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Generating functions of stable pair invariants via 
wall-crossings in derived categories 

Yukinobu Toda 

Abstract. 

The notion of limit stability on Calabi-Yau 3-folds is introduced by 
the author to construct an approximation of Bridgeland-Douglas sta
bility conditions at the large volume limit. It has also turned out that 
the wall-crossing phenomena of limit stable objects seem relevant to the 
rationality conjecture of the generating functions of Pandharipande
Thomas invariants. In this article, we shall make it clear how wall
crossing formula of the counting invariants of limit stable objects solves 
the above conjecture. 

§1. Introduction 

A theory of curve counting on Calabi-Yau 3-folds is interesting in 
both algebraic geometry and string theory. Now there are three such 
theories, called Gromov-Witten (GW) theory, Donaldson-Thomas (DT) 
theory, and Pandharipande-Thomas (PT) theory. Conjecturally these 
theories are equivalent in terms of generating functions. To formulate 
this equivalence, however, we also need a conjectural rationality prop
erty of those functions for DT-theory and PT-theory, to formulate that 
equivalence. The purpose of this article is to interpret the rationality 
conjecture for PT-theory from the viewpoint of wall-crossing phenomena 
in derived categories of coherent sheaves. 

1.1. GW-DT-PT correspondences 

First of all, let us recall the conjectural GW-DT-PT correspondences 
on curve counting theories. Suppose that X is a smooth projective 
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Calabi-Yau 3-fold over C, i.e. there is a nowhere vanishing holomorphic 
3-form on X. For g 2:: 0 and (3 E H 2 (X, Z), the GW-invariant N 9 ,f3 is 
defined by the integration of the virtual class, 

Ng,f3= f_ . lEQ, 
j[M 9 (X,f3W'" 

where M 9 (X, (3) is the moduli stack of stable maps f: C ---+ X with 
g(C) = g and f*[C] = (3. The GW-potential is given by the following 
generating function, 

For n E Z and (3 E H2 (X, Z), let In(X, (3) be the Hilbert scheme of 
!-dimensional subschemes Z c X satisfying 

[Z] = (3, x(Oz) = n. 

The obstruction theory on In(X, (3) is obtained by viewing it as a moduli 
space of ideal sheaves, and the DT-invariant In,/3 is defined by 

In,/3 = { 1 E Z. 
}[In(X,(3)]vir 

The generating function of the reduced DT-theory is 

n,(3 n 

The theory of stable pairs and their counting invariants are introduced 
and studied by Pandharipande and Thomas [20], [21], [22] to give a 
geometric interpretation of the reduced DT-theory. By definition, a 
stable pair is data ( F, s), 

s: Ox ----+ F, 

where F is a pure one dimensional sheaf on X, and s is a morphism with 
a zero dimensional cokernel. For (3 E H 2 (X, Z) and n E Z, the moduli 
space of stable pairs ( F, s) with 

[F] = (3, x(F) = n, 
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is constructed in [20], denoted by Pn(X, (3). The obstruction theory on 
Pn (X, (3) is obtained by viewing stable pairs (F, s) as two term com
plexes, 

(1) • • • ------+ 0 ------+ 0 X ~ F ------+ 0 ------+ • • • . 

The PT-invariant Pn,f3 is defined by 

Pn,f3 = 1 1 E Z. 
[Pn(X,{3)jV;r 

The corresponding generating function is 

ZpT = LPn,{3qvvf3. 
n,{3 

The functions Zcw, Z~T and ZPT are conjecturally equal after suitable 
variable change. In order to state this, we need the following conjecture, 
called rationality conjecture. 

Conjecture 1.1. [19, Conjecture 2], [20, Conjecture 3.2] For a fixed 
(3, the generating series 

nEZ nEZ nEZ 

are Laurent expansions of rational functions of q, invariant under q +--+ 

1/q. 

The above conjecture is solved for If3(q) when X is a toric local 
Calabi~Yau 3-fold [19], and for Pf3(q) when (3 is an irreducible curve 
class [22]. Now we can state the conjectural GW-DT-PT-correspondences. 

Conjecture 1.2. [19, Conjecture 3], [20, Conjecture 3.3] After the 
variable change q = -ei>-., we have 

Zaw = z~T = ZPT. 

The variable change q = -ei>-. is well-defined by Conjecture 1.1. 

Note that ideal sheaves I cOx are objects in Db(X), where Db(X) 
is the bounded derived category of coherent sheaves on X. We can also 
interpret stable pairs (F, s) as objects in Db(X) by viewing them as 
two term complexes (1). As discussed in [20, Secction 3], the equality 
Z~T = ZPT should be interpreted as a wall-crossing formula for counting 
invariants in the category Db(X). The purpose of this article is to 
show that Conjecture 1.1 is also interpreted as a wall-crossing formula 
in Db(X), using the method of limit stability [24] together with Joyce's 
works [9], [10], [11], [14]. 
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1.2. Limit stability 

The notion of limit stability on a Calabi-Yau 3-fold X is introduced 
in [24] to construct an approximation of Bridgeland-Douglas stability 
conditions [4], [6], [7] on Db(X) at the large volume limit. It is a certain 
stability condition on the category of perverse coherent sheaves 

in the sense of Bezrukavnikov [3] and Kashiwara [15]. (See Defini
tion 3.2.) An element r7 E A(X)c determines r7-limit (semi)stable ob
jects in AP, where A(X)c is the complexified ample cone, 

A(X)c = {B + iw E H 2 (X, q I w is an ample class}. 

It has also turned out in [24] that the objects (1) appear as r7-limit stable 
objects for some r7 E A(X)c, thus studying stable pairs and limit stable 
objects are closely related. The objects E given by (1) satisfy 

(2) (ch0 (E),ch1 (E),ch2 (E),ch3 (E)) = (-1,0,jJ,n), detE =Ox, 

for some jJ and n. Under the above observation, we have constructed 
in [24] the moduli space of r7-limit stable objects E E AP satisfying (2) 
as an algebraic space of finite type, denoted by C~(X, jJ). Using that 
moduli space, the counting invariant of limit stable objects 

(3) 

is also defined in [24] as a weighted Euler characteristic with respect to 
Behrend's constructible function [2], and (3) coincides with the integra
tion of the virtual class if £~(X, jJ) is a projective variety. A particular 
choice of r7 yields an equality Ln,f3(r7) = Pn,f3, however Ln,f3(r7) becomes 
different from Pn,/3 if we deform r7. As discussed in [24, Section 4], 
a transformation formula of the invariants Ln,f3(r7) under change of r7 
seems relevant to solving Conjecture 1.1 for PT-theory. 

1.3. Main result 

In this article, we shall proceed the above idea further, using D. 
Joyce's works [9], [10], [11], [14] on counting invariants of semistable 
objects on abelian categories and their wall-crossing formulas. We will 
make it clear how such a formula for counting invariants of objects in AP 
implies Conjecture 1.1 for PT-theory. Unfortunately we are unable to 
solve Conjecture 1.1 at this moment, as Joyce's theory is applied only for 
the motivic invariants (e.g. Euler characteristic) of the moduli spaces, 
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so they do not involve virtual classes. On the other hand, the invariant 
Pn,/3 coincides with the Euler characteristic of Pn(X, {3) (up to sign), 

P~'fl := e(Pn(X, {3)) E Z, 

if Pn(X, {3) is non-singular. In general Pn,/3 is written as a weighted 
Euler characteristic with respect to Behrend's constructible function [2], 
so Pn,/3 resembles P~~/3 in this sense. So instead of solving Conjecture 1.1, 
we shall show the motivic version of Conjecture 1.1, i.e. the rationality 
of the generating series, 

PJu(q) = L P~'flqn. 
nEZ 

The limit stability does not work well to combine Joyce's works, so we 
will introduce the notion of J-L~-limit stability for O" E A(X)c, which is 
a coarse version of O"-limit stability. Then we will introduce the Joyce 
type invariants, (cf. Definition 4.1, Remark 4.2, ) 

L~~/3 E Q, N~'fl E Q. 

Roughly speaking, L~~/3' (resp. N~~13 ) is the "Euler characteristic" of the 
moduli stack of J-liw-limit semistable objects E E AP with detE =Ox, 
(resp. one dimensional w-Gieseker semistable sheaves F, ) satisfying 

ch(E) = (-1,0,{3,n), (resp. ch(F) = (0,0,{3,n).) 

We will consider the generating series, 

L~u(q) = L L~~f3qn, N$u(q) = L nN~'flqn. 
nEZ n~O 

It will turn out that L~u(q) is a polynomial of q±l, N$u(q) is the Lau
rent expansion of a rational function of q, and they are invariant under 
q +--+ 1jq. (cf. Lemma 4.5, Lemma 4.6.) Somewhat surprisingly, Joyce's 
wall-crossing formula yields the following equality of those generating 
functions. 

Theorem 1.3. [Theorem 4. 7) We have the following equality of 
the generating series, 



394 Y. Toda 

Here j3 > 0 means that j3 is a numerical class of an effective one 
cycle on X. As a corollary, we have the following. 

Corollary 1.4. [Corollary 4.8] The generating series Ppu(q) is 
the Laurent expansion of a rational function of q, invariant under q +--+ 

1/q. 

The series ZpT also should have a decomposition such as (4). In 
Problem 4.18 we will address a certain technical problem on the Ringel~ 
Hall Lie algebra of .AP, which enables us to decompose ZPT and solve 
Conjecture 1.1 for PT-theory. As a conclusion, we have obtained a 
conceptual understanding of the rationality conjecture and DT-PT cor
respondences in terms of wall-crossing phenomena in the derived cate
gory, and they have been reduced to showing a rather technical problem, 
namely a compatibility of Ringel~Hall Lie algebra structure of .AP with 
taking virtual classes via Behrend's constructible functions. 

1.4. Acknowledgement 

The author thanks R. Thomas, R. Pandharipande for valuable com
ments, and D. Joyce for the comment on Problem 4.18. This work is 
supported by World Premier International Research Center Initiative 
(WPI Initiative), MEXT, Japan. 

1.5. Convention 

All the varieties and schemes are defined over <C. For a variety X, 
the category of coherent sheaves on X is denoted by Coh(X). We say 
E E Coh(X) is d-dimensional if dimSupp(E) =d. 

§2. Review of Joyce's work 

This section is devoted to review Joyce's works [9], [10], [11], [14] 
on counting invariants of semistable objects on abelian categories. We 
discuss in a general framework rather than working with the category 
of perverse coherent sheaves .AP, which we will introduce in the next 
section. 

2.1. Setting 

We begin with a generality of (weak) stability conditions on abelian 
categories. Let .A be a <C-linear abelian category, and K(.A) its Grothen
dieck group. We put the same assumption as in [14], i.e. Hom(E, F), 
Ext1 (E, F) for any E, FE .A are finite dimensional <C-vector spaces, and 
compositions Exti(E, F) xExtj (F, G) -7 Exti+j (E, G) fori, j, i+j = 0,1 
are bilinear. These conditions are satisfied in several good cases, i.e. 
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A = mod A for a finite dimensional algebra A, or A = Coh(X) for 
a projective variety X. In the first case, the group K(A) is finitely 
generated, but this is not true in the latter case. So instead we fix a 
quotient space, 

N(A) := K(A)/ =, 
for some equivalence relation= such that a class [E] E N(A) is non-zero 
for any 0 =/:- E E A. For instance if A = Coh(X), an equivalence relation 
= can be taken by 

(5) E1 = E2 ~ x(Eb F) = x(E2, F) for any F E A, 

where x(E, F') is defined by 

(6) x(E, F)=~) -l)i dimExti(E, F). 
iEZ 

Then )\( (A) is embedded into H* (X, Q), and it is a finitely generated Z
module. The closed positive cone and the positive cone of A are defined 
by 

C(A) := im(A-+ K(A) -+ N(A)), 

C(A) := C(A) \ {0}, 

respectively. For a subcategory B c A, we shall use the notation 
C(B) := im(B -+ C(A)) c C(A), etc. For an object E E A, its class 
is denoted by [E] E C(A), or we omit [] if there is no confusion. Let 
(T, t:) be a totally ordered set. 

Definition 2.1. A weak stability function is a map, 

Z: C(A) ----+ T, 

such that if E, F, G E C(A) satisfies E = F + G, we have either 

Z(F) ~ Z(E) ~ Z(G), or 

Z(F) t: Z(E) t: Z(G). 

A weak stability function is a stability function if, for E, F, Gas above, 
we have either 

Z(F)-< Z(E)-< Z(G), or 

Z(F) >- Z(E) >- Z(G), or 

Z(F) = Z(E) = Z(G). 
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Given a weak stability function, we can define the set of (semi)stable 
objects. 

Definition 2.2. Let Z: C(A) ---> T be a weak stability function. 
An object E E A is called Z-(semi)stable if for any nonzero subobject 
F C E, we have 

Z(F)-< Z(E/F), (resp. Z(F) ~ Z(E/F).) 

The notion of (weak) stability conditions is defined as follows. 

Definition 2.3. A (weak) stability function Z: C(A) ---> T is a 
(weak} stability condition if for any object E E A, there is a filtration 

(7) 0 = Eo c E1 c · · · c En = E, 

such that each subquotient Fi = Ei/ Ei-1 is Z-semistable with 

It is easy to see that the filtration (7) is unique up to an isomorphism, 
if exists. The filtration (7) is called a Harder-Narasimhan filtration. 
Here we give some examples. 

Example 2.4. (i) For an abelian category A, let W: N(A) ---> C 
be a group homomorphism such that for any E E A\ {0}, we have 

W(E) E !HI:= {rexp(imf>) I 0 < ¢:::; 1}. 

For instance if A = mod A for a finite dimensional C-algebra A, the posi
tive cone C(A)is spanned by finite number of simple objects 8 1, ... , Bn E 
A, and such W is obtained by choosing the image of [Bi] E C(A) for 
1:::; i:::; n under W. We set (T, t) = ((0, 1], ~), and 

1 
Z: C(A) 3 E f---+ -ImlogZ(E) E T. 

7f 

Then Z is a stability condition on A. This is Bridgeland's approach of 
stability conditions [4]. 

(ii) Let X be a smooth projective surface and set A= Coh(X). Let 
w be an ample divisor on X. For E E Coh(X) we set 

{ 
c1(E)·w 

J.Lw(E) = ~k(E) 
if E is not torsion. 
if E is torsion. 

Then the map C(A) 3 E t--t J.Lw(E) E Q U {oo} is a weak stability 
condition on A, but not a stability condition on A. 
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Remark 2.5. Here we mention that a theory of stability conditions 
on triangulated categories is developed by Bridgeland [4], motivated 
by M. Douglas's IT-stability [6], [7]. For a triangulated category V, 
Bridgeland's stability condition consists of (W, A), where A c V is the 
heart of a bounded t-structure on V, and W is a group homomorphism 
K(A) --+ C, as in Example 2.4 (i). Especially W determines a stability 
condition on the abelian category A. He then shows that the set of 
"good" stability conditions form a complex manifold Stab(V). Although 
Bridgeland's theory is quite powerful, we shall study in this paper more 
general notion of (weak) stability conditions, which is used in Joyce's 
works. 

2.2. Ringel-Hall algebras 
In this subsection, we introduce the algebra 1t(A) associated to an 

abelian category A, whose details are seen in [10]. Let Z: C(A) --+ T 
be a weak stability function. At this moment, we put the following 
assumption. 

Assumption 2.6. • A is noetherian and Z -artinian. 
• The moduli stack of objects E E A, denoted by Dbj(A), is an 

Artin stack locally of finite type over C. 
• For v E C(A), let mv(z) c Dbj(A) be the substack of Z

semistable objects E E A with [E] = v. Then ootV(Z) is an 
open substack of Dbj(A), and it is of finite type over C. 

Here we say A is Z-artinian if there is no infinite sequence 

· · · c En c En-1 c · · · c E1 c Eo, 

such that Ei+l =I= Ei and Z(Ei+l) t Z(Ed Ei+l) for any i. The first con
dition of Assumption 2.6 ensures the existence of Harder-Narasimhan 
filtrations, and hence Z is a weak stability condition, by the same ar
gument as in [23, Theorem 2]. In order to state the second assumption, 
we need to know about the notion algebraic families of objects and mor
phisms in A. This notion is obvious if A = Coh(X) for a variety X, 
but in general we need some additional extra data, which is given in [9, 
Assumptions 7.1, 8.1]. For the introduction of Artin stacks, one can con
sult [17]. For instance, Assumption 2.6 is satisfied when A= mod A for 
a finite dimensional «:::-algebra A, and Z is given as in Example 2.4 (i). 

For a variety Y, recall that the Grothendieck ring of varieties over 
Y is defined by 

Ko(Var /Y) = EB Z[(X, p)]j rv, 
(X,p) 
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where X is a variety with a morphism p: X -+ Y, and equivalence 
relations are given by 

[(X, p)] rv [(xt, Plxt )] +[(X\ xt' PIX\Xt )], 

where xt is a closed subvariety of X. Taking the fiber products over Y, 
there is a natural product on K 0 (Var /Y), 

(8) [(X,p)] · [(X',p')J =[(X XyX 1,pop)], 

where pis the projection X xy X'-+ X. 
In order to introduce 1t(A), let us introduce the notion of Grothen

dieck rings of Artin stacks. 

Definition 2. 7. [13] Let Y be an Artin stack locally of finite type 
over <C. Define the Q-vector space Ko(St /Y) to be 

Ko(St/Y) := EB Q[(X,p)J/ "', 
(X,p) 

where (X, p) is a pair such that X is an Artin <C-stack of finite type 
with affine geometric stabilizers, and p: X -+ Y is a 1-morphism. The 
relations rv are given by 

for closed substacks xt c X. 

Again taking the fiber products over Y gives aproduct ·on Ko(St /Y), 

(9) [ (X, p) J · [ (X', p') J = [ (X x y X', p o p)], 

where pis the projection X Xy X'-+ X. 

Definition 2.8. [10] Let A be an abelian category satisfying the 
second condition of Assumption 2.6. We define the Q-vector space 1t(A) 
to be 

1t(A) := Ko(St /Dbj(A)). 

The vector space 1t(A) is graded by v E C(A), 

1t(A) = EB 1tv(A), 1tv(A) := Ko(St /DW(A)), 
vEC(A) 

where Dbjv(A) is the stack of objects E E A with [E] = v. There is 
an associative multiplication* on 1t(A), based on Ringel-Hall algebras, 
which differs from the product (9). Let !!:~(A) be the moduli stack of 
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exact sequences 0 ----> E1 ----> E 2 ----> E 3 ----> 0 in A. It is shown in [9, 
Theorem 8.2] that ~;r(A) is an Artin stack locally of finite type over C. 
We have the following 1-morphisms, 

Pi: ~;r(A) 3 (0----> E1 ----> E2----> E3 ----> 0) f----+ Ei E Dbj(A), 

for i = 1, 2, 3. Take fi = [(Xi, Pi)] E H(A) for i = 1, 2. We have the 
following diagram, 

Here the left diagram is a Cartesian diagram. 

Definition 2.9. We define the *-product h * h by 

It is shown in [10, Theorem 5.2] that * is associative and H(A) is a 
Q-algebra with identity [0 <-+ Dbj(A)]. 

Remark 2.10. Our algebra H(A) is denoted by SF(Dbj(A)) in 
Joyce's paper [10], and an element of SF(Dbj(A)) is called a stack func
tion on Dbj(A). There is another version of Ringel-Hall type algebra 
discussed in [10], defined as the set of constructible functions on Dbj(A), 
denoted by CF(Dbj(A)) in [10]. Although most of the readers might be 
more familiar with constructible functions than stack functions, we use 
the latter one since we want to apply [10, Theorem 6.12] which is for
mulated only for stack functions. 

2.3. Elements (SV(Z), Ev(z) 

Let Z: C(A) ----> T be a weak stability condition, satisfying Assump
tion 2.6. For an Artin substack i: 9J1 <-+ Dbj(A), we write the element 
[(9J1, i)] E H(A) as [9J1 <-+ Dbj(A)]. 

Definition 2.11. For v E C(A), we define bv(z), Ev(z) E H(A) to 
be 

(10) Ev(z) = L 
121, v;EC(A), 
v1+···+v1=v, 

Z(v;)=Z(v), 1-::;i-::;l 
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Under Assumption 2.6, the sum (10) is a finite sum, (see [11, Propo
sition 4.9],) and hence Ev(z) is an element of1i(A). In [11, Theorem 8.7], 
Joyce shows that Ev(z) is an element of a certain Lie subalgebra of1i(A), 
called Ringel-Hall Lie algebra, 

(11) 

The Lie algebra I!J(A) is denoted by SF~~d(Dbj(A)) in Joyce's paper [10]. 
If we work over the Hall-type algebra CF(Dbj(A)), (see Remark 2.10,) 
the corresponding Lie algebra CFind(Dbj(A)) is the set of constructible 
functions on Dbj(A), supported on indecomposable objects. One might 
expect, as an analogue for H(A), that ari element [(X, p)] is contained 
in I!J(A) if the image of p in Dbj(A) is supported on indecomposable 
objects. However Joyce suggests that this definition is not the best 
analogue, and he introduces the notion of "virtual indecomposable ob
jects", and defines SF~~d(Dbj(A)) in [10, Definition 5.13] as the set of 
stack functions supported on virtual indecomposable objects. We omit 
the precise definition of I!J(A) here, as we will not use this. The Lie 
algebra I!J(A) also has the decomposition, 

I!J(A) = EB I!JV(A), I!JV(A) := Hv(A) n I!J(A), 
vd'J(A) 

and Ev(z) is an element of I!Jv(A). The conceptual meaning of the 
definition of Ev(z) is that they are "logarithms" of 8v(z), i.e. fortE T, 
we have formally 

Also see [5] for more arguments on the elements Ev ( Z). 

2.4. Transformation of the elements 8v(z), Ev(z) 
The descriptions of the variations of the elements 8v(z), Ev(z) under 

change of Z are investigated in [14]. Let us briefly recall the main idea 
of [14, Theorem 5.2] in this subsection. We first introduce the following 
definition. 

Definition 2.12. Let Z, Z': C(A) ~ T be weak stability condi
tions and take v E C(A). We say Z' dominates Z with respect to v if for 
v1, V2 E C~v(A), Z(vi) ~ Z(v2) implies Z'(vi) ~ Z'(v2). Here C~v(A) 
is defined by 

(12) C~v(A) = {v' E C(A) I there is v" E C(A) with v' +v" = v}. 
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The first step is to show the following theorem. 

Theorem 2.13. [14, Theorem 5.11] For weak stability conditions 
Z, Z': C(A) ---+ T satisfying Assumption 2.6, suppose that Z' dominates 
Z with respect to v. Then we have 

(13) cF(Z') = 
12:1, v;EC(A), v1 +··+vt=v, 

Z(v;)>-Z(v;_l), Z'(v;)=Z'(v), 1:Si:S! 

The sum ( 13) may not be a finite sum, but it converges in the sense 
of [14, Definition 2.16] 

Proof. We just explain the idea of the proof. For the full proof, 
see [14, Theorem 5.11]. For a Z'-semistable objectEE A with [E] = v, 
there is a Harder-Narasimhan filtration with respect to Z, i.e. there is 
a unique filtration 

(14) 0 =Eo c E1 c · · · c Ez = E, 

such that each Fi = Ei/ Ei-1 is Z-semistable with Z(Fi) >-- Z(Fi-1). 
Since Z' dominates Z with respect to v, and each class [Fi] E C(A) is 
contained in C<v(A), we have Z'(Fi) !'::: Z' (Fi-1). Hence Z'-semistability 
of E implies Z'(Fi) = Z'(Fi-1)· 

Conversely for an object E E A, suppose that there is a filtration 
(14) such that Fi = Ei/ Ei-l is Z-semistable with Z(Fi) >-- Z(Fi-d and 
Z'(Fi) = Z'(Fi_1) for all i. Since Z' dominates Z with respect to v, the 
object Fi is also Z'-semistable, and hence E is Z'-semistable. 

As a consequence, an objectEE A with [E] =vis Z'-semistable if 
and only if there is a unique filtration (14) such that each Fi = Ed Ei-1 
is Z-semistable and Vi = [Fi] E C(A) for i = 1, ... , l satisfy 

(15) v1 + · ·· +vz = v, 
Z(vl) >-- Z(v2) >-- · · · >-- Z(vz), 

Z'(v1) = Z'(v2) = · · · = Z'(vz). 

This observation is expressed as (13) in terms of the algebra 'H(A). 
Q.E.D. 

We omit the definition of the convergence [14, Definition 2.16] here, as 
we will only treat the cases that the relevant sums have only finitely 
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many terms. The next step is to invert (13), and give the formula, 

2:: 
!2':1, v;EC(A), 
v1 +···+vl=v, 

Z1 (v;)=Z 1(v), 1:'0i:'Ol, 
Z(v, +·+v;)>-Z(vi+l +·+vl) 

The proof is provided in [14, Theorem 5.12]. The sum (16) may not 
converge in the sense of [14, Definition 2.16], but if we impose the as
sumption that the change from Z to Z' is locally finite, (we omit the 
definition of the local finiteness, see [14, Definition 5.1],) then the sum 
(16) converges. 

Finally for two weak stability conditions Z, Z', consider the follow
ing situation(.). 

• There are weak stability conditions Z = Z1 , Z2, ... , Zm = Z', 
W1, ... , Wm-1 satisfying Assumption 2.6, such that Wi domi
nates Zi, Zi-1 w.r.t. v, and all changes from Zi to Wi, Wi-1 

are locally finite. · · · (.). 

Then in principle one can express ov(z') in terms of ov(z) in the algebra 
1i(A), by applying the formulas (13), (16) successively. The transforma
tion coefficients are determined purely combinatory, and they are given 
as follows. 

Definition 2.14. [14, Definition 4.2] Take v1, ... , v1 E C(A) and 
weak stability conditions Z, Z': C(A) --+ T. If for each i = 1, ... , l- 1, 
we have either (17) or (18), 

(17) Z(vi) ::S Z(vi+!) and Z'(v1 +···+vi)>- Z'(vi+1 + · · · +vl), 

(18) Z(vi) >- Z(vi+1) and Z'(v1 +···+vi) ::S Z'(vi+ 1 + · · · + vl)· 

then define S ( { v1 , ... , vl}, Z, Z') to be ( -1 t, where r is the number of 
i = 1, ... ,1-1 satisfying (17). Otherwise we define S({v1 , ... ,v1},Z, 
Z') = 0. 

We have the following formula. 

Theorem 2.15. [14, Theorem 5.2] Under the situation(.), we have 

!2':1, v;EC(A), 
v,+ .. ·+vl=v 

S( { v1, ... , vl}, Z, Z')ov' (Z) * ... * ov1 (Z). 

The sum {19) converges in the sense of [14, Definition 2.16]. 
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Remark 2.16. Our condition "*' dominates * w.r.t. v" in Defini
tion 2.12 is weaker than Joyce's condition "*'dominates *" given in [14, 
Definition 3.16], and [14, Theorem 5.2] is formulated using the latter 
condition. However if we want to know (19) for a fixed v E C(A), it is 
enough to assume "*' dominates * w.r.t. v" in (.), since all the Vi in 
the sum (19) are contained in C<v(A). 

The relationship between Ev(z') and Ev(z) is deduced from (10), 
(19), and the inverse of (10), 

(20) 
1 L ZlEvl (Z) * ... * Evz (Z). 

12:1, v;EC(A), v1 +·+vz=v, 
Z(v;)=Z(v), 1::0:i::0:1 

The proof of (20) is provided in [11, Theorem 8.2]. The transformation 
coefficients are given as follows. 

Definition 2.17. [14, Definition 4.4] For v1 , ••• ,v1 E C(A), we 
define U( { v1, ... , v1}, Z, Z') E Q to be 

U ( { v1 , ... , vl}, Z, Z') = 

(21) 

1::0:m'::O:m::0:1 surjective '1/J: {1, ... ,1}->{1, ... ,m}, 
surjective t;: {1, ... ,m}->{1, ... ,m'}, 
i::O:j implies '1/J(i)::O:'l/.>(j), l;(i)::O:t;(j), 

'1/J and I; satisfy ( <:>) 

m' I (-1)m' m 1 
II S({wi}iEt;-l(a),Z,Z) · m' ·II l1/i-1(b)i!' 
a=1 b=1 

Here the condition ( <)) is as follows. 

• For 1:::; i,j:::; l with 1/;(i) = 1/J(j), we have Z(vi) = Z(vj), and 
for 1:::; i,j:::; m', we have 

Also Wi for 1 :::; i :::; m is defined as 

Wi = L Vj E C(A). 
jE'l/J- 1 (i) 

Theorem 2.18. [14, Theorem 5.2] In the situation(.), the follow
ing holds. 

12:1, v;EC(A), 
vl+ .. ·+vz=v 
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The sum {22} converges in the sense of [14, Definition 2.16]. 

Remark 2.19. It is possible to rewrite (22) by a Q-linear combi
nation of multiple commutators of Ev; ( Z) such as 

[[· .. [[Ev1 (Z), €v2(Z)j, Eva (Z)], .. ·], Evz (Z)j, 

so (22) is an equality in IB(A), rather than in 1t(A). The proof of this 
fact is given in [14, Theorem 5.4]. 

2.5. Motivic invariants of stacks 
As a final step, we integrate the elements Ev(z) E \Bv(A) to give 

Q-valued invariants, and establish the transformation formula of these 
invariants. Let us recall that a motivic invariant is a ring homomorphism 

T: Ko(VariSpecC) ----+A, 

where A is a Q-algebra and a ring structure on Ko(Var I Spec C) is given 
by (8). In order to simplify the arguments, we only consider the special 
case that A= Q(t) and 

T([Y]) = ~)-1)idimHi(Y,CW, 
i 

where Y is a smooth projective variety. Since K 0 (Var I Spec C) is gener
ated by [Y] for smobth projective varieties Y, the above data uniquely 
determines T. In this situation, there is a unique extension of T, 

T': Ko(Stl Spec C) -----+ Q(t), 

such that if G is a special algebraic group acting on Y, we have (cf. [13, 
Theorem 4.9]) 

T'([YIG]) = Y([Y])IY([G]). 

Here an algebraic group is special if every principal G-bundle is locally 
trivial in Zariski topology. In what follows, we assume that A satisfies 
the following condition. 

(*):there is an anti-symmetric biadditive-paring x: N(A) x N(A)---+ Z 

such that for any E, FE A, we have 

x(E, F)= dimHom(E, F)- dimExt1 (E, F)+ 

dimExt1 (F, E)- dimHom(F, E). 

For instance if A= Coh(X) for a smooth projective Calabi-Yau 3-fold 
X, the usual Euler pairing (6) descends to the pairing on N(A), which 
satisfies (*) by Serre duality. Using the pairing x, we can define the 
following Lie algebra. 
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Definition 2.20. For an abelian category A satisfying (*), we 
define the Lie algebra g(A) to be the Q-vector space, 

g(A) == E9 Qev, 
vEN(A) 

with its Lie-brackets given by [cv,Cv'] = x(v,v')Cv+v'· 

Let llv be the composition, 

where the map 1r* sends ((X, p)] to [(X, 1r o p)] and 1r: Dbj(A) --4 Sped:: 
is the structure morphism. It is shown in (14, Section 6.2] that for 
E E <5v(A), the rational function llv(E) E Q(t) has a pole of order at 
most one at t = 1. Hence the following definition makes sense, 

(23) 

Definition 2.21. We define the invariant Jv(z) E Q by 

Remark 2.22. If all the Z-semistable objects E E A with (E] = 
v are in fact Z-stable, and their moduli problem is represented by a 
scheme, then Ev(z) is written as (Mv(Z)/Gm] for a scheme Mv(z). 
Here Gm is acting on Mv ( Z) trivially. In this case JV ( Z) equals to the 
Euler characteristic of Mv(z). Note that the factor T((Gm]) = t2 - 1 
in (23) is required to cancel out the contribution of the stabilizer group 
Aut(E) ~ Gm. 

We have the following theorem. 

Theorem 2.23. (10, Theorem 6.12] The map, 

vEC(A) vEC(A) 

is a Lie algebra homomorphism. 

Since (22) is a relationship in the Lie algebra <5(A), we can obtain 
the relationship between JV(Z') and JV(Z) by applying e. The result 
is as follows. 
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Theorem 2.24. [14, Theorem 6.28, Equation (130)] In the situation 
of(.), assume that there are only finitely many terms in {22). Applying 
e to {22) yields the formula, 

JV(Z') = 
!:2:1, v;EC(A), r is a connected, simply connected oriented 

vl+·+vz=v graph with vertex {1, ... ,!}, ~-+~implies i<j 

l 

(25) 21~1 U( {VI, ... ' V!}, z, Z') II x(vi,vJ) II JV;(z). 

~--+~ in r i=l 

2.6. Generalization to quasi-abelian categories 

For our purpose it is useful to give a slight generalization of The
orem 2.24, especially we want to relax Assumption 2.6, as our abelian 
category AP which will be introduced in the next section does not satisfy 
that assumption. Let A be an abelian category and Z: C(A) ~ T a 
weak stability condition. Here we do not assume Assumption 2.6. For 
t E T, we set 

Az!:t = (E IE is Z-semistable with Z(E) ~ t), 

Az-<t = (E I E is Z-semistable with Z(E) -< t). 

Here for a set of objects S in A, we denote by (S) c A the smallest 
extension closed subcategory of A which contains S. Equivalently, an 
object E E A is contained in Az>--t (resp. Az-<t) if and only if any Z
semistable factor F of E satisfies Z(F) ~ t, (resp. Z(F) -< t.) It can be 
shown that Az!:t, Az-<t are quasi-abelian categories. See [4, Section 4) 
for the detail on quasi-abelian categories. 

Definition 2.25. For objects E, F E Az-<t and a morphism f: E ~ 
F, it is called a strict monomorphism iff is injective in A and Coker(!) E 
Az-<t· Similarly f is called a strict epimorphism iff is surjective in A 
and Ker(f) E Az-<t· 

For v E C(Az-<t), we set 

(26) C:::;v(Az-<t) = {v' E C(Az-<t) I v- v' E C(Az-<tH· 

For Z, t, v as above, we put the following assumption instead of Assump
tion 2.6. 

Assumption 2.26. • The category Az-<t is noetherian and 
artinian with respect to strict monomorphisms. 

• There is an Artin stack locally of finite type Dbj(A), which 
parametrizes objects E E A. 
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• For any v' E C:s;v(Az-<t), the substack rrnv' (Z) c Dbj(A) is an 
open substack, and it is of finite type. 

We also modify the dominant conditions. 

Definition 2.27. Let Z, Z': C(A) -+ T be weak stability condi
tions. FortE T and v E C(Az-<t), we say Z' dominates Z with respect 
to ( v, t) if the following holds. 

• We have Az~t = Az'~t and Az-<t = Az'-<t· 
• For v1,v2 E C:s;v(Az-<t), if Z(vl) t: Z(v2) then Z'(v1) t: 

Z'(v2). 

For two weak stability conditions Z, Z', we consider the following 
situation. 

• There are weak stability conditions Z = Z1, Z2, ... , Zm = Z', 
W1, ... , Wm-1 such that Wi dominates Zi, Zi+1 w.r.t. (v, t), 
all changes from zi to wi, wi-1 are locally finite, and zi, wi 
satisfy Assumption 2.26 for (v, t). · · · (•') 

We have the following generalization of Theorem 2.24. 

Theorem 2.28. For weak stability conditions Z, Z' on A, t E T and 
v E C(Az-<t), suppose that the condition (•') holds. Then the equation 
(22) with each ViE C(Az-<t) holds. If there are only finitely many terms 
in (22) with ViE C(Az-<t), then (25) holds, with each viE C(Az-<t)· 

Proof. First suppose that Z' dominates Z with respect to ( v, t), 
and check that (13) holds with each vi E C(Az-<t)· Let E E A be 
Z'-semistable with [E] = v. As in the proof of Theorem 2.13, we have 
a unique filtration (14). Let Fi = Ed Ei_1, Vi = [Fi] E C(A). Since 
v E C(Az-<t) = C(Az'-<t), we have E E Az'-<t = Az-<t· Hence we have 
Z(vi)-< t, and ViE C(Az-<t) follows. 

Conversely given a filtration (14), suppose that each Fi is Z-semista
ble with ViE C(Az-<t)· Then FiE Az-<t = Az'-<t, and hence Fi is also 
Z'-semistable as Z' dominates Z w.r.t. (v,t). 

As a summary, an object E E Az-<t is Z-semistable if and only if 
there is a filtration (14), satisfying (15) with each Vi E C(Az-<t)· Then 
the same proof as in [14, Theorem 5.11] works and gives the formula 
(13) with each ViE C(Az-<t)· Note that to state the formula (13), it is 
enough to assume that rrnv' (Z) c Dbj(A) is open and of finite type for 
any v' E C<v(Az-<t)· 

By the-same idea, we can also show the formulas (16), (19), (20), 
(22) hold with each Vi E C(Az-<t)· We leave the readers to follow Joyce's 
work and that the same proofs are applied in this case. Q.E.D. 
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§3. Limit stability and p-limit stability 

In this section, we recall the notion of limit stability on a Calabi
Yau 3-fold X introduced in [24], and also introduce the notion of p-limit 
stability. Below we always assume that X is a projective complex 3-
fold with a trivial canonical class, i.e. X is a Calabi-Yau 3-fold. We 
denote by Db(X) the bounded derived category of Coh(X), and K(X) 
the Grothendieck group of Coh(X). The numerical Grothendieck group 
of Coh(X) is given by 

N(X) = K(X)/ =, 

where the numerical equivalence relation = is given by (5). Note that 
if A C Db(X) is the heart of a bounded t-structure on Db(X), then the 
group N(A) = K(A)/ =,where= is (5) as above, coincides with N(X). 
So we always regard C(A) as a subset of N(X). 

Let us fix notation of the numerical classes of curves on X. An 
element f3 E H 4 (X, Z) is called an effective class if there is a one di
mensional subscheme C C X such that f3 is the Poincare dual of the 
fundamental cycle of C. We set C(X), C(X) as 

C(X) := {/3 E H 4 (X, Z) I f3 is an effective class }, 

C(X) := C(X) U {0}. 

3.1. Definition of limit stability 
The limit stability introduced in [24] is a stability condition on the 

category of perverse coherent sheaves AP in the sense of Bezrukavnikov [3] 
and Kashiwara [15], and it is also one of the polynomial stability condi
tions introduced by Bayer [1] independently. In order to introduce AP, 
let us define the subcategories (Coh9 (X), Coh;:::2(X)) of Coh(X), as 
follows. 

Definition 3.1. We define the pair of subcategories, (Coh< 1 (X), 
Coh>2(X)), to be 

Coh9(X) := {E E Coh(X) I dimSupp(E):::;; 1}, 

Coh;:::2(X) := {E E Coh(X) I Hom(Coh9(X),E) = 0}. 

The category AP is defined as follows. 

Definition 3.2. We define the subcategory AP c Db(X) to be 
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It is easy to see that (Coh~ 1 (X),Coh22 (X)) determines a torsion 
theory on Coh(X), and AP is the corresponding tilting. ( cf. [24, Def
inition 2.9, Lemma 2.10].) Therefore AP is the heart of a bounded t
structure on Db(X), in particular AP is an abelian category. 

Next recall that the complexijied ample cone is defined by 

A(X)c = {B + iw E H 2 (X, q I w is an ample class}. 

Given a = B + iw E A(X)c, one can define the map Zu: K(X) -----* C, 

Zu: K(X) 3 E f---+- J e-(B+iw) ch(E)Jtd:; E C. 

Explicitly we have 

where vf E H2i(X,~) for 0:::; i:::; 3 are given by 

e-B ch(E)Jtd:; = (vff(E),vf(E),v~(E),vf(E)) E Heven(X,~). 

For am = B + imw with mE~' one can show the following: for each 
non-zero objectEE AP, one has 

(28) Zu,-JE) E {rexp(in¢): r > 0, ~ < ¢ < ~}, 

form» 0. (See [24, Lemma 2.20].) Hence the phase of E is well-defined 
for m » 0 as follows, 

Definition 3.3. [14, Definition 2.21] An object E E AP is a-limit 
(semi)stable if for any non-zero subobject F C E in AP, we have 

(29) cPu, (F) < cPu, (E), (resp. cPu, (F) :=:; cPam (E),) 

form» 0. 

Let us interpret the above stability in terms of Definition 2.1. Let 
T be the one variable function field ~(m). We define the total order on 
~(m) to be 

f(m) ~ g(m) ~ f(m) 2': g(m) form» 0. 
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Note that we have 

(30) Im e-1ri/4 Z (E) > 0 
CYm ' 

form» 0 since (28) holds. In particular (30) is non-zero as a polynomial 
of m, thus the following map is well-defined. 

Rec1l"i/4 Za (E) 
ZJ': C(.AP) 3 E 1----7 - "/4 m ( ) E T. 

Ime-n Zam E 

Lemma 3.4. The map z;; is a stability condition on .AP, and an 
object E E .AP is ZJ' -(semi)stable if and only if E is O"-limit (semi)stable. 

Proof. Since (30) holds, it is obvious that for v1 , v2 E C(.Ap), the 
inequality rl>am(vl)::; rl>am(v2) holds form» 0 if and only if ZJ'(vl) ~ 
ZJ' ( V2) holds in T. Hence ZJ' is a stability function, and the latter 
statement also follows. The existence of Harder-Narasimhan filtrations 
for limit stability is proved in [24, Theorem 2.28], and hence z;; is a 
stability condition. Q.E.D. 

3.2. JL-limit stability 
In this subsection, we introduce a weak stability condition on .AP, 

which we call JL-limit stability. Let us introduce the following notation. 

Definition 3.5. Let f = L~=O ai(O")mi be a polynomial such that 
each coefficient ai(O") is a JR-valued function on A(X)c, and ad(O") ¢. 0. 
We define ft = ad(O")md. 

By the formula (27), Re Zam (E) and Im Zam (E) are written as poly
nomials of m whose coefficients are JR-valued functions on A(X)c. Thus 
the following makes sense, 

The same argument as in [24, Lemma 2.20] shows that 

Z~,JE) E {rexp(i1rrp): r > 0, ~ < rj> < ~}, 
for m » 0. Hence as before we can define the following map, 

Ree-7ri/4zt (E) 
z/k<Y: C(.AP) 3 E 1----7 - CYm E T. 

Ime-7ri/4zL (E) 

We have the following lemma. 

Lemma 3.6. The map Z'"'" is a weak stability function on .AP. 
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Proof Since the operation f 1---t ft is just taking the initial term 
of the polynomials, we have the implication 

forE, FE C(AP). Hence ZJ-Lu is a weak stability function. Q.E.D. 

It is easy to see that for 0 i= E E AP, one has ZJ-Lu(E) -> 1 or -1 as 
m-> oo. To see that ZJ-Lu is a weak stability condition, we introduce a 
pair of subcategories in AP. (cf. [24, subsection 2.3].) 

Definition 3.7. We define (Af,Af12) to be 

Af = {E E API dimSuppH0 (E) = 0 and 1{-1(E) is a torsion sheaf}, 

Af;2 = {E E API Hom(F,E) = 0 for any FE Af}. 

It is shown in [24, Lemma 2.16] that (Af,Af12) determines a tor
sion theory on AP. We shall use the same notation of "strict monomor
phisms", "strict epimorphisms" in Af as in Definition 2.25, i.e. we 
replace Az-<.t by Af to define them. We have the following. 

Lemma 3.8. An object E E AP is zl-'u -semistable with zl-'u (E) -t 

-1 (resp. 1) as m -> oo if and only if E E Af12 , (resp. Af,) and for 
any strict monomorphism 0 i= F ~ E in Af12 , (resp. Af,) one has 

ZJ-Lu(F) ~ ZJ-Lu(E/F). 

Proof The proof is same as in [24, Lemma 2.26] for the limit sta
bility, by noting that 

forE E Af12 , (resp. E E Af,) and m-> oo. 

We also have the following. 

Q.E.D. 

Lemma 3.9. The weak stability function ZJ-Lu is a weak stability 
condition. 

Proof The existence ofHarder-Narasimhanfiltrations follows from 
the same argument for the limit stability. The proof of [24, Theo
rem 2.28] also works in this case, by noting Lemma 3.8. Q.E.D. 

We say E E AP is I-ta-limit (semi)stable if it is (semi)stable in zl-'u
weak stability. To explain this notation, let us recall that the (usual) 
~-£-stability is defined by cutting off the lower degree terms of the reduced 
Hilbert polynomials. In this sense, our I-ta-limit stability resembles to 
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j.l-stability, as we also cut off the lower degree terms of the polynomial 
Za, ( * ). By (31), we have the following implications, 

J.la-limit stable =}a-limit stable 

=} a-limit semistable =} J.la-limit semistable . 

Remark 3.10. For 0 =1- E E AP, let ¢l,.,(E) be 

Then obviously an object E E AP is J.la-limit (semi)stable if and only if 
for any non-zero subobject F C E, one has 

¢t,.,(F) < ¢t,.,(E/F), (resp. ¢t,.,(F) ~ ¢t,.,(E/F),) 

form:» 0. 

Remark 3.11. Let us take FE Coh9(X). In this case we have 
ZL (F) = Za, (F), and Coh9 (X) C AP is closed under taking sub
objects and quotients. So F is J.la-limit (semi)stable if and only if it is 
a-limit (semi)stable. On the other hand for a = B + iw E A(X)c, let 
J.la(F) E Ql be 

(32) (F) = ch3(F)- B ch2(F) /(1) 

J.la w ch2(F) E "'~!.· 

As in [24, Example 2.24 (ii)], the object F is a-limit (semi)stable if 
and only if for any subsheaf 0 =/:- F' C F we have J.la(F') < J.la(F), 
(resp. J.la(F') ~ J.la(F),) i.e. F is a (B,w)-twisted (semi)stable sheaf. If 
B = kw for k E ~. then F is a-limit (semi)stable if and only ifF is a 
w-Gieseker (semi)stable sheaf, and this notion does not depend on k. 

Remark 3.12. By Lemma 3.8, it is obvious that 

(33) AP -AP z -<0 - 1/2' l'u 
A~ :-o = Af, 

l'u-

in the notation of subsection 2.6. Since Af;2 and Af are of finite length 
with respect to strict monomorphisms and strict epimorphisms, ( cf. [24, 
Lemma 2.19],) the categories A~ -<O and A~ :-o also have such prop-

P.u J..l.cr-

ertieS. 
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3.3. Characterization of J.t-limit semistable objects 
Take v E C ( AP) satisfying 

4i3 

(34) (cho(v),ch1(v),ch2(v),ch3(v)) = (-1,0,,8,n), 

for some ,8 E H 4 (X, Ql) and n E H 6 (X, Ql) ~ Ql. In this subsection we 
give a characterization of J.t-limit semistable objects E E AP of numerical 
type v. i.e. [E] = v E C(AP). Note that such objects satisfy Z~-'" (E) -
-1 as m-oo, and hence we have 

E E Af12 , v E C(Af;2). 

Also if such E exists, the classes ,8, n are contained in C (X), H 6 (X, Z) ~ 
Z respectively, by [24, Remark 3.3]. We have the following proposition, 
whose corresponding result for limit stability is seen in [24, Section 3]. 

Proposition 3.13. Take a = B + iw E A(X)c. For an object 
E E Af;2 of numerical type v, it is J.tu-limit {semi}stable if and only if 
the following conditions hold. 

(a} For any pure one dimensional sheaf G =F 0 which admits a strict 
epimorphism E """""* G in Af12 , one has 

(35) 
3Bw2 

J.tu(G) > --3-. 
w 

{b) For any pure one dimensional sheaf F =F 0 which admits a strict 
monomorphism F ~ E in Af12 , one has 

(36) 
3Bw2 

J.tu(F) < --3-. 
w 

( 3Bw2 ) resp. J.tu(F)::; -~. 

Proof. By Lemma 3.8 and applying the same argument as in [24, 
Lemma 3.4], an object E E Af12 of numerical type v is Z~-'"-limit 
semistable if and only if 

(a') For any pure one dimensional sheaf G =F 0 which admits an exact 
sequence 0- F-E- G- 0 in Af12 , one has Z~-'"(F) ~ Z~-'JG). 

(b') For any pure one dimensional sheaf F =F 0 which admits an exact 
sequence 0- F-E- G- 0 in Af12 , one has Z~-'"(F) ~ Z~-'"(G). 

By Lemma 3.14 below, the conditions (a'), (b') are equivalent to 
(a), (b) respectively. Q.E.D. 

Lemma 3.14. Take v1,v2 E C(Af12 ) with ch(v1) = (-1,0,,81,n1), 
ch(v2) = (0,0,,82,n2), and ,82 =F 0. Then 

zl-'u(v!) ~ zl-'u(v2), (resp. zl-'u(vl)!:: zl-'u(v2),) 
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if and only if 

(37) 

If a= kw + iw fork E JR., (37} is equivalent to 

(38) 
1 

k > -- 11 · (v2) - 2,-•w ' 

Proof. An easy computation shows, 

Since w(32 > 0, we have 

If a= kw + iw with k E JR., then !-"u(v2) = /-Liw(v2 )- k and -3Bw2 jw3 = 
-3k. Hence (37) is equivalent to (38). Q.E.D. 

3.4. Moduli theory of !-"-limit semistable objects 
In this subsection, we establish a moduli theory of !-"-limit semistable 

objects. In [24, Theorem 1.1], a moduli theory of a-limit stable objects 
is studied, and the resulting moduli space is an algebraic subspace of 
Inaba's algebraic space [8]. Since we need a moduli theory not only for 
stable objects but also for semistable objects, the resulting space should 
not be an algebraic space in general, but an Artin stack. So instead of 
working with Inaba's algebraic space, we use Lieblich's algebraic stack 
of objects E E Db(X), satisfying the condition, 

(40) Ext~(E, E)= 0, for all i < 0, 

which we denote by wt. More precisely, the stack 9Jt is defined by the 
2-functor, 

wt: (Sch/C) ---7 (groupoid), 

which takes a «:::-schemeS to the groupoid wt(S), whose objects consist 
of relatively perfect object£ E Db(X x S) such that Es satisfies (40) for 
any closed points E S. Lieblich [18] shows the following. 
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Theorem 3.15. ([18]) The 2-functor 9Jt is an Artin stack locally of 
finite type. 

For v E C(Af;2 ) as in (34), we consider a moduli problem of p,-limit 
semistable objects of numerical type v' E C:-:;v(Af12 ), where C:-s;v(Af12 ) 
is given in (26). First we show the following. 

Lemma 3.16. For any v' E C:-:;v(Af12 ), we have one of the follow-
ing. 

• There is {3' E C(X) and n' E Z such thatch( v') = ( -1, 0, {3', n'). 
• We have ch(v') = (-1,0,0,0). 
• There is {3' E C(X) and n' E Z such that ch(v') = (0, 0, {31, n'). 

Proof. For v' E C:-:;v(Af12 ), let v" = v - v' E C(Af12 ). Since 
cho(v) = -1, we have cho(v') = 0 or cho(v') = -1. Suppose that 
cho(v') = 0 and take E E Af;2 with [E] = v'. Then 1-l-1 (E) must 

be torsion, and hence 1-l- 1(E) = 0 since E E Af12 . Therefore E is 
a non-zero one dimensional sheaf, thus ch( v') = (0, 0, {3', n') for some 
{3' E C(X) and n' E Z. 

In the latter case, we have ch0 (v") = 0 thus ch0 (v") = (0,0,{3",n") 
for some {3" E C(X) and n" E Z. Therefore ch0 ( v') = ( -1, 0, {3', n') for 
some {3' E C(X) and n' E Z. If {3' = 0, then 1-l- 1(E) is a line bundle 
and 1-l0 (E) is a zero dimensional sheaf, by (24, Lemma 3.2]. Thus E is 
isomorphic to a direct sum of 1-l-1(E)[1] and 1-l0 (E), which contradicts 
toE E Af;2 unless n' =dim 1-l0 (E) = 0. Q.E.D. 

For a = B + iw E A(X)c and v' E C:-:;v(Af;2 ), let us consider the 
following (abstract) stacks, 

where Dbj(AP) is the stack of objects E E AP, and mrv' (ZI-Lu) is the 
stack of p,,.-limit semistable objects E E Af;2 of numerical type v'. We 
have the following. 

Proposition 3.17. The substacks Dbj(AP) and mrv' (ZI-LJ are open 
substacks of wt, and hence they are Artin stacks locally of finite type. 
Moreover 9.nv' (ZI-Lu) is of finite type. 

Proof. The openness ofDbj(AP) c 9Jtfollows from [24, Lemma 3.14]. 
Let us take v' E C:-:;v(Af12 ). Suppose first that ch(v') = (0,0,{3',n') for 
{3' E C(X) and n' E Z. Then any p,,.-limit semistable object of numeri
cal type v' is a (B, w)-twisted semistable sheaf. (cf. Remark 3.11.) Then 
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it is well-known that v.nv'(ZJ.!J is open in Wl, and it is of finite type. 
(cf. [25, Proposition 3.9].) 

Next suppose that ch(v') = (-1,0,,B',n'). In this case the claim 
for v.nv' (ZJ.!u) follows from the straightforward adaptation of the argu
ment of [24, Section 3]. In fact using Lemma 3.13, we can show the 
boundedness of JL,.-limit semistable objects of numerical type v', and 
destabilizing objects in a family of objects in Af12 , along with the same 
arguments of [24, Proposition 3.13, Lemma 3.15]. Then the same proof 
as in [24, Theorem 3.20] works to show the openness of v.nv' (ZJ.!") C Wl. 
The boundedness of relevant JL,.-limit semistable objects implies that 
9.nv' (ZJ.!J is of finite type. Q.E.D. 

3.5. Stable pairs and JL-limit semistable objects 
The notion of stable pairs and their counting invariants are in

troduced by Pandharipande and Thomas [20] to interpret the reduced 
Donaldson-Thomas theory geometrically. In [24, Section 4], the rela
tionship between PT-invariants and counting invariants of limit stable 
objects are discussed. In this subsection we state the similar result for 
JL-limit semistable objects. Since the proofs are straightforward adapta
tion of the arguments in [24, Section 4], we again leave the readers to 
check the detail. First let us recall the definition of stable pairs. 

Definition 3.18. A stable pair on a Calabi-Yau 3-fold X is data 
( F, s), where F is a pure one dimensional sheaf on X, and s is a morphism 

s: Ox---+ F, 

whose cokernel is a zero dimensional sheaf. 

To simplify the notation, we also include the pair (F = 0, s = 0) 
in the definition of stable pairs. For a stable pair (F, s), we have the 
associated two term complex, 

(41) 

where F is located in degree zero. Note that the object J• satisfies 

r E Af12 , detr =Ox, 

ch(r) = (-1,0,,B,n), 

for ,B = ch2(F), n = ch3 (F). By abuse of notation, we also call an 

object (41) as a stable pair. In [20], the moduli space of stable pairs is 
constructed as a projective variety, and denoted by Pn(X, ,B), 

Pn(X, ,B) := {(F, s) I (F, s) is a stable pair, (ch2(F), ch3 (F)) = (,B, n)}. 
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Let Dbjo(AP) be the closed fiber at the point [Ox] E Pic(X) of the 
following morphism, 

det: Dbj(AP) 3 E ~------+ det E E Pic( X). 

Definition 3.19. For (3 E C(X), n E Z, and u E A(X)c, define 
£;~"(X, (3) to be 

(42) 

where v E C(Af;2 ) satisfies ch(E) = (-1,0,(3,n). 

Note that £;~"(X, (3) is the moduli stack of JLo--limit semistable ob
jects E E AP with det E =Ox and [E] = v. We shall compare£;~" (X, (3) 
and Pn(X, (3), when u is written as u = kw + iw with k E JR. For 
(3 E C(X), we set 

(43) C::;{3(X) := {(3' E C(X) I (3- (3' E C(X)}, 

C::;f3(X) := C::;f3(X) \ {0}. 

Definition 3.20. For (3 E C(X), we define m(/3) as follows. If 
(3 = 0, we set m(/3) = 0. Otherwise m(/3) is 

m(/3) := min{ch3(0c) ICC X satisfies dimC = 1, [C] E C::;f3(X)}. 

It is well-known that C::;{3(X) is a finite set and m(/3) > -oo, whose 
proofs are seen in [24, Lemma 3.9, Lemma 3.10]. Thus Definition 3.20 
makes sense. For (3 E C(X) and n E Z, we define J.ln,f3 E Ql to be 

{ n - m(/3 - (3') } 
(44) J.ln,{3 :=max w(3' : (31 E C::;{3(X) . 

The following is JL-stability version of [24, Theorem 4. 7]. 

Theorem 3.21. Let u = kw + iw fork E JR. We have 

(45) £~"(X,(3) ~ [Pn(X,/3)/GmJ, if k < -JLn,f3/2, 

(46) £~"(X,(3) ~ [P-n(X,/3)/GmJ, if k > JL-n,(3/2. 

Here Gm is acting on P±n(X, (3) trivially. 

Proof. The same proof as in [24, Theorem 4.7] shows that, if k < 
-JLn,{3/2, then E E Af12 is JLo--limit semistable if and only if E is isomor
phic to a stable pair ( 41). Note that [24, Lemma 4.6] is crucial in [24, 
Theorem 4.7], and in our case Proposition 3.13 and (38) are applied 
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instead of [24, Lemma 4.6]. Thus the C-valued points of ..C~"(X,,B) and 
Pn(X, ,8) are identified. 

The existence of a universal stable pair on X x Pn(X, ,8) (cf. [20, 
Section 2]) yields a 1-morphism Pn(X, ,8) ---+ .C~" (X, ,8), which descends 
to 

(47) [Pn(X, ,8)/Gm] ---+ .C~" (X, ,8). 

Since any E E Pn(X, ,8) is T-limit stable for some T by [24, Theorem 4.7], 
we have Hom(E, E)= C and Aut(E) = Gm. Therefore (47) is an equiv
alence of groupoidson C-valued points. As proved in [20, Theorem 2.7], 
the stack [Pn(X, ,8)/Gm] is considered as an open substack of Dbjo(AP). 
By Proposition 3.17, .C~" (X, ,8) is also open in Dbj0 (AP), and hence 
(47) gives an isomorphism of Artin stacks. The isomorphism (46) is also 
similarly proved. Q.E.D. 

§4. Generating functions of stable pair. invariants 

In this section, we combine the arguments in the previous sections to 
show the rationality of the generating functions of stable pair invariants. 
As in the previous section, X is a projective Calabi-Yau 3-fold, AP C 
Db(X) is the heart of a perverse t-structure on Db(X). 

4.1. Counting invariants of JL-limit stable objects 

In this subsection, we construct counting invariants of JL-limit semi
stable objects. Take v E C(Af;2 ) which satisfies (34) with ,8 E C(X) 
and n E Z. As in subsection 2.3, there is a Ringel-Hall Lie-algebra 
®(AP) c 1t(AP) and the elements, 

for any v' E Csv(Af12 ) and a E A(X)c. Here we have used Proposi

tion 3.17 which ensures the existence of 1t(AP) and Ev' (ZJLJ. We also 
use the following map on 1t(AP) to construct the counting invariants, 

(48) 3: ®(AP) 3 f f---+ f · [Dbjo(AP) <-t Dbj(AP)] E ®(AP). 

The product · is given by (9). In the following, we use the notation of 
subsection 2.5. 
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Definition 4.1. For f3 E C(X) and n E Z, we define 1 P;!;fi E Z, 
L~~f3(cr) E Q and N;!;fi(cr) E Q to be 

P;!;'fl := e(Pn(X,/3)), 

L~~f3(cr) := 8v2Ev(z~"J, where ch(v) = (-l,O,{J,n), 

N;!;'fl(cr) := 8v'Ev' (Z~"J = r' (Z~tJ, where ch(v') = (0, 0, {3, n). 

Here e( *) is the topological Euler characteristic. 

For simplicity we set 

Leu . Leu ( · ) n,{3 · = n,{3 ~W ' N eu . Neu (" ) n,{3 .= n,{3 ~W · 

Remark 4.2. Suppose that cr = kw + iw for k E JR. Then we have 

by noting Remark 3.11. Also if k < -J.Ln,f312, then Theorem 3.21 and 
Remark 2.22 imply 

L~~f3(cr) = P;!;'fl. 

Let us recall that for a fixed {3, the moduli space Pn(X, {3) is empty 
for a sufficiently negative n. (See [20].) So we can take N(/3) E Z such 
that 

(49) peu = 0 for n < N(/3). n,{3 

In particular the series pgu(q) is a Laurent series of q. 

4.2. Generating functions of counting invariants of J.L-limit 
semistable objects 

In this subsection, we study the generating functions of the invari
ants given in Definition 4.1. Below we fix an ample divisor won X and 
only consider the case cr = kw + iw for k E JR. For cr = kw + iw, we 
set cr v = - kw + iw. We have the following symmetry for the invariants 
L~~f3(cr) and N;!;~f3· 

Lemma 4.3. (i) We have the equalities, 

(50) Leu (cr) =Leu (crv) n,{3 -n,{3 ' 

(ii} Ford:= w · {3, we have N;!;'f_d,f3 = N;!;fi for any n E Z. 

1The subscript *eu means "Euler characteristic " of the moduli spaces. 
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Proof. (i) Let ]]J): Db(X)--+ Db(X)0 P be the dualizing functor, 

]]J)(E) = R1iom(E, Ox[2]). 

The functor ]]J) induces an isomorphism of rings, 

(51) 

On the other hand, the functor ]]J) preserves the subcategory Af12 C 

Db(X) by [24, Lemma 2.18]. Moreover the same argument as in [24, 
Lemma 2.27] shows that an object E E Af12 is P,o--limit semistable if 

and only if ]]J)(E) E Af;2 is P,a-v-limit semistable. Hence the map (51) 

takes 15v' (Zp,,) to 15v'v (Zp,,.v) for any v' E C::;v(Af;2 ). Here if v' is 

given by ch(v') = (r,O,(J',n') for r = 0 or -1, then v'v is given by 
ch(v'v) = (r, 0, (3', -n'). Hence (50) follows by the definitions of L~~f3(a) 
and N~'fl· 

(ii) Let us take an ample line bundle .C E Pic(X) with c1 (.C) = w. 
The equivalence ®.C: AP --+ AP induces an isomorphism of algebras, 

(52) 

On the other hand, it is easy to see that an object E E Af;2 is P,o--limit 
semistable if and only if E ® .C is Ito--limit semistable. Thus the map 
(52) takes 15v' (Zp,,) to 15v" (Zp,,), where ch(v') = (0, 0, (3, n) and ch(v") = 
(0, 0, (3, n +d). Hence we can conclude N~+d,f3 = N~~f3· Q.E.D. 

Next we show the following finiteness result. 

Lemma 4.4. For a fixed (3 E C(X) and a= kw + iw, the set 

(53) 

is a finite set. 

Proof. If (3 = 0, then L~~f3(a) = 0 unless n = 0 by Lemma 3.16. 
Suppose that (3 i= 0, and take an integer N((J) as in (49). Assume that 
L~~f3(a) i= 0 for n < N((J). Then at least the moduli stack £~(X,(J) is 
non-empty, and hence we must have k ~ -~P,n,(3 by Theorem 3.21. By 
the definition of ILn,f3, there is (3' E C::;(3(X) such that 

k > _ n - m((J - (3') . 
- 2w(3' 

Hence we have either 

n ~ -2k(wf3') + m((J- (3'), or n ~ N((J). 
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Thus the set (53) is bounded below. Since L~~{3(CY) 
Lemma 4.3, the set (53) is also bounded above. 

L':_un,{3(CYV) by 
Q.E.D. 

Lemma 4.5. For a fixed (3 E C(X), the generating series 

(54) 

is a polynomial of q± 1 , and hence a rational function of q, invariant 
under q f-+ 1/q. 

Proof. By Lemma 4.4, the series L~u(q) is a polynomial of q±1 . 

Since 

Leu =Leu (iw) =Leu (iwv) =Leu (iw) =Leu n,{3 n,{3 -n,{3 -n,{3 -n,{3' 

by Lemma 4.3, the polynomial L~u(q) is invariant under q f-+ 1/q. 
Q.E.D. 

Lemma 4.6. The generating series 

N~u(q) = L nN~'flqn, 
n2:0 

is the Laurent expansion of a rational function of q, invariant under 
q f-+ 1/q. 

Proof. Let d E Z be as in Lemma 4.3. Applying Lemma 4.3, we 
have 

N~u(q) 

d-1 

= L L (dm + j)NJ,~qdm+j 
j=O m2:0 

d-1 

= ~ L L { (dm + j)NJ,~qdm+j + (dm + d- j)Nd.'!:_j,{3qdm+d-j} 
j=O m2:0 

d-1 N'fU 
= L ~,{3 L { ( dm + j)qdm+j + ( dm + d- j)qdm+d-j} . 

J=O m2:0 

We can calculate as 

(55) 

L { (dm + j)qdm+j + (dm + d- j)qdm+d-j} 

(d- j)(qj+d + qd-j) + j(qj + q2d-j) 

(1 - qd)2 
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Then the assertion follows since (55) is a rational function of q, invariant 
under q +--+ 1/ q. Q.E.D. 

For a fixed (3 E C(X), we consider the following generating series, 

P$u(q) = L P~'}Jqn. 
nEZ 

Now we state our main theorem in this paper. 

Theorem 4. 7. We have the following equality of the generating 
series, 

Here (3 2:: 0, (3 > 0 mean (3 E C(X), (3 E C(X) respectively. Com
bining Theorem 4.7 with Lemma 4.5 and Lemma 4.6, we obtain the 
following. 

Corollary 4.8. The generating series P$u(q) is the Laurent expan
sion of a rational function of q, invariant under q +--+ ljq. 

The proof of Theorem 4.7 will be given in subsection 4.5 below. 

4.3. Transformation of the invariants L~~p(CJ) 
In this subsection, we investigate the transformation formula of our 

invariants L~~p(CJ) under change of CJ = kw + iw. For (3 E C(X), we set 
8 ((3) C JR. as 

8((3) := { 2~(3' I (3' E C~p(X), mE Z} c R 

Note that 8((3) is a discrete subset in JR. because C~p(X) is a finite set. 
For ko E 8((3), let C± C IR.\8((3) be the connected components such that 
C_ C IR.<ko and C+ C IR.>ko. We take k± E C± and set CJ * = k*w + iw for 
* = ±, 0. We have the following. 

Lemma 4.9. Take v E C(Af12 ) as in (34) and 0 E T = JR.(m). The 

weak stability condition Z Mao dominates Z '""" ± with respect to ( v, 0). 

Proof. Take v1, v2 E C~v(Af12 ), and suppose that Z'"'"± (vi) ::S 
Z'"'"± (v2). We want to show that 

(57) 
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ByLemma3.16,wehavech(vi) = h,0,,6i,ni)withri =Oor-1. Ifr1 = 
r2 = -1, it is easy to see that Zp." (vi) = Zp." (v2) for any a. If r1 = r2 = 
0, (57) follows easily from (39). If r1 -=/:- r2, (57) follows from Lemma 3.14. 
Then the assertion follows by noting Remark 3.12. Q.E.D. 

Remark 4.10. Lemma 4.9 is not true for the limit stability. This 
is the reason why we use JL-limit stability rather than the limit stability. 

For simplicity, we fix k E ~<O and write 

(58) Z = ZJ.!u for a= kw + iw with k < 0, Z' = ZJ.!;w· 

Applying the results in the previous sections, we obtain the following 
proposition. 

Proposition 4.11. For v E C(Af12 ) as in {34}, and Z, Z' as in 
(58) w. r. t. ( v, 0), we have the following. 

l~l, 
v;EC(Af12 ), 
v1+···+vz=v 

The sum {59} has only finitely many non-zero terms. 

Proof. By Proposition 3.17 and Remark 3.12, Z, Z' satisfy Assump
tion 2.26 w.r.t. (v, 0). Furthermore by Lemma 4.9, the condition (•') is 
also satisfied with respect to ( v, 0), except the local finiteness condition 
which is satisfied if we knew that (59) has only finitely many non-zero 
terms. The finiteness of (59) will be shown in Proposition 4.14 (iii) 
below. Therefore (59) follows from Theorem 2.28. Q.E.D. 

In the formula (59), { vi}i=l c C(Af;2) satisfy the following by 
Lemma 3.16. 

(60) There is a unique 1:::; e:::; l such that ch(vi) = (0,0,,6i,ni) 

fori-=/:- e with ,6i E C(X),ni E Z, and ch(ve) = (-1,0,,6e,ne) 

with f3e E C(X), ne E Z. 

Let us see that (59) is a finite sum. For simplicity we write 
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Lemma 4.12. Take v1, ... , Vt E C(Af12 ) such that 

ch(vi) = (0, 0, Pi, ni), 

for all i with PiE C(X) and ni E Z. For Z, Z' as in (58), we have 

{ 1 l = 1, 
S({v1 , ... ,vl},Z,Z') = o: l ~ 2. 

Proof. Note that we have 

Then one can check that the same proof as in [9, Theorem 4.5] is applied. 
Q.E.D. 

Lemma 4.13. Take v1, ... , Vt E C(Af12 ) as in {60). For Z, Z' as 
in (58), S({vl, ... ,vl},Z,Z') is non-zero only if 

(62) 0 < f-L1 :S: /-L2 :S: · · · :S: f-Le-1 :S: -2k > f-Le+l > f-Le+2 > · · · > /-Ll ~ 0. 

Moreover in this case, we have S ( { v1 , ... , vl}, Z, Z') = ( -1 )e-l. 

Proof. Note that for vi, Vj with i,j -1- e, the same implications (61) 
hold. Also for i -1- e, we have 

Z(vi) ~ Z(ve) <i=? f-Li :S: -2k, 

Z'(vi) ~ Z'(ve) <i=? f-Li :S: 0. 

Suppose that S( { v1 , ... , vl}, Z, Z') -1- 0. We say 1 < i < l is of type A 
(resp. B) if the following holds, 

If 1 < i :=:; e - 1 is of type A, we have 

Hence we have 

Z'(vl + · · · + Vi-d ~ Z'(vi + · · · + vt), 

Z'(vl +···+vi)>- Z'(vi+l + · · · + Vt). 

f-Liw(vl + · ·· +vi-l) :S: 0, 

f-Liw(vl + · · · + Vi-1 +vi)> 0, 

which implies /-Li > 0. Similarly if i is of type B, we have /-Li < 0. 
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Suppose that there is 1 ~ i ~ e- 1 of type A or B, and take the 
smallest such i. We assume i is of type A, and hence f.-Li > 0. We have 

thus f.-Ll > · · · > f.-Li > 0 holds. On the other hand, we have Z' ( v1) ::S 
Z' ( v2 + · · · + vz), thus f.-Ll ~ 0. This is a contradiction, so there is no 
1 ~ i ~ e -1 of type A. Similarly there is no 1 ~ i ~ e -1 of type B. 

(63) 

(64) 

By the above argument, one of (63) or (64) holds. 

Z(vl) >- Z(v2) >- · · · >- Z(ve-1) >- Z(ve), 

Z(vl) ::S Z(v2) ::S · · · ::S Z(ve-1) ::S Z(ve)· 

Assume by a contradiction that (63) holds. Then Z'(vl) ::S Z'(v2 + · · · + 
vz), thus (63) implies 

(65) 0 2: f.-Ll > f.-L2 > · · · > f.-Le-1 > -2k. 

The inequality (65) does not occur since we took k < 0. Therefore we 
must have (64). 

A similar argument for Ve+l, ... , v1 shows 

(66) Z(vl) ::S · · · ::S Z(ve) >- Z(ve+l) >- · · · >- Z(vz). 

Obviously (66) together with S( { v1 , ... , vz}, Z, Z') -1- 0 imply (62). 
Q.E.D. 

Proposition 4.14. (i) Take v1, ... , Vz E C(Af12 ) as in (60), and 

let Z, Z' be as in (58). Then U( { v1, ... , vz}, Z, Z') is non-zero only if 

(67) 0 ~ f.-Ll ~ f.-L2 ~ · · · ~ f.-Le-1 ~ -2k 2: f.-Le+l 2: · · · 2: f.-Ll 2: 0. 

(ii) In the same situation of (i), suppose that the following holds, 

Then we have 

U( { v1, ... , vz}, Z, Z') IT ni -1- 0. 
i#e 

U( {v1 , ... , vz}, Z, Z') = L 
1:$m:$l surjective 'lj;: {1, ... ,!}-+{l, ... ,m}, 

i:$j implies 'lj;(i):$'lj;(j), and satisfies (69) 

(68) ( 1)'lj;(e)-1 rrm 1 
- 1'1/J~l(b)l!. 

b=l 
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Here 1/J satisfies the following. 

(69) For i,j < e with 1/J(i) = 1/J(j), we have /Ji = /Jj, 

if 1/J(i) = 1/J(e) then /Ji = -2k, and fore< i,j, 

we have 1/J( i) = 1/J(j) if and only if /Ji = /Jj. 

(iii) The formula (59) is a finite sum. 

Proof. (i) Suppose that U( {VI, ... , vz}, Z, Z') =1- 0 and take 

(70) 1/J: {1, ... ,Z}-+ {1, ... ,m}, ~: {1, ... ,m}-+ {1, ... ,m'}, 

as in (21). Let us set c = ~1/J(e) E {1, ... , m'} and take a E {1, ... , m'} 
with a =1- c. By Lemma 4.12, the set ~-I(a) consists of one element, say 
bE {1, ... , m }. Then by the definition of U( {vi, ... , vl}, Z, Z'), we have 
/Ji = /Jj for i,j E 1/J-I(b) and 

(71) Z'( L Vi)= Z'( L 

The condition (71) implies /Jiw(LiE,P-l(b) vi) = 0, and hence /Ji = 0 for 
any i E 1/J-I(b), i.e. /Ji = 0 for any i r:J_'t/J-I~-I(c). By Lemma 4.13, we 
must have (67). 

(72) 

(ii) Suppose that 

U( {VI, ... , vz}, Z, Z') IT ni =1- 0, 
iofe 

and take 1/J: {1, ... ,Z}-+ {1, ... ,m}, ~: {1, ... ,m}-+ {1, ... ,m'} as in 
(i). Then the proof of (i) shows that (72) is non-zero only if m' = 1. Then 
(68) follows from the definition of U( {VI, ... , vz}, Z, Z') and Lemma 4.13. 

(iii) Since VI, ... , Vz satisfy (60), the number lis bounded, and there 
is only finite number of possibilities for f3i = ch2 (vi)· Hence we may fix 
l and f3I, ... , f3z. Then the values ni = ch3 (Vi) have only finite number 
of possibilities by (67). Q.E.D. 

Now we have the wall-crossing formula of the invariants L~~13 (a-). 
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Proposition 4.15. For CJ = kw + iw with k < 0, (3 E C(X) and 
n E Z, we have the following formula, 

Leu _ 
n,/3-

(73) 

!2:I, I_:Se_:S!, /3;EC(X) for i#-e, f3eEC(X), n;EZ, 
f3t+···+f3z=f3, nt+·+nz=n, Jl.;=n;/(3;w satisfy 

O<J1.1 :'OJ1.2 .:'0 · · · .:'OJl.e-1 .:'0 -2k2:f1.e+l2: · · ·2:Jl.l >0 

I_:Sm_:S!, surjective 
1/J: {1, ... ,!}--+{I, ... ,m}, 
i_:Sj implies 1/J(i)_:S-.j;(j), 

and satisfies ( 69) 

Proof. Let v E C(Af12 ) be as in (34), and Z, Z' be as in (58). 
Applying 3 given in (48) to (59), we obtain 

(74) 

!2:I, I_:Se_:S! v; EC(Aj'12 ), Vt +·+vz=v, 
cho(v;)=O for iof-e, cho(ve)=-I 

U( {VI, ... , vz}, Z, Z') 

Ev1 (Z) * · · · * BEve(Z) * · · · * Ev1 (Z). 

Note that for i =f. e, the element Ev; (Z) E H(AP) is supported on 
Dbj0 (AP) c Dbj(AP), and hence B(Ev;(z) *E) = Ev;(z) * B(E) follows 
for any E E H(AP). Thus (74) follows from (59). Also we note that (74) 
is a finite sum by Proposition 4.14 (iii). Hence applying e given in (24) 
and using the same argument as in Theorem 2.24, we obtain 

Leu _ 
n,/3-

(75) 

!2:I, v;EC(Af12 ), r is a connected, simply connected oriented 

Vt +··+vz=v graph with vertex {I, ... ,!}, ;,.....,~implies i<j 

U( {vi, ... , vz}, z, Z') 21~I II x( vi, vi) II N~~.f3i L~~. 13JCJ), 
!-7~ in r i#e 

where VI, ... , vz satisfY (60) and we have used the notation of (60). By 
Riemann-Roch theorem, we have x( Vi, Vj) = 0 fori, j i- e, x( Vi, Ve) = ni 
and x(ve, vi) = -ni. Hence a term in the sum (75) is non-zero only if 
the oriented graph r is of the following form, 

1• •e + 1 

~/ 
--~•e--~ 

/~ 
e -le •l. 
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Hence applying Proposition 4.14 (ii), we obtain the formula (73). 
Q.E.D. 

4.4. Relationship between L~~f3 and P;:_fi 
We next establish a relationship between L~~f3 and P;:_fi. Let us take 

N(/3) E Z as in (49). We choose k < 0 so that 

(76) k < -~(n- N(/3')), k < -~J.Ln,f3' for any /3' E C~f3(X). 
In this particular choice of k, we have the following formula. 

Proposition 4.16. If k satisfies (76), then (73) implies the follow-
in g. 

Leu _ 
n,(3-

!2:1, 1~e~l, O~t~e-1, O~s~l-e, (3;EC(X) for iofe, f3eEC(X), n;EZ, 
O=mo<m1 <···<m,=e-1, (31 +···+f3z=(3, n1 +···+nz=n, J.L;=n;jw(3; 
e=m~<m~ < .. ·<m:=l satisfy 0<J.L1=···=J.Lrn1 <J.Lrn1 +1= ... , 

O<J.Lz=···=J.L=~-1 +1 <J.Lrn~-1 =· .. . 

(77) (-~)l-1ITt 1 ITs 1 ITn·Neu peu . 
2 (m·- m·_ )! (m~- m' )! ' n;,(3; ne,f3e 

i=1 ' ' 1 i=1 ' •-1 ii=e 

Proof. First note that all the ni in the formula (73) are positive 
except i = e. Thus we have ne :::; n, and hence 

k < -J.Ln,(3e/2:::; -J.Lne,f3e/2. 

Therefore in the formula (73), we have 

Leu (0') _ peu 
ne ,f3e - ne ,f3e' 

by Remark 4.2. Thus we may assume ne 2': N(f3e) in the formula (73). 
Then the condition /1i :::; -2k in (73) is automatically satisfied, since 

0 < J.Li :::; ni :::; n-ne :::; n- N(f3e) < -2k, 

by our choice of k. Hence we can eliminate the condition /1i :::; -2k in 
(73), and obtain the formula, 

Leu _ 
n,(3-

(78) 

!2:1, 1~e~l, (3;EC(X) for ioj=e, f3eEC(X), n;EZ, 1~m~l, surjective 
f31+ .. +f3z=(3, n1+ .. ·+nz=n, J.L;=n;j(3;w satisfy </J: {1, ... ,l}--->{1, ... ,m}, 

0<J.L1~J.L2~ .. ·~J.Le-1, O<J.Lz~J.Ll-l~ .. ·~J.Le+l i~j implies ,P(i)~,P(j), 
and satisfies (69) 

( 
1)!-1 m (-1)</J(e)-e 

__ n·Neu peu . 
2 IT I1/J-1(b)l! IT 2 n;,(3; ne,f3e 

b=1 •i=e 



Generating functions 429 

We rearrange the sum (78) by first choosing partitions 0 = m 0 < m 1 < 
· · · < mz = e- 1, e = m~ < m~ < · · · < m~ = l and then choosing 
/3i, ni so that 0 < J-l1 = · · · = J-lm 1 < J-lm 1 +1 = · · · and 0 < J-ll = · · · = 
J-lm~_ 1 +1 < J-lm~_ 1 = · · · are satisfied. Noting that '1/J satisfies (69), we 
obtain 

Leu _ 
n,/3-

(79) 

(80) 

( 1)!-1 t 

-2 II 
i=1 

m ( -1)li-m 

II l'l/J-1(b)l! 
li=mi-mi-1, l:=;m::=;li, b=l 

surjective 1/J: {1, ... ,li}-+{1, ... ,m}, 
i<>::;j implies 1/J(i)<>::;,P(j) 

s 

II 1 IIn·Neu peu . 
(m' - m~ ) ! 2 ni ,f3i ne ,f3e 

i=1 2 2-1 i#e 

Then (77) follows from Lemma 4.17 below. 

Lemma 4.17. For a fixed l, we have 

m ( -1)1-m 

. . 2:: II 1'1jJ-1(b)l! 
1<>::;m<>::;l, surJective 1/J: {1, ... ,!}->{1, ... ,m}, b=1 

i<>::;j implies 1/J(i)<>::;,P(j) 

1 
[!• 

Q.E.D. 

Proof. The proof is elementary, and this is a special case of [14, 
Proposition 4.9]. Q.E.D. 

4.5. Proof of Theorem 4. 7 

We finally give a proof of Theorem 4. 7. 

Proof. For a fixed datal ;::: 1, 1 :::; e :::; l, f3i E C(X) (i =J e) and 
f3e E C(X), we set 

(81) 

nEZ O<>::;t<>::;e-1, O<>::;s<>::;l-e, 
0=mo<m1 < .. ·<mt=e-1, 
e=m~<m~ <···<m~=l. 

niEZ, nt+···+nl=n, 
1-'i =ni / w f3i satisfy 

0<1-'1 = .. ·=1-'rrq <!-'m 1 +1 =" · , 
0<!-'z=·"=i-'m~_ 1 +1 <1-'m~_ 1 = .. · · 

t s 

II 1 II 1 II ·Neu peu n. 
(m·- m·_ )! (m~- m' )! n 2 ni,f3i ne,f3eq 

i=1 2 2 1 i=1 2 2-1 i#e 
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Let us fix f3 E C(X). By the formula (77), we have 

L - ~ L Fe (f31' .. · , f3e, .. · , f31) 
( )

1-1 

12:1,1~e~1 2 (3;EC(X) for i#e, 
f3eEC(X), 

(3, + .. +f3z=(3 

12:1,1~e~1 "': h ___,C(X)'-~'<2: h---;C(X), .>,1 : {1, ... ,e-1}~h, 
. f3eEC(X), . .>,2 : { e+1, ... ,1}~J2 

I:iEll ~'<1(2)+2::;EJ2 t<2{2)+f3e=f3 

1 ( 1)1-1 

(e- 1)!(l- e)! 2 
(82) 

Here h and h are finite sets with lhl = e- 1, lhl = l- e. Let 
us fix data l ~ 1, 1 ~ e ~ l, 11:1 : h -+ C(X), 11:2 : h -+ C(X) and 
f3e E C(X), and consider the last sum of (82). If we also fix bijections 
>-i : { 1, ... , e - 1} -+ h and ,\~ : { e + 1, ... , l} -+ Iz, then the choices 
of -\1 , -\2 in (82) correspond to the elements of the symmetric groups 
"( E 6e-1, "(1 E 61-e respectively. Here an element "(1 E 61-e is regarded 
as a permutation on { e + 1, ... , l}. Let us rewrite f3i = 11: 1-\i (i) for 
1 ~ i ~ e -1 and f3i = 11:2 -\~(i) fore+ 1 ~ i ~ l. Then we have 

(83) 

L Fe(K:1A1(1), ... ,f3e, ... ,K:zAz(l)) 

>.,: {1, ... ,e-1}~h, 
>-2: {e+1, ... ,1}~h 

L Fe(f3"f(1)' · · · ,f3"f(e-1),f3e,f3'Y'(e+1)' · · · ,(3"1'(1)) 

'YE6e-1 
"! 1 E6z-e 

t 1 s 1 

L II (m·- m·_ )! II (m'- m' )! 0"~d' 
O~t~e-1, O~s~1-e, i=1 2 2 1 i=1 2 2-1 

O=mo<m, < .. ·<m,=e-1 
e=mb<m~· .. <m:=l, 

'YE6e-1 "! 1 E6z-e 
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where G7 ,y' is given by 

G'Y>Y' = L 
nEZ 

II N eu peu n 
ni n; ,{3; ne ,f3e q . 

n;EZ, n1 +···+nz=n, !J-;=n;jw{3; satisfy iope 
O<!J--y(1)=···=1J--y(m1)</1--y(m1 +1)=···, 

0</1--yl (!) =· ··=IJ--yl (m~-1 +1) <11--y' (m~-1) =··· 

Note that for 'Y~ E IJ~=l 6m;-m;_1 C 6e-1 and 'Y~ E IJ:=l 6m;-m:_1 C 

6!-e, we have 

Since we have 

t t 8 8 

II16m;-m;-11 =II (mi -mi-l)!, III6m;-m:_11 = II (m~- m~-1)!, 
i=l i=l i=l i=l 

(83) is written as 

(84) (83) = 
o::;t:s;e-1, 0:=;8::;!-e, "(E6e-1,"f(i)<'Y(i') if 

O=mo<7m1 <7 ···<mt~e-1, i,i' E[m; +l,m;+1] for some j 
e=mo<m1 <···<m.=l 7 1 E6z-e,"f'(i)<'Y'(i') if 

i,i'E[mj+l,m;'+d for some j 

On the other hand, if we are given ni E Z>o for i =/=- e and ne E Z with 
n1 + · · · + n1 = n, there are unique 'Y E (!;e-b 'Y' E (1;!-e and partitions 
0 = mo < m1 < · · · < mt = e - 1, e = m~ < mi < · · · < m~ = l 
such that 'Y(i) < 'Y(i') for i,i' E [mj + 1,mj+l], 'Y'(i) < 'Y(i') .for i,i' E 
[mj + 1, mj+1], and J..li = ndwf3i satisfy 

0 < f..l7(l) = · · · = f..l7(m1) < f..l7(m1 +1) = · · · ' 
0 < J..l'Y'(l) = · · · = J..l'Y'(m~_ 1 +1) < J..l'Y'(m~_ 1 ) = · "" · 

Therefore (84) is written as 

(85) 

Noting 

(84) = L L II niN~~{3;p::_~,f3eqn 
nEZ n1 +···+nz=n, iope 

n;EZ>o for iope 

=II Ng(q). PJ:(q). 
iope 

1 
L (e- 1)!(l- e)!2l-l 

l:=;e:=;! 

1 
(l- 1)!' 
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we obtain 

(86) (82) ="" "" ( -1)!-1 II Neu(q) . peu(q). 
L..J L..J (l- 1)! /3; /3! 
l:2:1 /3;EC(X) for i#l, f31EC(X) i#l 

/31 +·+/3t=/3 

The formula (86) implies (56) as desired. Q.E.D. 

4.6. Problem of incorporating virtual classes to Joyce's 
work 

Since invariants defined in Definition 4.1 are interpreted as Euler 
characteristics of moduli stacks, they are unlikely to be unchanged under 
deformations of X. In order to construct invariants which are unchanged 
under deformations, we need to construct virtual moduli cycles on the 
moduli spaces and integrate them. The resulting invariants are Euler 
characteristics of the moduli spaces (up to sign) if the moduli spaces are 
non-singular, but in general they differ from Euler characteristics. Thus 
in order to solve Conjecture 1.1, we have to construct invariants involving 
virtual classes and establish the formulas like (25). At this moment 
we are unable to overcome this problem. However if we could involve 
virtual classes with Joyce's theory, then Conjecture 1.1 for PT-theory 
follows along with the same argument in this paper. To state this, let us 
recall that the integrations of virtual classes are also realized as weighted 
sums of certain constructible functions introduced by Behrend [2]. He 
shows that, for any scheme M, there is a canonical constructible function 
XM: M --4 Z such that XM = ( -1)dimM if M is non-singular, and if M 
carries a symmetric perfect obstruction theory, we have 

uvir M = L ne(xAJ(n)). 
nEZ 

Under the situation in this section, we shall address the following ques
tion. 2 

Problem 4.18. Does there exist a map 

8': ®(AP) ----> g(AP), 

such that the following conditions hold? 

• For v E C(AP), suppose that 9Jr'(ZI'u) is written as [M/Gm] 
for a scheme M. Then 

e'(tv(zi'J) = L -ne([[x~;/(n)/Gm] "---+ Dbj(AP)]). 
nEZ 

2The formulation of Problem 4.18 is taught to the author by D. Joyce. 
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There should be sign change in (87), because XM = ( -l)dimM on a 
smooth variety M. We are unable to solve Problem 4.18 at this moment, 
but the techniques given in this paper yield the following. 

Theorem 4.19. Suppose that Problem 4.18 is true. Then Conjec
ture 1.1 is true for PT-theory. 

Proof. It is enough to work over the invariants, defined by 8'. As 
a modification of Definition 4.1, let us define Ln,[j(u), Nn,[j(u) to be 

Ln,[j(u) := 8'3Ev(zJt,.), where ch(v) = (-1,0,,6,n), 

Nn,[j(u) := G'Ev(zJt,.), where ch(v) = (0,0,,6,n). 

Then (87) yields a similar wall-crossing formula for Ln,[j(u), and 

L (u) = (-l)dimPic(X)-lp_ n,fj n,fj, 

for .u = kw + iw with k < -P,n,[j/2. Therefore the same proof as in 
Theorem 4. 7 works, and we have the similar expansion of the generat
ing series ZPT as in (56). Then Conjecture 1.1 for P[j(q) follows as a 
corollary. Q.E.D. 

At this moment, the author does not know how to solve Problem 4.18. 
It seems that the recent work of Kontsevich and Soibelman [16] gives a 
crucial idea of this problem. 
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