Since Rep is effective, so is A at least on V1 \ D1. If r is a 
prime component of D 1, then multr(A) = 0 by Lemma 2.3. Thus, we 
are done. Q.E.D. 

Note that the divisor A in Corollary 2.4 satisfies K v1 + D1 = 
cp*(Kv2 + D2) +A. 
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Corollary 2.5. Let cp: C ----* JP>1 be a finite covering from a non
singular curve C such that p f deg cp. Assume that, for a point P E 

JP>l, cp- 1 (P) is a point, and cp is etale on C \ cp- 1 (P). Then, cp is an 
isomorphism. 

Proof. We set Q := cp- 1 (P). Then, cp*(P) = mQ form= degcp. 
Hence, cp is tame. By Corollary 2.4, we have Kc+Q = cp*(Kpl +P)+Ll 
for an effective divisor Ll on C with Q (j. Supp Ll. Since cp is etale outside 
Q, we have Ll = 0. Hence, 

2g - 2 < 2g- 2 + 1 = deg(Kc + Q) = - deg cp < 0 

for the genus g of C. Thus, g = 0 and deg cp = 1. Therefore, cp is an 
isomorphism. Q.E.D. 

The following is a typical example of separable surjective morphisms 
cp: C ----* JP>1 with p = deg cp which is etale over JP>1 \ { P} for a point P. 

Example 2.6. Let f: JP>1 ----* JP>1 be the Artin-Schreier morphism 
defined by (x : y) f--7 (xP- xyP-l : yP) for a homogeneous coordinate 
(x,y) oflP'1. Then, for the infinity point P = (1: 0), f- 1(P) = {P} and 
f is etale on JP>1 \ {P}. In particular, f is a separable finite covering of 
degree p. Here, f is not tame over P, since the ramification index at P 
is p. Moreover, the ramification divisor Rt is calculated as (2p- 2)P, 
since deg R f = ( 1 - deg f) deg K pl = 2p- 2 by the ramification formula. 

Next, we shall discuss on fibrations. First, we recall the notion of 
fibration of normal varieties. 

Definition 2. 7. Let 1r: V ----* W be a proper surjective morphism 
of normal varieties. If the canonical homomorphism Ow ----* 1r * Ov is 
isomorphic, then 1r is called a fibration (or afiber space). 

For a proper surjective morphism 1r: V ----* W of normal varieties, it 
is known that 1r is a fibration if and only if the function field lk(W) is 
algebraically closed in lk(V) via n*: lk(W) ----* lk(V). Moreover, if 1r is a 
fibration, then any fiber of 1r is connected (cf. [6], Theoreme 4.3.1) and a 
general fiber of 1r is geometrically irreducible (cf. [7], Proposition 4.5.9, 
[8], Theoreme 9.7.7). However, even if 1r is a fibration, a general fiber is 
not necessarily reduced. 

Example 2.8. For n 2: 2, let V be the hypersurface of pn x pn 
defined by I:~=O xiyf = 0, where (xo : · · · : xn) and (yo : · · · : Yn) are 
homogeneous coordinates of pn. Then the projection V ----* pn to the 
second factor is a pn- 1-bundle, while the projection V----* pn to the first 
factor is a fibration whose closed fibers are all non-reduced. 
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For a fibration 1r: V ----> W, a general fiber is reduced if and only 
if the geometric general fiber is reduced ( cf. [8], TMoreme 9. 7. 7); this 
is also equivalent to the condition that !k(V) is a separable over lk(W) 
via n*, i.e., lk(V) ®ik(W) L is reduced for any field L over lk(W) ( cf. [7], 
Proposition 4.6.1). Fortunately, if dim W = 1, then a general fiber of a 
fibration n: V----> W is always reduced by [11], Theorem 2 (cf. [20]). 

For a fibration from a surface to a curve, we have the following well
known result in the classification theory of surfaces, which is mentioned 
in [14] without proof. 

Proposition 2.9. Let 1r: X ----> T be a fibration from a non-singular 
surface X to a non-singular curveT such that KxC = 0 for any closed 
curve C C X contained in a fiber of 1r. Then, a general fiber F of 1r is 
an irreducible and reduced curve of arithmetic genus one. Moreover, if 
p > 3, then F is an elliptic curve, and if p ::::; 3, then F is an elliptic 
curve or a cuspidal cubic curve. 

Proof. As has been mentioned, lk(X) is separable over n*lk(T) and 
F is irreducible and reduced. Hence, Pa(F) = 1 by (Kx + F)F = 0, and 
consequently, F is isomorphic to a plane cubic curve. Thus, it is enough 
to prove the last assertion. In many articles, the proof of this part is 
done by referring to [21], Theorem 2. Here, we shall present another 
proof. Assume that the general fiber F is not an elliptic curve. Then F 
is a rational curve with a unique singular point P, where P is a node or 
a cusp of type (2, 3); more precisely, the completion 8 of the local ring 
OF,P is isomorphic to either lk[u, v]/(uv) or lk[u, v]/(u2 - v3 ). Let (x, y) 
be a local coordinate of IP'2 at P and let ¢ = ¢(x, y) be a local defining 
equation of F. From the natural exact sequence 

we have an isomorphism 

Therefore, in order to calculate the dimension of Ext1 above, we may 
assume (x, y) = (u, v), and¢= uv or¢= u2 - v3 . As a consequence, we 
infer that the dimension of the Ext1 is 1, 2, 3, and 4 according as the 
conditions: (i) P is a node, (ii) P is a cusp and p > 3, (iii) P is a cusp 
and p = 3, and (iv) Pis a cusp and p = 2. 

By the separability of !k(X)/n*lk(T), the natural sequence 
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is exact. Hence, there is a coherent Ox-ideal I such that 

extbx (H~/T• Ox) ® 1r*O} ~ Ox /I, 

ext"bF(O};t• Op) ~ (Ox/I) ® Op ~ OpfiOp. 

309 

Let S C X be the reduced closed subscheme identified with the support 
of Ox/I. Then, SnF = {P}. In particular, S c X----. Tis a dominant 
purely inseparable morphism. If S ----. T is isomorphic, then 1r: X ----. T is 
smooth along S, since X is non-singular; this is a contradiction. There
fore, degS/T 2: p. On the other hand, degSjT:::; dimk(OpjiOp)p:::; 2 
if (i) Pis a node or if (ii) Pis a cusp and p > 3, by the calculation of the 
dimension of the Ext1 above. Hence, p :::; 3 and P is a cusp. Q.E.D. 

Definition 2.10. Let 1r: X ----. T be a fibration from a normal 
surface X to a non-singular curveT. If a general fiber of 1r is an elliptic 
curve (resp. a cuspidal cubic curve), then 1r is called an elliptic fibration 
(resp. a quasi-elliptic fibration). In this case, X is called an elliptic 
surface ( resp. a quasi-elliptic surface). 

A fibration 1r is called minimal if X is non-singular and any fiber 
of 1r contains no ( -1 )-curves. Here, a ( -1 )-curve is by definition a non
singular rational curve C C X with C2 = -1; this is also called an 
exceptional curve of the first kind. 

Remark 2.11. If an elliptic surface (resp. a quasi-elliptic surface) 
1r: X----. Tis minimal, then KxC = 0 for any closed curve C contained 
in a fiber. In fact, if KxC =f. 0, then there is an irreducible component r 
in the same fiber such that Kxr < 0, since Kx1r*(t) = 0 for any t E T. 
Here, if r 2 < 0, then r is a ( -1)-curve by 2pa(r)- 2 = (Kx + r)r < 0; 
if r 2 2: 0, then the fiber 1r*(t) is a multiple of r, since 1r*(t) is connected 
and 1r*(t)r = 0; thus Kxr = 0, a contradiction. 

Lemma 2.12. Let 1r: X ----. T be an elliptic fibration from a normal 
surface X to a non-singular curve T. Assume that any fiber of 1r does 
not contain rational curves. Then, X is non-singular, 1r is minimal, and 
the support of every fiber is an elliptic curve. 

Proof. Let JL: Z ----. X be a resolution of singularities. Contracting 
( -1 )-curves contained in fibers of 1r o JL: Z ----. T, we have a proper 
birational morphism v: Z----. Y to a minimal elliptic surface Y overT. 
Let ro: Y ----. T be the induced elliptic fibration. Let r be the proper 
transform in Y of an irreducible component of a fiber of 1r. Then, r 
is also an irrational irreducible component of a fiber F of ro. Hence, 
0 :::; 2pa(r) - 2 = (Ky + r)r. IfF is reducible, then r 2 < 0. But 
KyF = 0 and Kyr > 0 imply that r~ < 0 and Kyr1 < 0 for some other 
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irreducible component f1 ofF; hence f 1 is a (-I)-curve. Therefore, F 
is irreducible, and hence F = mf for some m 2: 1. Since Pa (f) = 1 by 
K y f = f 2 = 0 and since f is irrational, f is an elliptic curve. Therefore, 
the support of any fiber of w is an elliptic curve. In particular, the 
rational curves contained in fibers of 1r o f-l: Z """"""' T are all exceptional 
for both f-L and v. Hence, X~ Y overT. Thus, we are done. Q.E.D. 

Theorem 6.1 below explains in detail the structure of the elliptic 
fibration n: X""""""' Tin Lemma 2.12 above. The following result seems 
to be well-known. 

Lemma 2.13. Let 1r: X""""""' T be an elliptic fibration from a non
singular projective surface X. Ifx(X, Ox)= e(X) = 0, then the support 
of any fiber of 1r is an elliptic curve. 

Proof. We have K_k = 12x(X, Ox)-e(X) = 0. Ih is not minimal, 
then we have a birational morphism f-L: X """"""' Y to a minimal elliptic 
surface Y over T, where 0 = K_k < K}. However, since K y F = 0 for 
a general fiber F of n, we have K} :::::; 0 by the Hodge index theorem. 
Therefore, 1r is a minimal elliptic fibration, and hence KxC = 0 for 
any closed curve C contained in a fiber of 1r (cf. Remark 2.11). Let 
U C T be a non-empty open subset such that nl7r-l(U): 1r-1(U) """"""' U 
is smooth. Then 01r;r is locally free of rank one over n-1 (U). Thus, 

we have a surjection 01r;r """"""' .J M for an invertible sheaf M on X and 
an ideal sheaf .J on X such that the kernel is a torsion sheaf on X 
and SuppOx/.1 is a finite subset of X\ 1r-i(U). Therefore, we have 
an effective divisor B on X with SuppB n 1r-1(U) = 0 and an exact 
sequence 

0""""""' n*O} Q9 Ox(B) """"""'n1r """"""'.J M """"""'0. 

Considering the Chern classes of 01r, we have M ~ Ox(Kx -n*(Kr)
B) and 

c2(n1r) = c1(n*O} Q9 Ox(B))c1(M) + c2(.J M) 

= (n*(Kr) + B)(Kx -n*(Kr)- B)+ length(Ox/.1) 

= -B2 + length(Ox/.1) 2: length(Ox/.1) 2:0, 

since Kxn* (Kr) = Kx B = 0 and B 2 :::::; 0. Note that B 2 = 0 if and only 
if kB = n*(8) for a positive integer k and an effective divisor e on T 
(cf. Lemma in the proof of [1], Theorem 2). Thus, from the assumption 
e(X) = c2(0l) = 0, we have .J = Ox and B 2 = 0. In particular, we 
have an exact sequence 

(2.1) 0""""""' Ox(n*(Kr) +B)""""""' n1r """"""'Ox(Kx- n*(Kr)- B)""""""' 0, 
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where BC = 0 for any closed curve C contained in fibers of 1f. 

Let C be an irreducible component of the fiber 1r*(t) over a point 
t E T \ U. Then, we have a natural exact sequence 

(2.2) 0 ----+ Oc( -C) ----+ D_\.lc ----+ Db ----+ 0. 

By (2.1), we have a homomorphism 

'Pc: Oc(-C)----+ Ox(Kx -1f*(Kr)- B)lc 

to an invertible sheaf on C of degree zero. Suppose that 'PC is not zero. 
Then, C 2 = 0, and 'PC is an isomorphism. In this case, (2.2) is split 
and Db'-:::' Ox(1f*(Kr) + B)lc is locally free. Therefore, Cis an elliptic 
curve, and 1r*(t) = mC for some m > 0. Suppose next that 'PC is zero. 
Then, we have an injection 

'1/Jc: Oc( -C)----+ Ox(1f*(Kr) + B)lc 

to an invertible sheaf on C of degree zero. Hence, C 2 = 0 and '1/Jc 
is an isomorphism. Then, Db is isomorphic to the locally free sheaf 
Ox(Kx -1f*(Kr)- B)lc- Thus, Cis an elliptic curve, and 1r*(t) = mC 
for some m > 0. Therefore, the support of any fiber 1r*(t) is an elliptic 
curve. Q.E.D. 

§3. Negative curves and endomorphisms 

Let X be a non-singular projective surface. A prime divisor ron X 
is called a negative curve if the self-intersection number r 2 is negative. 
Let Neg(X) denote the set of negative curves on X. In this section, we 
shall give basic properties on the negative curves related to endomor
phisms. In particular, we shall show that Neg(X) is finite if X admits 
a non-isomorphic surjective separable endomorphism. This is known in 
the case of characteristic zero by [16]. 

Let N(X) be the real vector space NS(X) 0 ffi. for the Neron-Severi 
group NS(X) of X. Here, dim N(X) equals the Picard number p(X). Let 
f: X ----+ Y be a surjective morphism of non-singular projective surfaces. 
For the pull-back and push-forward of divisors, we have 

for divisors D on Y and E on X. These are known as the projection 
formula. The maps D ~----> J*(D) and E ~----> f*(E) induce the homomor
phisms f*: N(Y) ----+ N(X) and f*: N(X) ----+ N(Y), respectively. Here, 
f* of* is the multiplication map by deg f. In particular, f* is injective 
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and f* is surjective. Note that if g: Y -t Z is a surjective morphism to 
another non-singular projective surface Z, then f* o g* = (go f)* and 
g* 0 f* = (g 0 !)*. 

Remark (cf. [2], Lemma2.3, (1)). Let f: X -t X be a surjective en
domorphism of a non-singular projective surface X. Then, f*: N(X) -t 

N(X) and f*: N(X) -t N(X) are isomorphisms. In particular, f is a 
finite morphism, since no curve is contracted by f. 

The following is proved in [16] in characteristic zero, and the same 
proof works in this case: 

Lemma 3.1. Let f: X -t X be a non-isomorphic separable surjec
tive endomorphism. Then, Neg( X) is a finite set, and there is a positive 
integer k such that (Jk)*r = (deg f)kf 2r for any r E Neg( X), where fk 
stands for the k-times composite f o ···of. 

Since this is a key lemma for our study of endomorphisms of surfaces, 
we write the proof. 

Proof. Step 1 (cf. [16], Lemma 9). We shall show that the mapping 
r ~ f(r) induces an injection 1/J: Neg(X) -t Neg(X). Let r be a 
negative curve on X. Assume that f(r) = f(r') for some prime divisor 
r'. Then, f*(r') = af*(r) for some rational number a > 0, since 
f*(r) = dr f(r) for the mapping degree dr ofr -t f(r). Hence, the class 
of r'- ar in N(X) is zero by the injectivity off*. In particular, rr' = 
ar2 < 0. Therefore, r = r'. As a consequence, we have J*(f(r)) = mr 
for some m 2: 1. Here, f(r) is a negative curve by 

Thus, r ~ f(r) induces an injection 1/J: Neg(X) -t Neg( X). 
Step 2 (cf. [16], Lemma 10). Let r be a negative curve. We shall 

show that fk(r) c SuppRt for some k 2: 0. For an integer k 2: 0, we 
define mk by f*(Jk+l(r)) = mkjk(r). It is enough to show that m~e > 1 
for some k. Assume the contrary. Then, (degf)fk+l(r)2 = (Jk(r))2 for 
any k. We have a contradiction by 

r 2 = (degf)f(r)2 = · · · = (degf)kfk(r)2 E n:0 (degf)kz = 0. 

Step 3 (cf. [16], Proposition 11). Let Neg(X)o be the set of negative 
curves r such that r c SuppRt· This is a finite set, and 

Neg(X) = U (1/Jk)-1(Neg(X)o) 
k:O::O 
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by Step 2. Since 'ljJ is injective, Neg(X) is a finite set by [3], Lemma 3.4 
(cf. The proof of [16], Proposition 11). Let k be the order of the permu
tation 1/J: r ~--t j(r) of the finite set Neg(X). Then, (Jk)*(r) = nk,rr 
for some positive integer nk,r for any r E Neg(X). By calculation 

we have nk,r = ( deg J)k/2 • Thus, we are done. Q.E.D. 

Convention 3.2. An element of N(X) is regarded as the numerical 
equivalence class cl(D) of an JR-divisor Don X, where JR-divisor means 
a .formalJR-linear combination of finitely many prime divisors. The nu
merical equivalence relation is denoted by Fi:J. Note that D Fi:J 0 if and 
only of DC = 0 for any closed curve C on X. An JR-divisor D is called 
nef if DC 2: 0 for any closed curve C on X. The nef cone Nef(X) is 
by definition the set of cl(D) for all the nef JR-divisors D on X. An 
effective JR-divisor is by definition a divisor of the form I: airi, where 
ri is a prime divisor and all ai 2: 0. The pseudo-effective cone NE(X) 
is the closure of the cone NE(X) consisting of cl(D) for all the effective 
JR-divisors Don X. An JR-divisor Dis called pseudo-effective (resp. big) 
if cl(D) E NE(X) (resp. cl(D) is in the interior of NE(X)). 

Let f: X -+ Y be a surjective morphism of non-singular projective 
surfaces. Then, f* Nef(Y) = Nef(X) nj* N(Y) and f* NE(X) = NE(Y) 
for the homomorphisms f*: N(Y) -+ N(X) and f*: N(X) -+ N(Y). 
The following is shown in [18], Section 4.4. 

Proposition 3.3. Let f: X -+ X be a non-isomorphic surjec
tive endomorphism of a non-singular projective rational surface X. Let 
f*: N(X) -+ N(X) be the pullback homomorphism. If X '/:- IP'1 x IP'l, 
then some power (f*)k = f* o · · · of* is a scalar map. 

Proof. In the proof, we may replace f with a composite fk = 

fo· ··of, freely. Hence, by Lemma 3.1, we may assume that j*(r) = dr 
for any r E Neg( X), where dis the positive integer equal to (deg f) 112 . If 
p(X) = 1, then N(X) is one-dimensional, so f* is a scalar map. Suppose 
that p(X) = 2 and X '/:- IP'1 x IP'1 . Then, X is a Hirzebruch surface having 
a negative section r. Thus f*(r) = dr. Let F be a fiber ofthe IP'1-bundle 
structure on X. Then, f*(F) Fi:J mF for some m > 0, since NE(X) is 
spanned by cl(F) and cl(r) and since f* NE(X) = NE(X). Here, m = d 
by d2 = degf = f*(F)j*(r) = md. Thus, f*: N(X)-+ N(X) is a 
scalar map. 

Suppose that p(X) 2: 3. Then, there is a (-1)-curve Con X (cf. 
[15], Theorem (2.1)). Here, f*(C) = dC. Let p,: X-+ Y be the blowing 
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down of C. Then, N(X) = J..t* N(Y) E9llhl(C). Since Cis the unique 
curve contracted by J..t o f: X --+ Y, as the Stein factorization of J..t o f, 
we have an endomorphism fy: Y --+ Y such that fy o J..t = J..t o f. Thus, 
f*: N(X) --+ N(X) is isomorphic to the direct sum of fY.: N(Y) --+ 
N(Y) and dx: Rcl(C)--+ Rcl(C). Therefore, we can reduce to the case 
p(X) = 3. In this case, p(Y) = 2. If Y ¢ JID1 x JID1, then f* is a scalar 
map, since fY. is the multiplication map by d. Hence, we may assume 
that Y ~ JID1 x JID1. For i = 1, 2, let Fi be· the fiber of the i-th projection 
Y --+ JID1 which contains the point J..t( C). Then, the proper transform 
Ff of Fi in X is also a negative curve. Hence, f* Ff = dFf, which 
induces fY.(Fi) = dFi. Thus, JY.: N(Y) --+ N(Y) is the multiplication 
map by d, since N(Y) is generated by cl(F1) and cl(F2). Therefore, 
f*: N(X)--+ N(X) is a scalar map. Thus we are done. Q.E.D. 

Definition 3.4. Let X be a non-singular projective surface. We 
define 

Nx :="" r 
L-•TENeg(X) 

when Neg(X) is finite. 

The following result is proved in (3], Lemma 3.7 in the case of charac
teristic zero. The same proof almost works in the positive characteristic 
case, but we need to modify some arguments by applying Lemma 2.2 
and Corollaries 2.4 and 2.5. 

Lemma 3.5. Assume that X admits a non-isomorphic surjective 
endomorphism f: X --+ X with p f deg f. Then, a connected component 
of N x is one of the following: 

(1) 
(2) 
(3) 

An elliptic curve. 
A cyclic chain of rational curves. 
A straight chain of rational curves. 

Here, "cyclic chains of rational curves" and "straight chains of ra
tional curves" are defined as follows: 

Definition 3.6. Let D be a reduced and connected divisor on a non
singular projective surface. If D is expressed as E:=l ci for mutually 
distinct non-singular rational curves Ci such that 

if li- il = 1; 

if li- il > 1, 

then D is called a straight chain of rational curves. If D is expressed 
as E:=l ci for irreducible components ci satisfying the following con
ditions, then D is called a cyclic chain of rational curves: 



Separable endomorphisms of surfaces 

(1) If k = 1, then D = C1 is a nodal cubic curve. 
(2) If k ;::: 2, then, for any i, Ci ~ JP>1 , (D - Ci)Ci 

(D- Ci) n Ci consists of two points. 

315 

2, and 

Proof of Lemma 3.5. By replacing f with a power fk, we may as
sume that J*(f) = df for any negative curve r, by Lemma 3.1, where 
d2 = deg f. Hence, the degree of fir: r-+ r is d, and fir is separable. 
Thus, f is tame over r. By Corollary 2.4, we have an effective divisor 6. 
on X such that 6. has no common irreducible component with N x and 

(3.1) Kx +Nx = f*(Kx +Nx) + 6.. 

In particular, any irreducible component of 6. is nef. Let D be a con
nected component of Nx. Then, by Lemma 2.2, flv: D-+ Dis etale 
over D \(Sing D U Supp 6.). We set no := D \(Sing D). Since we have 

from (3.1), the ramification divisor of flv over D 0 is just 6-lvo 0 If r is 
an irreducible component of D, then, by (3.1), we have 

(3.2) 

Summing up for all the r, we have 

(3.3) 
1 

2pa(D)- 2 = degKv = (Kx + Nx)D =- d _ 16-D :S: 0. 

In particular, Pa(D) ::::; 1. 
Assume that Pa(D) = 1. Then, wv = Ox(Kx +D)® Ov ~ Ov, 

and 6. n D = 0 by (3.3). Hence, flv is etale over D 0 • Suppose that D 
is irreducible. Then D is an elliptic curve or a cubic curve with a node 
or a cusp of type ( 2, 3). However, the cusp case does not occur. For, 
otherwise, flv is etale over Do~ A\ this is impossible by Corollary 2.5. 
Suppose next that D is reducible. Let r be an irreducible component of 
D. Then (D- f) n r =f. 0. By (3.2), we have f ~ JP>1 and (D- f)f = 2. 
The finite surjective morphism fir: f -+ r is of degree d and is etale 
outside (D -f) n r. Hence, (D -f) n r consists of two points by 
Corollary 2.5. Since the property holds for any irreducible component 
r of D, we infer that D is a cyclic chain of rational curves. 

Assume next that Pa(D) = 0. Then, H1 (D, Ov) = 0. Hence, every 
irreducible component of D is JP>1 . If D is irreducible, then D ~ JP>1 is 
a straight chain of rational curves. Thus, we may assume that D is 
reducible. There is an irreducible component f 1 such that Af1 > 0 
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by (3.3). Then, (D- r1)r1 = 1 and ~r1 = d- 1 by (3.2). Thus, 
there is another irreducible component r 2 of D such that ~r 2 > 0 by 
(3.3). If r is an irreducible component different from rl and r2, then 
r n ~ = 0 and (D- r)r = 2 by (3.3) and (3.2). In this case, since fir 
is etale outside (D-r) n r, by Corollary 2.5, (D-r) n r consists of 
two points. Then these properties imply that D is a straight chain of 
rational curves. Q.E.D. 

In the case of characteristic zero, the following result on N x is proved 
by Proposition 14, (3), and Theorem 17 in [16]. Since the same argu
ments in their proofs work in the positive characteristic case, we omit 
the proof. 

Proposition 3. 7. Let X be a non-singular rational surface with 
Neg( X) finite. Then, any negative curve on X is a non-singular rational 
curve. Assume further that any connected component of N x is either 
a cyclic chain of rational curves or a straight chain of rational curves. 
Then, X is a toric surface. 

§4. Rational surfaces 

If X is a non-singular projective rational surface with p(X) ::::; 2, 
then -Kx is big and Neg(X) consists of at most one curve. For the 
case p(X) 2: 3, we have the following: 

Theorem 4.1. Let X be a non-singular projective rational surface 
with p(X) > 2. Suppose that - Kx is pseudo-effective and that, for any 
negative curve r, -mrKx - r is pseudo-effective for some mr > 0. 
Then, - Kx is big, Neg(X) is finite, and NE(X) is a polyhedral cone 
generated by the classes of negative curves. 

This is a generalization of [17], Proposition 3.3. For the proof, we 
need: 

Lemma 4.2. Let X 6e a non-singular projective surface such that 
-Kx is pseudo-effective. Let P be the positive part of the Zariski de
composition of -Kx. Suppose that P ~ 0 P 2 = 0, and Pr = 0 for 
any r E Neg(X). Then, X is a JP>1 -bundle over an elliptic curve and 
Neg(X) = 0. 

Proof Let -Kx = P + N be the Zariski decomposition (cf. [22], 
[5]). Then, ( -Kx )2 = P 2 + N 2 ::::; 0. There is a birational morphism 
p,: X --+ Y to a non-singular projective surface Y without ( -1 )-curves. 
It is well-known that Y is a IP'1-bundle over a curve or Y c:::' JP>2 (cf. 
[15], Theorem (2.1)). Moreover, K~ = 8(1 -g) if Y is a JP>1-bundle 
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over a curve of genus g. Since Pr = 0 for any Jt-exceptional curve 
r, there is a nef <Ql-divisor Po on Y such that P = J.l* P0 . If 'Y is a 
negative curve on Y or an irreducible component of /1* ( N), then 'Y = 
J.l* (r) for a negative curve r on X, and hence Po'Y = Pr = 0. Let 
Jt*N = P1 + N1 be the Zariski decomposition, where P1 is the positive 
part. Then, P0 P1 = 0. Since P0 ~ 0, by the Hodge index theorem, 
P1 ~ r Po for some rational number r ;:::: 0. For the Zariski decomposition 
-Ky = Py + Ny of -Ky = Jt*( -Kx) =Po+ Jt*(N), the positive part 
Py equals Po+ P1 ~ (r + 1)Po, and Ny = N1 by the uniqueness of 
the Zariski decomposition. Hence, the Zariski decomposition of - K y 

satisfies the same condition as -Kx, i.e., Py ~ 0, Pf,. = 0, Py"( = 0 
for any negative curve 'Y on Y. In particular, Kf :::; 0. Therefore, Y is 
not rational, and Y is a IP'1-bundle over a curve T of genus g ;:::: 1. Let 
F be a fiber of 1r. Then, Py ~ aF for any a E ffi.; for, otherwise, we 
have 2a = (-Ky)Py = Pf,. + PyNy = 0. Thus, PyF > 0. Since N(Y) 
is two-dimensional, NE(Y) is fan-shaped; thus NE(Y) is generated by 
cl(Py) and cl(F). In particular, NE(Y) = Nef(Y) and Neg(Y) = 0. 
Hence, Ny = 0 and -8(g - 1) = Kf = Pf,. = 0. Thus, T is an 
elliptic curve. If J.l: X ----+ Y is not an isomorphism, then there is a 
reducible fiber of X ----+ Y ----+ IP'1, which consists of negative curves; 
hence Pn* (F) = Py F = 0, a contradiction. Therefore, X ~ Y. This 
completes the proof. Q.E.D. 

Proof of Theorem 4.1. Step 1. First of all, we shall show that 
Neg( X) is finite. If-Kx is big, then the finiteness of Neg( X) is proved 
by [19], Proposition 4.4 ( cf. The first half of the proof of [17], Proposi
tion 3.3). Thus, we may assume that -Kx is not big. Let -Kx = P+N 
be the Zariski decomposition of -Kx, where P is the positive part. 
Then, P 2 = 0. Moreover, Pr = 0 for any negative curve r, since 
Pr :::; -mrKx P = mrP2 = 0; hence, P ~ 0 by Lemma 4.2. For 
a negative curve r, -Kx - rr is pseudo-effective for r := mr\ let 
- Kx- rr = P1 + N1 be the Zariski decomposition, where P1 is the pos
itive part. Since P + N = P1 + N1 + rr, we have P;:::: Pt, equivalently, 
N1 + rr ;:::: N. Since P ~ 0, we have P1 = P ~ 0 and N = N1 + rr. In 
particular, N;:::: rr. This implies that SuppN contains all the negative 
curves. Consequently, Neg(X) is finite. 

Step 2. Let A be the polyhedral cone in N(X) generated by the 
classes of negative curves on X. Then, A c NE(X). We shall show that 
if A= NE(X), then -Kx is big. Assume the contrary. Then, cl(-Kx) 
is contained in a face of A= NE(X), thus -KxD = 0 for a nef divisor 
D ~ 0. However, in this situation, Dr= 0 for any negative curve r by 
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0 ~Dr~ -mrKxD = 0; hence D ~ 0 by A= NE(X), a contradiction. 
Therefore, we have only to prove: A= NE(X). 

Step 3. For z E NE(X), we define a closed convex set 

A<z := {yEA I Z- Y E NE(X)}. 

We shall show that A<z =/= {0} if z =/= 0. Assume the contrary. Then, 
there is an ffi.-divisor D such that D ~ 0 and A::;ci(D) = {0}. Clearly, 
cl(D) rf. A. By considering the Zariski decomposition of D, we infer 
that D is nef. Since p(X) > 2, every Kx-negative extremal ray of 
NE(X) is generated by the class of a ( -1)-curve, by [15], Theorem (2.1). 
Hence, Kx D ;:::: 0 by the cone theorem ([15], Theorem (1.4)). This 
implies that KxD = 0 and Dr = 0 for any negative curve r, since 
0 ~ Dr ~ -mrKx D ~ 0. Since X is a rational surface, we have a 
birational morphism J.L: X --+ Y to a non-singular rational surface Y 
with p(Y) ~ 2. Then, D = J.L* Do for a nef JR-divisor Do on Y and 
-KyDo = J.L*(-Kx)Do = -KxD = 0. Here, we have Do~ 0 by the 
Hodge index theorem, since -Ky is big. This contradicts D = J.L*(Do) ~ 
0. 

Step 4. There is a linear form x: N(X) --+ lR such that X > 0 on 
NE(X) \ {0}. For z E NE(X) and y E A::;z, we have x(y) ~ x(z). 
Hence, the closed convex set A::;z is compact for any z E NE(X). We 
set c(z) = max{x(y) I y E A::;z}. Then, c(z + y) ;:::: c(z) + x(y) for 
any y E A and z E NE(X). Assume that z rf. A. Then, there is a 
vector Yo E A::;z such that x(y0 ) = c(z). Since z -Yo E NE(X) \ 
A, by Step 3, we have 0 < c(z- Yo) ~ c(z) - x(Yo) = 0. This is a 
contradiction. Therefore, NE(X) =A. Thus, the proof of Theorem 4.1 
has been completed. Q.E.D. 

Corollary 4.3. Let X be a non-singular projective rational surface 
admitting a non-isomorphic surjective separable endomorphism. Then 
-Kx is big. 

Proof. We may assume that p(X) > 2: Indeed, if p(X) ~ 2, 
then -Kx is big. Thus, Neg(X) =/= 0. Note that Neg(X) is finite by 
Lemma 3.1. Let f: X--+ X be the non-isomorphic surjective separable 
endomorphism. By replacing f with a power Jk, we may assume that f 
satisfies the following conditions by Lemma 3.1 and Proposition 3.3: 

(1) d = (deg !)112 is a positive integer. 
(2) f*(r) = dr for any r E Neg(X). 
(3) f*(D) ~ dD for any divisor Don X. 

Then, multr(Rt) ;:::: d -1 for the ramification divisor Rt by Lemma 2.3. 
In particular, there is an effective divisor Ll such that Kx + Nx = 
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f*(Kx + Nx) +~.where Nx = L::rENeg(X) r. Since f*(Kx + Nx) ~ 
d(Kx + Nx), -(Kx + Nx) ~ (d- 1)- 1~ is pseudo-effective. Then, 
-Kx is big by Theorem 4.1. Q.E.D. 

Proposition 4.4. Let X be a non-singular projective rational sur
face admitting a non-isomorphic surjective separable endomorphism 
f: X ~ X. If f is tame or p f deg f, then X is toric. 

Proof. We may assume that p(X) > 2, since any non-singular pro
jective rational surface with Picard number S 2 is always toric. More
over, as in the proof of Corollary 4.3, we may assume that f* (r) = dr 
for any r E Neg( X) and for the positive integer d = ( deg !) 112 . Hence, f 
is tame over any r E Neg( X) if p f deg f. If pI degf, then pI d and f is 
not tame along any r E Neg(X). Thus, p f deg f. Then, by Lemma 3.5, 
any connected component of N x is an elliptic curve, a cyclic chain of 
rational curves, or a straight chain of rational curves. Therefore, X is a 
toric surface by Proposition 3.7. Q.E.D. 

Theorem 1.1, (1) is derived from Lemma 3.1, Corollary 4.3 and 
Proposition 4.4. The following is an example of non-toric rational sur
faces admitting non-isomorphic surjective separable endomorphisms. 

Example 4.5. Let f: JP>2 ~ JP>2 be the endomorphism defined by 

JP>2 3 (x: y: z) f-+ (xP- xzP-1 : yP- yzP-1 : zP). 

Then f*(H) =pH for the line H = {Z = 0} and the restriction JP>2 \H ~ 
JP>2 \H off is etale. LetS be the set of points P E JP>2 such that f- 1(P) = 
P. Then, S C H. Since fiH: H ~ H is just the endomorphism given 
by (X: Y: 0) f-+ (XP : yP : 0), we infer that S = {Po, H, ... , Pp-1, P00 }, 

where Pi := (1 : i : 0) for 0 S i S p- 1 and Poo := (0 : 1 : 0). Let 
'1/Ji : JP>2 · · · ~ JP>1 be the projection from Pi for 0 S i S p - 1 or i = oo. 
Here, '1/Ji is given explicitly by 

( ) {
(-iX+Y:Z), forOsisp-1; 

X:Y:Z f-+ 
(X : z), for i = oo. 

Let h: JP>1 ~ JP>1 be the endomorphism defined by 

JP>1 3 (u: v) f-+ (uP- uvP- 1 : vP). 

Then, '1/Ji of = h o '1/Ji· In fact, this follows directly in case i = oo, and 
in the other cases, this follows from the calculation 

-i(xP- xzP- 1) + (YP- yzP-1) = -ixP + yP- ( -ix + Y)zP- 1 

= ( -iX + Y)P - ( -iX + Y)zP- 1 
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for 0 ~ i ~ p- 1, where we use iP = i. Therefore, the endomorphism 
f lifts to an endomorphism f: X ~ X of the blown up surface X of 
IP'2 along S. The proper transform ofH is a curve with self-intersection 
number 1 - (p + 1) = -p < 0 and intersects all the exceptional curves 
for X ~ IP'2 • Since the number of the exceptional curves is p + 1 ;:::: 3, the 
surface X is not toric. In fact, for a non-singular projective toric surface, 
a negative curve is contained in the complement of the open torus, and 
the complement is a cyclic chain of rational curves; hence every negative 
curve on the toric surface intersects at most two other negative curves. 

§5. Irrational ruled surfaces 

Let X be an irrational and ruled surface, i.e., K(X) = -oo and 
q(X) > 0. Then, we have a ruling 1r: X ~ T to a non-singular projective 
irrational curve T uniquely up to isomorphism. Here, a general fiber of 
7r is IP'I, 7r is given by the Albanese map, and the genus ofT is q(X). 
We shall study the structure of the surface X when it admits a non
isomorphic surjective separable endomorphism. Let f: X ~ X be such 
an endomorphism. 

Lemma 5.1. There is an etale endomorphism h: T ~ T such that 
7r of= h o 1r. If q(X) > 1, then h is an automorphism of finite order. 

Proof. By the universality of the Albanese map, we have an endo
morphism h: T ~ T with 7r o f = h o 1r. Since f is separable, so is h. 
By the ramification formula KT = h*(KT) + Rh, we have 

deg KT = deg h*(KT) + deg Rh ;:::: ( deg h) deg KT ;:::: 0. 

Therefore, Rh = 0, and h is etale. If q(X) > 1, then deg KT = 2q(X) -
2 > 0 and deg h = 1; thus his an automorphism. Moreover, in this case, 
his of finite order, since Aut(T) is finite when degKT > 0. Q.E.D. 

Lemma 5.2 ([16], Proposition 14, (1)). The ruling 1r: X~ T is a 
IP'1-bundle. 

Proof. Assume the contrary. Then, there is a reducible fiber F = 
1r*(t). Let r be an irreducible component of F. Then, r is a negative 
curve. By Lemma 3.1, by replacing f with a suitable powerfk, we may 
assume that j*(r) = di' and d2 = degf > 1. Then, h-1(t) = {t}. This 
implies that his an automorphism ofT, since his etale by Lemma 5.1. 
We have f* F = 1r*h*(t) =F. In particular, j*r = r. This contradicts 
j*(r) = di' with d > 1. Q.E.D. 
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Remark. Every IP'1-bundle over an elliptic curve seems to admit a 
non-isomorphic surjective separable endomorphism. In fact, this is true 
in the case of characteristic zero ( cf. [16], Proposition 5). This is also 
true in the case where the IP'1-bundle has a negative section, which is 
proved by the same argument as in the proof of [16), Proposition 5, (1). 

By [12), Theorem 3.1, we can prove the following result on IP'1-

bundles over curves, which is not related to the existence of endomor
phisms. In the case of characteristic zero, this is proved in [16], Theo
rem 8. 

Proposition 5.3. Let 1r: X -+ T be a IP'1 -bundle over a non-singular 
projective curve T. Then the following three conditions are mutually 
equivalent: 

(1) -Kx;r is semi-ample. 
(2) There exist at least three distinct closed curves C on X such 

that 1r( C) = T and C2 = 0. 
(3) There is a finite surjective morphism T' -+ T from a non

singular projective curveT' such that X x rT' is a trivial bundle 
overT'. 

Proof. The implications (1) =? (2) and (2) =? (3) are proved by 
the same argument as in the proof of [16], Theorem 8. Hence, it is 
enough to prove (3) =? (1). For the pullback X' := X Xr T' -+ T' of 
the IP'1-bundle 1r, let v: X' = X xr T' -+ X be the first projection. 
Then, - Kx' /T' rv v* (-Kx;r ). Let Dt, D2 be two distinct fibers of the 
projection X'::::::: IP'1 X T' -+IP'1. Then, Dt rv D2 and -Kx'jT' rv 2Di for 
i = 1, 2. Therefore, 

where m := deg v = deg(T' jT). Since X' -+ IP'1 has infinitely many 
fibers, we may assume that v(D1) =/= v(D2 ). Then, v(D1 )v(D2 ) = 0 by 
(-K X/T ) 2 = 0; hence v( Dt) n v( D2) = 0. Therefore, 1-mK x;r I is base 
point free. Thus, we are done. Q.E.D. 

Proposition 5.4. Let X be a IP'1 -bundle over a non-singular pro
jective curve T of genus at least two and let f: X -+ X be a non
isomorphic surjective separable endomorphism. Then, X contains no 
negative curves, and - K X/T is numerically equivalent to an effective 
Q-divisor. If p f deg f or if f is tame, then there is a finite surjective 
morphism T' -+ T from another non-singular projective curve T' such 
that X x T T' is a triviallP'1-bundle over T'. 
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Proof Let 1r: X --+ T be the JP1-bundle. Then, 1r of = h o 1r for an 
automorphism ofT of finite order by Lemma 5.1. By replacing f with 
a power fk, we may assume that h is the identity map. 

Assume that X contains a negative curve r. We may assume that 
f* (r) = di' for the integer d = ( deg f) 112 > 1 by Lemma 3.1. For a fiber 
F = 1r*(t), we have f*(F) = F, and Fr = 0 by 

d2Fr = (degf)Fr = f*(F)f*(r) = dFr. 

Hence, r is contained in a fiber of 1r, but there is no negative curve in 
any fiber, since 1r is a JP1-bundle. Therefore, X contains no negative 
curves. 

Consequently, by the proof of [12], Theorem 3.1, -Kx;T is nef 
and NE(X) = Nef(X) is spanned by cl(F) and cl(-Kx;T ). The pull
back homomorphism f*: N(X)--+ N(X) is an automorphism preserving 
Nef(X). Since f*(F) = F for a fiber F, there is a rational number r > 0 
such that f*(-Kx;T) ~ r(-Kx;T)· Here, we haver= degf by 

2degf = f*(-Kx;T)f*F = r(-Kx;T)F = 2r. 

Therefore, -(degf- 1)Kx;T ~ RJ by the ramification formula Kx = 
f* ( K x) + R f. Since R f is effective, the first assertion has been proved. 

In the rest of the proof, we assume either that p f deg f or that f is 
tame. Let S be the set of closed curves C on X such that C2 = 0 and 
1r(C) = T, equivalently, cl(C) is contained in the ray IR~ocl(-Kx;T)· 
Any irreducible component C of RJ belongs to S. In fact, R1 contains 
no fiber F = 1r*(t), since f*(F) = F; hence 1r(C) = T. We have RJ = 0 
by Rf ~ (degf- 1)(-Kx;T)· Hence C2 = 0, since Neg(X) = 0. In 
order to prove the remaining assertion, we may assume that S consists 
of at most two curves, by Proposition 5.3. Taking suitable base change, 
we may assume furthermore that the curves inS are sections of 1r. Let 
{Ct} or {C1,C2} be the setS. Then an irreducible component of Rf 
is one of Ci. Any irreducible component of f*(Ci) belongs to S, since 
(f*(Ci))2 = 0. Therefore, by replacing f with f of if necessary, we may 
assume that f-1(Ci) = Ci for any i. Here, we have f*(Ci) = (degf)Ci, 
by (degf)CiF = f*(Ci)f*(F) = f*(Ci)F. 

Assume that Rf is irreducible. Let C1 be the irreducible component. 
Then, X\ C1 = /-1·(X \ C1) is etale over X\ C1 by f. In particular, 
for a fiber F = 1r-1(t) ~ JP\ the restriction fJp: F--+ F is etale outside 
the point F n C1. By Lemma 2.5, deg /JF = deg f is divisible by p. But 
in this case, /is not tame, since f*(C1) = (degf)C1. This contradicts 
our assumption. 
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Therefore, Rt is reducible and it has just two irreducible components 
C1, C2, where C1 n C2 = 0 by C1C2 = 0. Then, there is a divisor L 
on T such that C2 rv C1 + 1r*(L), and X ~ IP'r(Or EB Or(L)). Since 
J*(Ci) = (degf)Ci fori= 1, 2, we have 

(degf)7r*(L) rv j*1r*(L) = 1r*(L). 

Hence, (degf- 1)L rv 0, i.e., Or(L) is a torsion in Pic(T). We have 
a finite surjective morphism T: T' --+ T such that T* ( L) rv 0. In fact, 

Spec overT of a suitable Or-algebra ffi~:~ Or( -iL) for the order b of 
Or(L) produces such T'--+ T. Thus, X Xr T' ~ IP'1 x T'. Q.E.D. 

Remark. In Proposition 5.4, the finite surjective morphism T' --+ T 
may not be separable. In the case of characteristic zero, we can find such 
a morphism T'--+ T as a finite etale covering (cf. [16], Theorem 15). 

The following gives examples of 7f: X --+ T and f in Proposition 5.4 
with p = deg f. 

Proposition 5.5. LetT be a non-singular projective curve and let 
"1 be a non-zero element of H1 (T, Or) such that ryP E lkry, where "1 f-+ 

ryP denotes the p-linear map H1 (T, Or) --+ H1 (T, Or) induced from the 
absolute Frobenius morphism ofT. Let £ be the locally free sheaf on T 
of rank two obtained as the extension of Or by Or corresponding to "7 E 
Ext}(Or,Or) ~ H1(T,Or). Let 1r: X= IP'r(£)--+ T be the IP'1 -bundle 
associated with £ and let C c X be the section corresponding to the 
injection Oc --+ £. Then, there is a non-isomorphic surjective separable 
endomorphism f: X --+X of degree p overT such that f- 1 ( C) = C and 
fix\C: X\ C--+ X\ C is etale. 

Proof. By a scalar multiplication, we may assume that ryP + ( c -
1)ry = 0 for some constant c E lk \ {0}. Let U = {UihEI be an open 
affine covering ofT. Then, "1 is represented by a Cech 1-cocycle { "li,j} 
of Or with respect to U, i.e., "li,j E H0 (Ui n Uj, Or) satisfy 

"li,i = 0, and "li,j + "li,k + "lk,i = 0 on Ui n Uj n Uk 

fori, j, k E J. Let u E H0 (T,£) be the image of 1 under the injection 
Or--+£. Then, we have sections vi E H0 (Ui, £) fori E I such that 

£lui = Oui u EB Oui Vi and Vj =Vi+ "li,jU on ui n Uj 

for any i, j E J. Note that {ryf,j} is also a Cech 1-cocycle of Or, and its 
cohomology class is just ryP. Since ryP + (c- 1)ry = 0, we have functions 
ai E H0 (Ui, Or) such that 

"lf,j + (c- 1)"7i,j = aiiU;nUi- ajiU;nUi 
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for any i, j E J. We define a homomorphism q>i: Elu; ~ SymP(E)Iu; by 

q>i(u) =uP and q>i(vi) = vf + cuP-lvi + aiuP, 

where u1vf-1 for 0 ~ l ~ p are regarded as sections of SymP(£) over 
Ui and they form a free basis of SymP(E)Iu. as an Ou;-module. Since 
Vj = Vi + 'f/i,jU, we have 

q>i{vj)- q>j{vj) = q>i(vi) + 'f/i,jq>i(u)- q>j(vj) 

=(vi- vi)P + cuP- 1(vi- vi)+ ('Tli,j + ai- aj)uP 

= ( -'Tlf,j- (c- l)'f/i,j + ai- aj)uP = 0 

on UinUi. Hence, {q>i} can be glued to a global homomorphism q>: E ~ 
SymP(£) on T. The natural surjection 1r*E ~ 1r*1r*Ox(C) ~ Ox(C) 
induces a surjection 1r*(SymP(£)) ~ Ox(pC). The composite 

is surjective by the construction of q>. Hence, q> induces a surjective 
endomorphism f: X ~ lP'x(E) = X of degree p over T such that 
f* 0 x (C) ~ 0 x (pC). Moreover, f* (C) = pC, since C is defined by 
u and pC is defined by q>(u) =uP. For the fiber F = 1r-1(t) over a point 
t E Ui, the induced endomorphism fiF ofF~ lP'1 is isomorphic to 

which is a kind of Artin-Schreier morphism. Hence, flx\C: X \ C ~ 
X \ C is etale, since c f= 0. Q.E.D. 

Remark 5.6. There is a non-singular projective curveT of genus 
at least two such that 'TIP E Jk'f/ for some non-zero element 'T/ E H 1 (T, OT). 
Let 1r: X~ T be the lP'1-bundle constructed as in Proposition 5.5. Then, 
X xT T' 't lP'1 x T' for any finite surjective morphism T' ~ T with 
p f deg(T'/T), since H 1(T,OT) ~ H1 (T',OT') is injective. However, 
there is a finite surjective morphism T' ~ T such that XxTT' ~ lP'1 xT'. 
In fact, by considering the Albanese map a: T ~ A := Alb(T) and the 
multiplication map w: A ~ A by p, we have a finite surjective morphism 
r: T' ~ T and a morphism (3: T' ~A such that a or== w o (3. Since 
a*: H1(A, OA) ~ H1 (T, OT) is isomorphic and since w*: H1 (A, OA) ~ 
H1(A,OA) is zero, r*('TJ) = 0 in H1(T',OT')· Therefore, X XT T' ~ 
lP'1 X T'. 

We close this section by proving Theorem 1.1. 
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Proof of Theorem 1.1. The first assertion (1) of Theorem 1.1 is de
rived from Lemma 3.1, Corollary 4.3, and Proposition 4.4. The remain
ing assertions (2) and (3) are derived from Lemma 5.2, Proposition 5.3, 
and Proposition 5.4. Q.E.D. 

§6. The case of non-negative Kodaira dimension 

We shall prove Theorem 1.2 in this section. We begin with the 
following existence theorem of non-isomorphic surjective separable en
domorphisms for certain elliptic surfaces. 

Theorem 6.1. Let 1r: X -+ T be an fibration from a non-singular 
projective surface X to a non-singular projective curve T. Assume that 
the support of any fiber is an elliptic curve. Then, X admits a non
isomorphic surjective separable endomorphism f: X -+ X such that 1r o 

f=1r. 

Proof. Step 1. There is a non-singular ample divisor C on X such 
that C C X -+ T is a separable finite surjective morphism. In fact, for 
an ample divisor H on X and for a smooth fiber F, H0 (X, Ox(kH))-+ 
H0 (F; Ox(kH)iF) is surjective fork~ 0, hence, by Bertini's theorem, 
there is a non-singular ample divisor C E lkHI such that CIF is also non
singular. AB a consequence, C -+ T is etale along C n F, and C -+ T is 
separable. 

Step 2. Let T' -+ T be the Galois closure of C -+ T, i.e., T' is 
the normalization of C in the Galois closure of lk( C) jlk(T). We consider 
the base change of 1r by the Galois covering T' -+ T. Let X' be the 
normalization of X Xr T' and let 11"1 : X' -+ T' be the induced elliptic 
fibration. Then, any irreducible component of a fiber of 1r1 is an irrational 
curve, since it dominates a fiber of 1r which is assumed to be an elliptic 
curve. Therefore, by Lemma 2.12, X' is non-singular and the support 
of any fiber of 11"1 is also an elliptic curve. Now the natural morphism 
T'-+ C xr T' induces a section e: T'-+ X' of 11"1 • Hence, any fiber of 
1r1 is reduced. As a consequence, all the fibers are non-singular and 1r' 

is a smooth morphism. Moreover, 1r1 together with the section e is an 
abelian scheme by [13], Theorem 6.14. 

Step 3. We regard the Galois group G of T' /T as an automorphism 
group ofT'. For a E G, let Lu: X'-+ X' be the automorphism induced 
from idx xa: X xrT'-+ X xrT'. Here, 11"1 oLu = ao1r1• Thus, we have 
an action of G on X' such that 11"1 : X'-+ T' is G-equivariant. In order 
to construct an endomorphism of X, we use the argument in the proof 
of [4], Theorem 2.26. The setS of sections of 1r1 : X'-+ T' is an abelian 
group by the abelian group scheme structure, where e is the zero section. 
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A section b E S defines the translation morphism tr(b): X' --t X' over 
T'. Then, Lu is expressed uniquely as tr(bu) o au for a section bu E S 
and for an automorphism au: X' --t X' such that 1r1 o au = u o 1r1 and 
au o e = e o u. Here, au is regarded as a homomorphism between the 
abelian schemes u o 1r1 : X' --t T' and 1r1 : X' --t T' over T' (cf. [13], 
Corollary 6.4). We define 

u · b :=au o b o u-1 

for u E G and b E S. Then, au o tr(b) o a;;:- 1 = tr(u ·b). Moreover, we 
have 

for u1, u2 E G, by Lu1u2 = Lu1 o Lu2 • Thus, S has a left G-module 
structure by (u, b) ~---+ u · b, and {bu} is a 1-cocycle defining an element (3 
ofH1(G, S). Then, naf3 = 0 for the order na ofG, where na = degT'jT. 
Let n be the least common multiple of na and p. Then, we have a section 
c E S such that nbu = u · c- c for any u E G. 

Let f.Ln+l: X' --t X' be the multiplication map by n+ 1 with respect 
to the abelian scheme structure of 1r1 : X' --t T'. We define f' := tr(c) o 
f.Ln+l· Then, f' is a non-isomorphic etale endomorphism of X', since 
p f deg f' = (n + 1)2 > 1. For u E G, we have Lu of'= f' o Lu by 

tr(bu) 0 au 0 tr(c) 0 f.Ln+l = tr(bu +(F. c) 0 au 0 f.Ln+l 

= tr(c + (n + 1)bu) o f.Ln+l o au = tr(c) o f.Ln+l o tr(b) o au. 

Therefore, f' descends to a surjective separable endomorphism f: X --t 

X such that 1r of= 1r and degf = (n + 1)2 > 1. Thus, we are done. 
Q.E.D. 

Lemma 6.2 (cf. [2], Lemma 2.3). Let f: X --t X be a surjec
tive separable endomorphism of a non-singular projective surface X of 
~(X) 2: 0. Then, f is etale. If deg f > 1, then K x .is nef (i.e., X is min
ima~, X has no negative curves, ~(X)::; 1, and x(X, Ox)= e(X) = 0. 

Proof. By the ramification formula Kx = f*(Kx)+Rt, if Rt =1- 0, 
then we have 

KxA = (fk)*(Kx)A+ ((fk- 1 )*(R1) + ··· +R1) A 2: k 

for any ample divisor A and any positive integer k; this is a contradiction. 
Hence, Rt = 0, and f is etale. Assume that deg f > 1. Then, X has no 
negative curve by Lemma 3.1. Hence, Kx is nef, since ~(X) 2: 0. Since 
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f is etale, we have 

x(X, Ox)= (deg f)x(X, Ox), e(X) = (deg f)e(X), and 

Kl = f*(Kx)f*(Kx) = (degf)Kl. 
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Hence, x(X,Ox) = e(X) = Kl = 0. In particular, t;;(X)::; 1. Q.E.D. 

The following is well-known as a part of the classification theory of 
non-singular projective surfaces by Bombieri and Mumford [1]: 

Fact 6.3. The non-singular projective minimal surfaces X satisfying 
t;;(X) = x(X, Ox)= 0 are classified as follows: The irregularity q(X) = 
1 or 2 for such a surface X. Here, q(X) = 2 if and only if X is abelian. 
Suppose that q(X) = 1. Then, 12Kx,...., 0, b1 (X) = b2 (X) = p(X) = 2, 
and the Albanese map a: X -+ Alb( X) is a fibration to an elliptic curve. 
If a is an elliptic fibration, then X is called a hyperelliptic surface. If not, 
a is a quasi-elliptic fibration (cf. Definition 2.10), and X is called a quasi
hyperelliptic surface. The case of quasi-hyperelliptic surfaces occurs only 
when p ::; 3 (cf. Proposition 2.9). The following assertion is known by 
[1], Theorem 3 and its proof: If X is a hyperelliptic surface or a quasi
hyperelliptic surface, then there is an elliptic fibration 1r: X -+ T ~ IP'1 

such that the support of any fiber of 1r is an elliptic curve. 

Lemma 6.4. Let f: X -+ X be a non-isomorphic surjective sepa
rable endomorphism of a non-singular projective surface X of t;;(X) 2: 0. 
Suppose that there exist a fibration 1f: X -+ T to a non-singular projec
tive curve T and an automorphism h: T -+ T satisfying 1f o f = h o 1f. 

Then, the support of every fiber of 1r is an elliptic curve. 

Proof. By Lemma 6.2, f is etale. Let Ft be the fiber 1r*(t) over a 
point t E T. Then, Ft = f*(Fh(t))· Hence, KxFt = 0 by 

KxFt = j*(Kx)f*(Fh(t)) = (degf)KxFh(t) = (degf)KxFt. 

Note that every fiber of 1r is irreducible, since X has no negative curve 
by Lemma 6.2. Thus, Ft = mtrt for a prime divisor rt and for some 
mt > 0, in which Pa(rt) = 1 by Kxrt = 0. Restricting f toFt, we have 
an etale morphism Ft-+ Fh(t) of degree degf > 1. Hence, mt = mh(t), 
and the induced morphism rt -+ rh(t) is etale of the same degree. If 
rh(t) is rational, then the normalization of rh(t) produces a non-trivial 
etale covering over IP'1 ; this is impossible. Therefore, r t is an elliptic 
curve for any t E T. Q.E.D. 

Finally, we shall prove Theorem 1.2. 
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Proof of Theorem 1.2. Suppose that X admits a non-isomorphic 
surjective separable endomorphism f: X -+ X. Then, X is a minimal 
surface, f is etale, x(X, Ox) = e(X) = 0, and ~£(X) = 0 or 1 by 
Lemma 6.2. Hence, if ~£(X) = 0, then the condition (1) is satisfied. 
Assume that ~£(X) = 1. Then, by [14], we have the so-called "Iitaka 
fibration" 1r: X -+ T to a non-singular projective curve T such that 
bKx "' n*(H) for some b > 0 and a very ample divisor H on T. In 
order to check the condition (2), it is enough to prove that 1r is an 
elliptic fibration. By the uniqueness of the Iitaka fibration, considering 
the Stein factorization of 1r o f, we have an endomorphism h: T -+ T 
such that 1r of= h o 1r. Here, we have H"' h*(H) by 

n*(H) "'bKx "'f*(bKx) "'f*n*(H) = n*h*(H). 

Thus, h is an automorphism, since we have deg h = 1 from deg H = 
(degh)(degH) > 0. Applying Lemma 6.4 ton: X-+ T and h, we infer 
that 1r is an elliptic fibration. 

The rest of the proof of Theorem 1.2 is to construct a non-isomorphic 
surjective separable endomorphism of any surface X satisfying one of the 
conditions (1) and (2). We may assume that X is not abelian, since, 
for any abelian variety, the multiplication map by a positive integer not 
divisible by pis a non-isomorphic surjective etale endomorphism. Then, 
there is an elliptic fibration 1r: X -+ T such that the support of any 
fiber is an elliptic curve. In fact, if X satisfies (1), then X is a hyperel
liptic surface or a quasi-hyperelliptic surface, and the existence of such 
1r is known as in Fact 6.3. If X satisfies (2), then K_k = e(X) = 0 by 
the minimality of X and Noether's formula. Hence, the support of any 
fiber of the elliptic surface X is an elliptic curve by Lemma 2.13. There
fore, X admits a non-isomorphic surjective separable endomorphism by 
Theorem 6.1. Thus, we are done. Q.E.D. 
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