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BCOV ring and holomorphic anomaly equation 

Shinobu Hosono 

Abstract. 

We study certain differential rings over the moduli space of Calabi
Yau manifolds. In the case of an elliptic curve, we observe a close 
relation to the differential ring of quasi-modular forms due to Kaneko
Zagier[23]. 

§1. Introduction 

Since the pioneering work by Candelas, de la Ossa, Green and Parkes 
[8] in 1991, the theory of variation of Hodge structures has been one of 
the indispensable tools in the study of mirror symmetry of Calabi-Yau 
manifolds and its application to Gromov-Witten theory or enumerative 
geometry on Calabi-Yau manifolds. In particular, in the generalization 
due to Bershadsky, Cecotti, Ooguri and Vafa (BCOV) to higher genus 
Gromov-Witten potentials, the theory of variation of Hodge structures 
was combined with a framework which is called t-t* geometry [9]. t-t* 
geometry is a deformation theory of N = 2 supersymmetric quantum 
field theory in two dimensions, and there is a natural hermitian (real) 
structure in the space of observables. BCOV identifies this hermitian 
structure with the hermitian structure over the moduli space of Calabi
Yau manifolds given by the Weil-Petersson metric, and have proposed 
a profound recursive relation, called holomorphic anomaly equation, for 
higher genus Gromov-Witten potentials. 

In case of dimension one, i.e. for elliptic curves, the counting prob
lem and higher genus Gromov-Witten potentials have been determined 
by Dijkgraaf [11] in 1995, where it was remarked that BCOV theory 
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is closely related to the theory of elliptic quasi-modular forms. In the 
same proceedings volume as [11], Kaneko and Zagier have presented a 
general theory of quasi-modular forms introducing the (differential) ring 
of almost holomorphic modular forms. It is also found in [21] that, for 
an rational elliptic surface, the higher genus Gromov-Witten potentials 
are expressed by quasi-modular forms, extending the genus zero result 
by [25], [26]. 

For Calabi-Yau threefolds, it has been expected that the BCOV 
holomorphic anomaly equation is defined over a certain differential ring 
which generalizes the almost holomorphic elliptic modular forms due to 
Kaneko and Zagier. Recently, in physics literatures, Yamaguchi and Yau 
[32] and later Alim and Lange [2] have made important developments to
ward the structure of the expected differential ring of Calabi-Yau three
folds (see also [1], [15]). In this paper, to make a parallel argument to 
the theory due to Kaneko and Zagier, we introduce three different dif
ferential rings R~cov, R~cov and R'B~ov over the moduli space of 
Calabi-Yau threefolds. We call these differential rings simply as BCOV 
rings. Our BCOV rings R~cov and R'B060 v, should be regarded as a 
natural generalization of the ring of almost holomorphic modular forms 
and quasi-modular forms, respectively, and may be recognized in the 
original work [5] and more explicitly in recent physics literatures [32], 
[2], [1], [15]. We will introduce another form of the BCOV rhig R~cov 
and observe that, with this ring, our parallelism to Kaneko-Zagier the
ory becomes complete. 

Here we summarize briefly the theory of quasi-modular forms due 
to Kaneko and Zagier. Kaneko-Zagier [23] starts from a ring 

(1.1) 
1 

C[[T]] [-_] ' 
T-T 

with Tin the upper-half plane, and the standard modular group action, 
T f-4 ~;t~. Inside this large ring, one first considers the almost modular 

forms M(r)k of weight k as almost holomorphic functions F(T, 7) on the 
upper-half plane which transforms like a modular form of weight k; 

F(aT + b aT+ b) = ( d)kF( _) 
d ' d CT + T,T . CT+ cr+ 

Then the ring of the almost holomorphic modular forms M (r) 
EBk::::oM(r)k becomes a differential ring under D7 : M(r)k ~ M(r)k+2, 
with Dr := 2~i (2,. + r~-r)· Elements of M(r) have an expansion 

F = L:m>O Cm ( T) ( r~r) m, and by taking the first coefficient co ( T) we ob
tain holomorphic objects. Kaneko-Zagier shows that this map defines 
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a (differential) ring isomorphism <p : M(r) -+ M(r), where M(r) = 
C(E2(T), E4(T), EB(T)] is the ring of the quasi-modular forms with the 
differential 07 ::;:::: 2~i gr . Our observation here is that the ring ( 1.1) is 
defined by the Kahler geometry on the upper-half plane, and has a natu
ral generalization to the Weil-Petersson geometry on the moduli space of 
Calabi-Yau manifolds. Based on this, we will introduce our BCOV ring 
R~cov in terms of purely geometric data, and subsequently introduce 
other forms of the ring, R~cov, R'J/tov· We may schematically write 
our parallelism of the BCOV rings to the relevant rings in Kaneko-Zagier 
theory: 

C([T]][~] 
T-T 

R~cov -ohol 
1'-'BCOV 

As one see in the arrow R~cov -+ R~cov, instead of :J, the relations 
shown in this diagram are not exact correspondences but should be 
understood simply as parallelism. In fact, in our BCOV ring, following 
[5], we work with meromorphic sections of certain bundles instead of 
(almost) holomorphic forms in Kaneko-Zagier theory. Details will be 
described in the text, however it should be helpful to have this schematic 
diagram in mind. 

The main result of this paper is the introduction of the BCOV ring 
R~cov (Definition 3.3, Theorem 3.5) and making the parallelism to 
Kaneko-Zagier theory of quasi-modular forms complete. 

Construction of this paper is as follows. To make the paper self
contained, in Section 2, we review the geometry of the moduli space of 
Calabi-Yau manifold, which is called special Kahler geometry, and set 
up our notations. In Section 3, we define our BCOV rings. In subsec
tion (3-1), we introduce the first form of our BCOV (differential) ring 
R~cov based on the special Kahler geometry (Definition 3.1, Theorem 
3.5). We remark that the BCOV ring R~cov is infinitely generated, 
however there is a natural reduction R~~~v to a finitely generated 
ring. In (3-2), we consider modular (monodromy) property of the ring 
and we will define a differential ring R~cov as the ring of monodromy 
invariants. We, then, understand in our framework the process of 'fixing 
a holomorphic (meromorphic) ambiguities in the propagator functions' 
given in the Section 6.3 of (5]. In (3-3), BCOVrings R~cov and R~cov 
will be determined explicitly for an elliptic curve. There we provide a 
precise relation to the theory of quasi-modular forms (Propositions 3.11, 
3.12). In (3-4), the final form R~0bov is defined under a choice of a sym
plectic basis of the middle dimensional homology group. In Section 4, 
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toward an application to the holomorphic anomaly equation, we intro
duce the holomorphic anomaly equation in the form appeared in [32], [2]. 
Considering holomorphic anomaly equation in the reduced ring n~;e~v 
we note that the equation simplifies to a system of linear differential 
equation (Proposition 4.3) which is easy to handle. Conclusions and 
discussion are given in Section 5. There, the equivalence of the modular 
anomaly equation in [21] to BCOV holomorphic anomaly equation is 
also announced. 

Acknowledgments. The main result of this paper was announced in 
the workshop "Number Theory and Physics at the Crossroads", Sep. 21-
26, 2008 at Banff International Research Station. The author would like 
to thank the organizers for providing a wonderful research environment 
there. He also would like to thank M.-H. Saito for valuable discussions. 
This work is supported in part by Grant-in Aid Scientific Research (C 
18540014). 

§2. Special Kahler geometry on deformation spaces 

(2-1) Period integrals. Let us consider a family of Calabi-Yau 
3-folds Y = {Yx} over a small complex domain B with fibers Yx (x E B). 
As such a family, we will consider hypersurfaces or complete intersections 
in projective toric varieties, and assume that the local family eventually 
extends to a family over a toric variety M ( = P Sec( I;) with the secondary 
fan, see eg. [12]). We also assume that dimM = dimH2 •1 (Yx0 ) for a 
smooth Yxo· 

We fix a smooth Yx 0 (xo E B) as above. We denote the cohomology 
H 3 (Yx 0 , Z) by Hx 0 and write the symplectic form there by 

(2.1) (u,v):=Hl uUv. 
Y,o 

We choose a symplectic basis {ar,f3J}09,J::;r satisfying (a1,f]J) = 8/, 
(ar, CtJ) = (jj1, f)J) = 0, and we denote its dual homology basis by 
{A1,BJ}O:SJ,J:'O:r (r := dimH2•1 (Yx0 )). With respect to this basis, we 
write the symplectic form 

where E = Er+l represents the unit matrix of size (r + 1). We define 
the period domain 

V = {[w] E P(Hx0 ®C) I (w,w) = 0, (w,w) > 0}. 
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We choose a holomorphic three form of the fiber Yx (x E B) and denote 
it by Ox := O(Yx)· Then the period map Po : B---+ 1J is defined by 

Using path-dependent identification H3(Yx, Z) ~ H3(Yx0 , Z), we may 
globalize this period map on B to M by introducing a covering space 
M. We denote the resulting period map P : M ---+ 1) and assume 
r c Sp(2r + 2, Z) as the covering group. In this paper, we will write 
the period map P(x) = [w(x)] (or P0 (x) = [w(x)] (x E B)) with the 
notations for the period integrals, 

w(x) = LX1(x)a1 + LPJ(x)(3J 
I J 

We write by U the restriction to 1J of the tautological line bundle 
0( -1) over P(Hx0 ®C). We then set £ = P*U, i.e., the pullback to 
M. Complex conjugate of£ will be denoted by £. The sections of 
c_®n ® C®m will be often referred to as 'sections of weight ( n, m) '. The 
period integral w(x) may be considered as a section of£, and thus has 
weight (1, 0). 

(2-2) Prepotential. The symplectic form (2.1) naturally induces 
one form() on 1J by () := (dw, w). With this one form, (7J, ()) becomes a 
holomorphic contact manifold of dimension 2r + 1. Since locally, the pe
riod map Po : B ---+ 1J is an embedding [6], [30], [31] and also ()IPo(B) = 0 
due to Griffiths transversality, we know that the image of the period 
map Po is a Legendre submanifold. Combining this with Gauss cor
respondence in projective geometry, it is found in general [7] that the 
image of the period map Po can be recovered by the half of the period 
integrals X 1(x) = IAI nx. More concretely, it is known that: 

1) The map x ~ [X0 (x), .. · , Xr(x)] E pr is an local isomorphism 
B---+ pr, 

2) Integrating ()IPo(B) = 0 on B, we can write the other half of the 
period integrals, 

P ( ) = 8:F(X1 ) ( ) 
J X ax J J = 0, 1, · · · , r , 

in terms of a holomorphic function :F(X) called prepotential. 
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The function .F(X) is an holomorphic function of X 0 (x), · · ·, xr(x) and 
has the following homogeneous property 

This potential function exists locally for the small domain B. When 
globalizing the above local arguments toM, we naturally see that the 
monodromy group r plays a role for the definition of .F(X) (see below). 
The group action of r is referred to as duality transformation in physics 
(see e.g. [10] and references therein). Here we remark that the holomor
phic prepotential has a simple relation to the so-called Griffiths-Yukawa 
coupling of the family {Yx}xEB; 

where the l.h.s. is will be written by Cijk(x) hereafter. We denote Om;, 
the complex conjugate of Cijk ( x). 

(2-3) Period matrix (1). The most important object to intro
duce the BCOV anomaly equation is the classical period matrix. For 
simplicity, let us assume that our family {Yx} is given by a family 
of hypersurfaces in a (smooth) toric variety P~, with the parameter 
x = (x1 , x2 , · · · , xr) compactified to a toric variety M. We then con
sider A%, the set of rational q forms on P~ with a pole order less than 
k along Yx, and set the cohomology group 

Obviously we have H 1 C H 2 C · · ·, and, in fact, this stabilizes at H4 
(= Hs = · · ·) to the rational 4 forms H of poles along Yx. We note 
that, for 3-folds, the 'tubular' map T : H3(Yx, z)-=:::,H4(PE \ Yx, Z) is 
an isomorphism ([Gr, Proposition 3.5]), and is related to the Poincare 
residue map R: H ~ H 3(Yx, C) along Yx by 

1 w = 1 R(w) (wE Hk)· 
r('y) "' 

This residue map is an isomorphism, and more precisely, maps the fil
tration H1 c H2 c H3 c H4 to the Hodge filtration 

p3,0 c p3,1 c p3,2 c p3,3 . 
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The holomorphic three form !1., = R(w0 ) may then be given by a basis 
Woof H1 ~ F3 •0 . We take a basis wo,w1, · · · ,wr of H2, and define the 
period matrix 

as (r + 1, 2r + 2) matrix. The first row of this matrix coincides with the 
period integral w(x) = L:I X 1 (x)ai+ L:J PJ(x),BJ' and the monodromy 
group r acts on this period matrix from the right. 

The following properties of n are consequences of the filtration (2) 
and the Hodge-Riemann bilinear relations; 

(2.4) 
1) 
2) 

Here 2) means that when we decompose the ( r + 1) x ( r + 1) hermitian 
matrix AnQtfi into the block form compatible with the filtration 
1{1 C 1i2, then the first diagonal block (1 x 1 matrix) is positive definite 
and the whole (r+ 1) x (r+ 1) hermitian matrix has 1 positive eigenvalue 
and r negative eigenvalues. 

In our case of hypersurfaces (or complete intersections) in toric va
rieties P~, the basis wo for the rational differential 1{1 can be given ex
plicitly by the defining equation of Y., with the deformations x1, · · · , xr. 
Then our assumption hereafter for the family{Y.,}xEB is that the deriva
tives 

(2.5) 

span 1{2 together with the basis wo of?t1 for each small complex domain 
B c M. It will be useful to define a notation 8ow0 = wo. Now using 
fr('Y) OiWo = f-r R(oiwo) = Oi f-r R(wo), we can write the period matrix 
simply by 

where we define TJJ = ax~~xJ:F(X), and set 8oX1 = X 1 ,8oPJ = 
PJ. In the above formula, and also hereafter, the repeated indices are 
assumed to be summed over (Einstein's convention) unless otherwise 
mentioned. Using the property 1) in the previous paragraph (2-2), we 
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may assume 

for x such that X 0 (x) # 0. Hence, at least locally, we can normalize the 
period matrix in the form 

In this normalized form, the bilinear relation 1) in (2.4) is trivial since 
TJJ = TJr, while 2) entails 

which means the matrix Im T has one positive and r negative eigenval
ues. Here we note a similarity to the period matrix of genus g curves, 
however the mixed property of the eigenvalues is a new feature in higher 
dimensions. 

Finally, we note that the monodromy group r acts on the normalized 
period matrix from the right, and for ( g ~) E r we have 

(2.7) 

Since 8~ r 8~ J :F = TJ J, this describes the transformation property of 
the prepotential which is defined locally for the family over B. 

(2-4) Period matrix (2). Period matrix (2.6) has been defined 
entirely in the holomorphic category, since it is based on the Hodge 
filtration. One may modify the Hodge filtration to Hodge decomposition 
if we incorporate a hermitian structure coming from the Kahler geometry 
on M. Let us first note that over the small domain B, and hence 
on M except the degeneration loci, there exists a Kahler metric gi) = 

oiO:JK(x, x) (1 :::; i,}:::; r) with the Kahler potential 

K(x,x) = -log{(Ox,Ox)} = -log{(R(wo),R(wo))} 

This Kahler metric is called Weil-Petersson metric on M. The bases 
OoWo = wo; alwo, ... 'OrWo which are compatible with the filtration 7-{1 c 
7-{2 , or the Hodge filtration F 3'0 c F 3' 1 , may now be modified to 

where Ki = oiK(x, x). One should observe that, since (R(w0 ), R(Diwo)) 
= 0 holds for i = 1, · · · , r, these bases are compatible to the Hodge 
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decomposition H 3•0 (Yx)EBH2•1(Yx)· Correspondingly, the period matrix 
(2.6) may be modified to 

where we set DoX1 = X 1 , DoPJ := PJ. Since we have det(DiX1 )o::;i,I::;r 
= det(aiX1 )o::;i,I=:;r =1- 0, the normalized period integral has a similar 
form as before; 

The same monodromy group r acts from the right on the period 
matrix. In contrast to this, the left ·action shows a nice connection to 
the Kahler geometry on M. 

(2-5) Special Kahler geometry on M. After some algebra, we 
have for the Kahler metric 

With respect to this, we introduce the metric connections 

~ ~a ~ ~& ij = g i9{k ' u = g i9]k ' 

for the holomorphic tangent bundle T M and the anti-holomorphic tan
gent bundle T' M, respectively. The curvature tensor for these connec
tions are given by 

In addition to these, we have the Griffiths-Yukawa couplings Cijk(x) 
and C:;;p;,(x) on the moduli space M. These tensors define the so-called 
special K iihler geometry on M, which can be summarized into a property 
of the period matrix (2.8). 

Let us introduce the following (2r + 2) x (2r + 2) matrix 

(2.9) 

By definition of the period matrix, the row vectors represent the Hodge 
decomposition H 3•0 (Yx) EB H 2•1(Yx) EB H 1•2 (Yx) EB H 0 •3 (Yx) in terms of 
the bases 

(2.10) 
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By simply writing (2.9), we implicitly understand the row vectors are 
ordered according to the Hodge decomposition above. With these ex
plicit bases in mind, we introduce the covariant derivatives acting on the 
column vectors 0 and 0; 

on 0 D~ = {[}., -, . 
on 0 &+K~-r~ 

't 2 1.* 

on 0 
on 0' 

where r;* and fi* represents the conventional form of the contraction 
via the metric connection. 

Theorem 2.1. The period matrix satisfies 

(2.11) 

with 

A= 

0 

0 (0 m 0 
m 0 
0 0 

n 

-8i 
0 
0 
0 

0 

Cfm 
0 
0 

n 

0 
0 

0 
0 
0 

-8~ • 

Proof. Let us consider, the three from R(Djwo) in the Hodge de
composition (2.10). Then DiR(Djwo) is a three form and may be ex
pressed in terms of the basis (2.10) as 

Now, using (R(Dnwo), R(Dmwo)) = -cK gnm and other orthogonal 
relations, it is easy to see c0 = Cm = do = 0 and 

-dme-K gkm = (R(Dkwo), DiR(Djwo)) 

= -(R(wo), DkDiDjR(wo)) = yC]_cijk , 

where Cijk is the Griffiths-Yukawa coupling (2.2) (R(w0 ) = Ox)· One 
can continue similar arguments for other bases of the Hodge decom
position (2.10). Integrating three forms over the cycles {AI, BJ }, we 
obtain the claimed linear relations for the row vectors of the period 
matrix. Q.E.D. 
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The connection matrix A;, ~ was first determined by Strominger 
in [28]. The existence of the first order differential operator is due to 
the fact that the Hodge decomposition is 'flat' over M, and we should 
have the compatibility relations for the first order system. Indeed one 
can see that 

are ensured by the existence of the prepotential (2.2), and another 
mixed-type compatibility condition imposes a rather strong constraint 
on the Kahler geometry [28], which is called special Kahler geometry 
(see, e.g., [10] and references therein). 

Theorem 2.2. The compatibility condition 

is equivalent to 

(2.12) 

In Section (3-1), we will derive the relation (2.12) directly evaluating 
the metric connection. The both equations (2.11) and (2.12) are often 
referred to as special Kahler geometry relations, and will play central 
roles in solving BCOV anomaly equation. 

{2-6) Notations. As we have summarized above, the special 
Kahler geometry relations, in the holomorphic local coordinate xi(i = 
1, · · · , r), on M arises from the flat property of the period matrix n 
and its complex conjugate. Since the row vectors of S1 correspond to the 
decomposition H 3 •0 (Yx) EB H 2•1 (Yx), it is convenient to introduce the 
(Greek letter) notation a = (0, i) and a = (0, I) for the indices of the 
row vectors and their complex conjugates, respectively. Then the period 
matrix may be written simply by 

n = (DaX1 DaPJ) = (DaX1 ) (E T[J) 0 

As remarked in subsection (2-4), (r + 1) x (r + 1) matrix (DaX1 ) is 
invertible. We set~,!:= DaX1 , ~J := DaX1 and define ~l and~/', 
respectively, by 

Note that the i-th row of S1 represents period integrals of the three 
form R(Diwo) E H 2•1 (Yx) for a symplectic basis {A1 , BJ }. Then we can 
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see the Weil-Petersson metric in the following (r+ 1) x (r+ 1) hermitian 
matrix, 

( 9oo 0) = -eK(x,x)J=inQifi (9oo = -1). 
0 9i] 

Equivalently one can write this matrix relation by 

Ya/3 = J=ieK(x,x) ~: (r- f)u (,j 
For the tensor analysis in later sections, we introduce a "metric" by 

Then we have Ya/3 = ~c! gu(j, ga/3 = ~lg1 J (,j. With these metrics we 
will raise and lower the indices I, J, · · · as well as the Greek indices. 

Now the special Kahler geometry relations in Theorem2.1 may be 
expressed by 

It will be useful to note that the following relation holds by definition; 

(2.14) 

where smn is the propagator that will be introduced in the next section. 

§3. BCOV rings 

(3-1) BCOV ring R~cov· Based on the special Kahler geometry 
relations summarized in the previous section, we introduce a differential 
ring over the meromorphic sections of a certain vector bundle over M. 
Let us first introduce the so-called propagators; 

Definition 3.1. 

Obviously Si5!./3 and sa!3 are symmetric with respect to the indices. 
Note that, since the factor e2K has weight ( -2, -2), both sa/3 and si5!./3 
have weight ( -2, 0) with respect to the line bundle .C (see Section (2-1)). 



BCOV ring and holomorphic anomaly equation 91 

Following [5], we will often use the notation S, Si, Sii, which are related 
to saf3 by 

(so~ s~~) = ( 2s. 
S0' S'J -s· 

If we use the property ofT and the prepotential introduced in (2-2), we 
have 

Proposition 3.2. The following relations hold, 

--- 2K-3) D~D~D-kS = e C~~k-
• J •J 

These are equivalent to 1) qS = !TijSi, 2) qSi = !TiiSii and 3) qSik = 
e2K Crp;,gil gkk. 

Proof. Acting D;.(= q) on S = ~e2K(T- 'f)IJX1.XJ, we obtain 

2K - -I- J qS = e (T- T)IJD;.X X = Soi , 

where we use c~~KTIJ).XJ = .XJ(a8xJTIK) = 0. By similar calculations 
with the special Kahler geometry relation (2.13), the properties 2) and 
3) above follow. Q.E.D. 

Skl, Sk, S are called propagators in physics literatures, and contain 
the anti-holomorphic prepotential F(X) in their definitions. On the 
other hand, the holomorphic prepotential :F(X) defines the so-called 
n-point functions on a Riemann sphere by 

where the covariant derivative Di = 8i + 28iK(x, x)- q* acts on :F(X) 
by the standard contractions of the holomorphic indices (see (3.4) in 
general). By Kahler geometry, the holomorphic covariant derivatives 
commute with each other, so then-point functions are symmetric tensor, 
and in particular Cijk coincides with the Griffith-Yukawa coupling (2.2). 

Definition 3.3. As an symmetric algebra, we define 

where Ki = 8~, K(x, x), We call this symmetric algebra BCOV ring. 
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In general this BCOV ring is infinitely generated. However we will 
see in the next section that if we consider the corresponding ring for 
an elliptic curve, the ring is finitely generated. In case of Calabi-Yau 
threefolds, as it turns out later that this problem of finiteness is related 
to the explicit form of the holomorphic function hijkl(x) derived in (3.7) 
below. For convenience, we will often abbreviate the infinite series of 
the generators Cjkl, Dh Cjkl, · · · by {Cijk}· With this convention, the 
BCOV ring may be written simply by 

(3.1) 

The propagator saf3 and Ci1 i2 ···in have respective weights (-2,0) 
and (2, 0), and also Ki has weight (0, 0). Therefore the symmetric alge
bra is graded and defined in the set of global sections of 

00 

(3.2) E9 E9 (1r*(T* M)) 0 m 0 (1r*(T M)) 0n 0 .Ck , 
m,n2:0 k=-oo 

where 1r : M -+ M is the covering map and .C -+ M is the line bundle 
introduced in (2-1). Precisely, Ki is a connection of the holomorphic line 
bundle .C and therefore this is not a one form. However we regard Ki as 
a one form taking a global trivialization of .Cover M. By the following 
lemma, we see how the BCOV ring R~cov depends on the sheets of 
the covering. 

Lemma 3.4. When we change the symplectic basis by 0 --t 0(§ ~), 
we have the corresponding change of the generators, 

(3.3) saf3 --t saf3 + f.t [C(D + rC)] IJ f.! . 

Proof. We keep our convention of the contraction by writing the 

indices of the symplectic matrix by (XI PJ) --t (XI PJ) ( ~f~ ~~~). Then 
we have 

and also, using ( g ~) Q t( g ~) = Q, we have 

(r- 7') -+ (D + rC)- 1 (r- 7') t(D + rC) 

After some algebra, the claimed transformation property follows directly 
from the definitions. Q.E.D. 
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We note that the metric connection rfi and Ki define the covariant 
derivative Di on the sections (3.2). Thus, for example, for the section 

"l 
~ 1 of weight (k, 0) we have 

(3.4) D v;Jl = __Q_v;Jl_rm.v:Jl+rJ v;ml+rl v;Jm+kK v;Jl 
n 't axn 't nt m nm 'l. nm 't n 't 

Theorem 3.5. The BCOV ring R~cov is a graded, differential, 
symmetric algebra with the (commuting) differentials Di (i = 1, · · · , r). 

This theorem is a direct consequence of the following proposition. 

Proposition 3.6. The covariant derivative acts on the generators 
ofR~cov by 

(3.5) 

DiSk! = 8f S 1 + o!Sk - Cimnsmk snl , 

DiSk = -CimnSm snk + 28f S , 

DiS = -~Cimnsmsn, 
DiKj = - KiKj + Cijmsmn Kn - CijmSm . 

Proof. The first three equations follow from the definitions and the 
special Kahler geometry relations (2.12), (2.13). There, it is useful to 
write Saf3 = JreKgiJf.tf.J and use the following relations, 

Di9LM = ...r-1eKciklf.tf.k , Dif.l = -Cimnsnaf.r- f.lot 

For the fourth relation, we formulate the following two lemmas and use 
the relation (3.6) below. Q.E.D. 

Lemma 3.7. 

oi<f./ = 0, 8T<f.l = -oi<,(Kmf.r) . 

Proof. The matrix (f.t) is the inverse of (f.cf) by definition. From 
this, we have Of<f.t = -f./ Of<f./ f.'J. Now using Of<f./ = Of<Df3XJ = 

gk13 f,0J, we obtain 

{)-c 0/. - (: f3g_ (: J (:01. - g- (: {3 J: 0/. 
k'>I - ·-<,J k/3'>0 <,J - - k/3'>1 uo · 

The first claimed relation is the case when a = i. The second relation 
follows from the case a = 0 together with the first relation. Q.E.D. 
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Lemma 3.8. Define fi1 = ( 8lJjX I) ~l, then fi1 is holomorphic 
and we have 

where hij = -(8i8jXI)hi With a holomorphic function hi= hi(x). 

Proof. When differentiating twice the defining relation of the Kahler 
potential e-'K =(Ox, fix)= .J=Ixi(::r- T)IJ.XJ, we have 

where we set TI J K = a~K TI J. On the other hand, by definition of sm' 
we have 

where we use X M TI J M = 0 which follows from the homogeneity property 
of :F(X). Using 9IJ = ~l'9a.i3"(~ and "(g = .XJ, we also have 

where, due to Lemma 3.7, we may use ~l = -~ImKm +hi with some 
holomorphic function hI. Substituting all these relations into the first 
equation, we obtain the claimed formula. The holomorphicity of fi1 = 

(8i8jXI)~l follows from the same Lemma 3.7. Q.E.D. 

From the above lemma, and omSk = 9mmSmk, we obtain 

(3.6) 

which derives the special Kahler relation (2.12) directly from the defini
tions. 

The connection (3.6) contains non-geometric object JMx), however 
this does not appear in the formulas (3.5) since the first three equations 
follows directly from the special Kahler relations as we have already 
seen. For the the fourth equation, one observes that fi1(x) cancels in 
the evaluation of DiKj. 
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Remark 3.9. The BCOV ring R~cov is not finitely generated in 
general, however it is very 'close' to this property. This can be observed 
in the following formula 

DtCijk = L Cabmsmncncd + TJJKLe/e/ekKe/ 
{a,b}U{c,d}=I 

(3.7) L Cabmsmncncd- L KaCI\{a} + hijkl 
{a,b}U{c,d}=I aEI 

where we set I= {i,j,k,l} and hijkl := TJJKL8iX18iXJtAXK81XL 
with TJJKL = c/xt 8'{J 8~R 8'{LF(X). Eq.(3.7) follows from Cijk = 
TJJKe/e/ekK with the relations (2.14) and DkTJJK = (8k -Kk)TIJK = 
TJJKLe/. If the holomorphic term hijkl were zero, then the BCOV 
ring R~cov reduces to a finitely generated ring. This finite generating 
property can be realized in general by considering the following quotient: 
First, let us note that under the relation (3.7), the BCOV ring may be 
written as 

0 . .. 
nBcov = Q[B, s<, 8'3 , Ki, cijk, {hijkt}] , 

where { hijkl} means the infinite sequence of the covariant derivations 
of hijkl· Considering a differential ideal Q[{hijkt}], we may reduce the 
ring R~cov to the quotient 

(3.8) 

We call this quotient ring reduced BCOV ring. 

(3-2) BCOV ring R~cov· As we have remarked in the previous 
section, the BCOV ring is defined in the algebra of global (meromorphic) 
sections of the bundle (3.2) over the covering space M. Since there is a 
natural action of the covering group r C Sp(2r + 2, Z) on the sections, 
one may consider the invariants under this group action. Elements in 
R~COV• in general, are not invariant under this group action, however 
they can be 'lifted' to definer-invariants by specifying a 'lift' for each 
propagator (see below). We then define R~cov the minimal differential 
ring of r-invariants which contains those r-invariants from R~cov· We 
may call R~cov as a r-completion of the BCOV ring R~cov· 

Let us first note that the generators Ki(x,x) and Cijk(x) are invari
ant under the group r by their definitions. Since the generators sa.{j are 
transformed according to (3.3), we modify them tor-invariants §a.{j. 

Let us assume §kt = skt + t:.Sk1 for a r-invariant lift. Then it may 
be determined simply by writing the equation (3.6) as 

k k k . - mk -k -k k mk 
(3.9) rii = 1\ Ki + 8i Kj- CijmB + fii , (fii = fii + Cijml:.S ) , 
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and requiring f-invariance of ji~· We will show, in the example of an 
elliptic curve, the simplest way to impose the invariance is to require 
j~ to be a rational function (section) on M. In the original paper by 
BCOV, this process is referred to as 'fixing holomorphic (meromorphic) 
ambiguity'(Section 6.3 of [5]). 

Once §kl is determined in this way, the form of other f-invariant 
propagators §k, S may be restricted, by requiring the relations HkS1 = 
9M,§kl and 9ki<§k = o'kS given in Proposition 3.2, to 

where 11Sk and 118 are suitable meromorphic sections. The form of !1Sk 
can also be determined, in a similar way to (3.9), from 

by requiring that hij is a rational function (section) on M. 

Proposition 3.10. For the r -invariant propagators, we have 

D·Skl = ok§l + ol§k- c- §mk§nl + t;kl 
1. 2 2 1.mn z ' 

D"S-k C s-m 8-nk 2 s:k 8- ckmK ck 
o = - imn + Ui + 0i m + 0i ' 

(3.12) 
D S 1 C s-ms-n 1 ckl em 

i = -2 imn + 20i KkKl +0i Km +Ei, 

DiKj = -KiKj + Cijm§mnKn- Cijm§m + CijmKm, 

where we set ,.,m = 118m and 

t;kl = vf I1Skl _ 0k1181 _ 01118k + c- 118mk118nl 
1. 2 1, 2 1,mn , 

t;k = vf 11Sk- 2oki1S + G- 11Sn!1Sn1 £ vf 118 + 1 C 11Sml1sn 
2 2 2 2mn ' i = i 2 imn · 

We also define D{ := Oi + ft'., a (covariant) derivative with fi~(x) in 
(3.6} being treated as a connection. 

Proof. Use the definitions §kl, §k, S, ffj =of Kj+ojKi-Cijmsmk 

+ fi~ and Proposition 3.6 for the evaluations. After some algebra, the 
claimed formulas follow. Q.E.D. 

If we define 

'kl kl 'k k k ' _ 1 kl m (3 0 13) c" = c" , c c mK + c c c K K + c K + c 0 o 0 o 0 i = 0 i m 0i ' 0i- 20i k l 0i m 0i 
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then these are sections of weight ( -2, 0) which are invariant under the 
action r. Considering all covariant derivatives of these tensors, and also 
/'i,m, we have the minimal ring of r-invariants 

R~cov = Q[§kl, §k, S, Ki, {Cijk}, {£ik1}, {£ik}, {£i}, {/'i,m}] , 

where the bracket notation is used for the infinite set of the generators 
as before. We should note that the explicit forms of the new generators 
£ikl, £ik, £i and /'i,m depend on the 'lifts' of the propagators §ij, §k, S. 
Hence the ring R~cov also depends on the lifts. 

In case of elliptic curves, we will observe that the ring R~cov has a 
close similarity to the ring of almost holomorphic modular forms studied 
in Kaneko-Zagier [23]. 

(3-3) Example (elliptic curve). We have introduced the BCOV 
ring for Calabi-Yau threefolds, however if we replace the special Kahler 
geometry by the geometry of upper-half plane, it naturally reduces to 
the rather standard theory of (almost holomorphic) modular forms[23]. 

Let us consider a family of elliptic curves over M and its period 
integrals following (2-1). We consider a family of hypersurfaces Ya: 

W(a) := ao + a1U + a2V + a3U3
1V 2 = 0 C (C*) 2 

in the torus (C*) 2 • Compactifying (C*) 2 to a suitable toric variety PE, 
we obtain our family of elliptic curves. The moduli space M arises as 
the parameter space of the defining equation. Because of the natural 
torus actions on the parameters, it is easy to see that M is given by P 1 , 

and we have 

!1 =R(~dUdV) 
x W(a) U V 

3 2 
( _ a1 a2.a3 pl) 
X- 6 E . 

ao 

Taking a symplectic basis A, B with Q = ( __91 A), we define the period 
integral w = ( w0 ( x), w1 ( x)). The period integrals satisfy the Picard
Fuchs differential equation of the form, 

where Ox = x Jx. The 'Griffiths-Yukawa coupling' in this case is simply 
defined by 

r d 1 
Cx :=- Jv., nx u dxnx = (1- 432x)x . 

Let us fix (uniquely) the A cycle by the condition that the corresponding 
period integral wo(x) is regular at x = 0 and normalized by wo(x) = 
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1 + · · · . Then we take a dual cycle B to A. With this choice of the 
basis, the period matrix takes the form 0 = ( Wo (X) W1 (X)) = Wo (X) ( 1 t) 
with t rv -21 . logx + ... near X= 0. We invert the relation t = w,((x)) as 

~ ~X 

x = x(t). Then it is standard to obtain the following identities (see eg. 
[24]); 

(3.14) - 1---1-Cx dx = 1 , wo(x(t))4 = E4(t) , Cx(x(t)) = j(t) , 
27riwo(x) 2 dt 

where E 4(t) is the Eisenstein series, j(t) is the normalized j-function 
with their Fourier expansion given by q = e21rit (and 2!-i ~ = q jq). We 
also have the following useful relation 

(3.15) wo(x(t))l2 = (t?4 

Cx(x(t)) TJ ' 

in terms of the Dedekind ry-function. Note that the first identity of 
(3.14) simply represents the fact that there is no quantum correction to 
the Griffiths-Yukawa coupling. 

(3-3.a) The BCOV ring R~cov = Q[S, Kx, Cx]· For an elliptic 
curve, Definition 3.1 of S = 5°0 should be read as 

1 ~ ~ -- 1 
S = -.goo goo e2K ( t -l)~o~o = -. e2K ( t - l)wowo . 

2m 2m 

with the period matrix n = w0 ( 1 t ). Here, for elliptic curves, we intro
duce the factor 2!-i in the definition of S. For the Kahler potential, we 
have e-K = i OQ tfl. Then it is straightforward to obtain 

1 1 1 dt 1 d 
S = ----- , Kx = ----- -log(wo(x)) 

27ri w5 t - t dx t - t dx 

Proposition 3.11. The BCOV ring R~cov is finitely generated 
by S, Kx and Cx. The covariant differential Dx acts on the generators 
by 

(3.16) 

Proof. It is sufficient to derive the differentials of generators (3.16). 
The metric connection r~x may be determined from the relation; 

(3.17) 
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where we use the Picard-Fuchs equation 

d2 _ c~ a _ c _ -
-w- --w-60 xW=O 
dx2 Cx dx 
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to rewrite i~ 0 Q tfl = i ;;2 wQtw as above. After differentiating (3.17) 

by ax, we have r~x = 2Kx + g:.. Now using (3.17) again, we have 

Similarly, noting the generators S, Cx have their weights ( -2, 0) and 
(2, 0), respectively, and using the relations (3.14), it is straightforward 
to obtain the claimed relations. Q.E.D. 

It will be useful to have the following expression for the connection 
C' 

r~x = 2Kx + "§:; 

(3.18) rx = 2 dt _1_ + !!:_ log (_s_) = 2 dt _1_ + dx !!:_ dt 
xx dx f- t dx w0 (x) 2 dx f- t dt dx dx ' 

where we use the identify ddt = -21 . §. in (3.14). In particular, writing 
x 1n w0 

the first identity of (3.18) as 

r~x = 2CxS + :x log (wo7;)2 ) = 2CxS + f:x , 

one may regard this as the corresponding relation to (3.6). 

(3-3.b) The BCOV ring R~cov· In our example, the covering 
group r is given by the (genus one) modular subgroup ( ( ! 1 ~), ( 6 i ) ) C 
SL(2, Z). Sis not invariant under the r action, however it is clear from 
the form t:t that s can be lifted to a r-invariant by 

- 1 {1 1 1 } St-tS= -- ----- -E2 t w5(x) 27rit-t 12 () 

in terms of the Eisenstein series E2(t). S is invariant since E2(t) -
2!,i /!t = E2(t) is the almost holomorphic (elliptic) modular form of 

weight 2 and w0 (x) 2 = JE4 (t) for the denominator. 
In our general formulation based on (3.9), the invariance arises in a 

rather weak form as follows: We first start with the 'shift'; 
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where S = 8 + 118. Accordingly, the formula Dx8 changes to 

DxS = -CxSS +Ex (Ex := 8xl18 + Cxl18118 + 2 :~ 118) 

Proposition 3.12. f;x is a rational function of x if and only if we 
set 

1 w' 
118 = __ _Q + r(x) , 

Cxwo 

with some rational function r( x). In terms of r( x), Ex is given by r' ( x) + 
Cxr2 (x) - 60. When Ex = )..Cx with some constant ).. E Q, then the 
BCOV ring R~cov is finitely generated by S, Kx, Cx with the following 
differentials, 

DxS = -CxSS + )..Cx, DxKx = -KxKx- 60Cx, DxCx = 0 . 

Proof. We evaluate f;x as 

-x f) (Cx) C 8 W~ C~ C 8 fxx = X log 2 - 2 xl1 = -2- + -0 - 2 xl1 ) 
Wo Wo x 

from which the first claim is clear. For the evaluation of Ex, we use 
the Picard-Fuchs equation satisfied the period integral w0 (x). The 
third claim is clear since the differentials closes among the generators. 

Q.E.D. 

The differential equation Ex = ACx for r(x) may be solved by hy
pergeometric series. From the solution, one may observe that there are 
infinitely many).. for which r(x) becomes rational. The simplest result 
is given by 

- 1 E2 
8=---

12 w5 ' 
where we evaluate 8 + 118 = 8 +A cL Ox log~~ = 8- {2 Jx Ox log'l}(t) 12 

for S. Similarly, for ).. = 1214 , 1~4 , i~!, for example, we obtain r( x) 
5 ~ 1 c~ 1 1 5 ~ 1 1 d 

12 c;' 12 c~ - 2 1-864x' 12 c; - 2 1-864x an 

S -1 { * 4 E6 } -1 { * E~ } -1 { * E 6 E~ } 
= 12w5 E 2 + E4 ' 12w5 E 2 + 6 E6 ' 12w5 E 2 + 4 E4 + 6 E6 ' 

respectively. 
We note that, when the ring is finitely generated, the BCOV ring 

is very close to the ring of almost holomorphic modular forms studied 
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in Kaneko-Zagier [23]. For comparison, it might be useful to write our 
generators (for the case >.. = 1!4 ) in terms of the elliptic modular forms; 

- -1 E2(t) . -1 j(t) { * E6(t)} 
(3.19) S = 12 wo(x)2 ' Cx = J(t)' Kx = 12 wo(x)2 E2 (t)- E4(t) . 

One should note, however, that the weight assignment in the BCOV ring 
is different from that of almost holomorphic modular forms. Also, in the 
BCOV ring, we have additional indices of the cotangents ( 1r* (T* M)) ®m. 

(3-4) BCOV ring R~~ov· For the applications to Gromov
Witten theory of Calabi-Yau manifolds, the most relevant form of the 
BCOV ring is the holomorphic limits of the invariants R~cov' which is 
often referred to as "f---+ oo" limit in physics literatures. For the above 
example of an elliptic curve, the meaning "f---+ oo" should be clear as the 
'limit' taking the constant term of Ln>O am ( t) C~t r 0 We need to for
mulate a precise meaning for Calabi-Yau threefolds. However the idea 
of the limit should be clear from the structure R~cov with the differ
entials (3.12). Namely, all the differentials are with respect to holomor
phic coordinate, and therefore "throwing away" the anti-holomorphic 
dependence, at the cost of r-invariance, should be compatible with the 
differentiations. 

To describe the holomorphic limit in more detail, let us introduce 
the so-called flat coordinate. We first fix a symplectic basis {A I, B J} 
and denote the corresponding period integrals (X I ( x), P J ( x)). By the 
property 1) in Section ( 2-2), the (half) period maps x E B ( C M) f----7 

[X I ( x)] E pr provides a local isomorphism. Due to this property we 
may introduce the so-called fiat coordinate (ta)a=l,-··r by the relation 

near X 0 (x) =/=- 0. In this flat coordinate we have for the Kahler potential 
e-K(x,x) = iX0(x)X0(x)e-K(t,t) with 

- _ oF oF 
e-K(t,t) = 2F(t)- 2F(t) + (ta- ta)([)ta + otJ' 

and F(t) = (X~)2F(X) = F(~~). Connections of the bundles in these 

two local coordinates (xi) and (ta) are related by 

0 ata k oxk tc ata otb oxk a otb 
Ki = -8ilogX (x) + ~Kta, ri1· = -;:;-rtatb~~ + --;:;--~~. 

ux' utc ux' uxJ uta ux' uxJ 

As we see in the formula e-K(t,t), holomorphic and anti-holomorphic 
dependences are not separated by a factor like f(t)g(f) (or f(t) + g(f) 
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in log /C). We assume that the 'constant terms' against to the anti
holomorphic dependences are selected simply by setting to zero those 
expressions written by ICta ( t, f) and r~:tb (and also their holomorphic 
derivatives). 

Definition 3.13. Choose a symplectic basis B := {A1 ,BJ}. Then 
we define the holomorphic limit of the elements in n~cov' with respect 
to B, by the following replacements of the connections: 

EJxk f) ata 
Ki- Ki := -EJilogX0 (x) , r~.- r~. ·= ---

•J •J • EJta EJxi axi 

As remarked above, the holomorphic limit commutes with the holo
morphic differentials Di, and hence we have the same differentials as 
(3.12). We denote the holomorphic limit of the generators §ii, Sk, S, 
respectively by sii, sk, S. Also by Di ( = ai ± kKi ± ft*), we represent 
the holomorphic limit of the differential Di. Accordingly, Ki should be 
assumed in the definitions (3.13) of £ik, Ei, although we use the same no
tation for these. Thus, taking the holomorphic limit of the r-invariant 
BCOV ring; n~cov' we will have holomorphic BCOV ring, 

The concrete form of the generators sii may be determined from the 
holomorphic limit of the relation (3.9); 

(3.20) 

Similarly, for sk, we can use (3.11), 

(3.21) 

These equations are used to determine the propagators in [5]. As noted 
there, when r ~ 2, the first relation (3.20) provides an overdetermined 
system for sii, and the form of ji~ should be restricted so that there 

exist solutions sii. Similarly, hij should be restricted so that the rela
tion (3.21) has a solution sk. If we find a set of solutions sij' sk' the 
first equation of (3.12) determines £f1, and the second relation of (3.12) 
determines Sup to t:t As argued in (5], the possible forms of rational 
functions (sections) !;,~, hij may be restricted, to some extent, by impos
ing regularity (or singularity) of Ki at certain degeneration loci of the 
family, see [5]. 

Example 1 (elliptic curve): When we take the symplectic basis B = 
{A, B} as in the previous section, the holomorphic limit of n~cov is 
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exactly the map taking the constant term of I: Cm ( t~t) m. From the 
example in the previous section, it is immediate to obtain (for A= 1!4 ) 

that 

1 E2 ( t) x ax a ax 
s = -12 wo(x)2 ' Kx =-Ox log(wo(x)) ' r XX= at OX at . 

As for the differentials, we have the same form as those in R~cov' i.e., 

Ox 
DxS = -OxSS + 144 , DxKx = -KxKx - 60 Ox , DxOx = 0 . 

These relations define the BCOV ring R~0tov = Q[S, Kx, Ox]· The form 
of the generators are given simply by E2(t) -> E 2 (t} in (3.19). 

Example 2 (mirror quintic Calabi-Yau threefold): The construc
tion of a symplectic basis B about the so-called large complex structure 
limit has been done in [8] (see also [17] and references therein for its 
combinatorial construction). We consider the holomorphic limit with 
respect to this basis. To fix the propagators gii, sk, we have to solve 
the equations (3.20) and (3.21) finding suitable choices for the ratio
nal functions f;x, hxx· In [5], it has been found that these unknowns 
are uniquely fixed by requiring expected properties for the higher genus 
Gromov-Witten potential, :F9 , which comes from the anomaly equation. 
Here we simply translate their results into our conventions. First, the 
propagators sxx, sx are determined by the choice f;x = - ~ ~, hij = i5 ;2 
in 

X c · XX 81 O c X 8 1 2 1 r XX = 2Kx - xxxS - 5;; ' xKx - KxKx = - xxxS - 5;; Kx + 25 x2 ' 

where Oxxx = x3(1~55x) and xis related to '1/J in [4], [5] by x = :b· Then 
the differentials are evaluated to be 

D gxx = 2 gx _ C gxxgxx + ~ 
X XXX 25 ) 

Dxsx 2S C gxgxx X K 1 
= - XXX + 25 X - 125 ' 

1 X X X 1 2 1 
DxS = -20xxxS S + 50 KxKx- 125Kx + 3125 ;; ' 

C XX c X 2 1 
DxKx = -KxKx + xxxS Kx- xxxS + 25 x2 ' 

f h• h d C'XX _ X C'X _ 1 C' _ 2 1 d X rom w 1c we rea c:,x - 25 , c.x - - 125 , c.x - 3125 ;; an K, 

225 -% -0 1 • With these, the BCOV ring is determined by 
X XXX 
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Example 3: The Calabi-Yau manifolds whose higher genus Gromov
Witten invariants are studied in [19] are not complete intersections in 
toric varieties, but has an interesting property: there exist two different 
large complex structure limits (cusps) in the deformation space [27]. By 
mirror symmetry, this phenomenon is related to non-birational Calabi
Yau manifolds whose derived categories of coherent sheaves are equiv
alent [27], [3], [22]. The cusps of the example in [27], [19] are located 
at x = 0 and z = ~ = 0. The BCOV ring R~06ov with respect to a 
symplectic basis B0 at x = 0 has a similar form as in Example 2 with 

£xx = -1 xp(x) £x = .2_ p(x) £ _ -1p(x)(x + 14) + q(x) 
x 14 (x- 3)2 ' x 14 (x- 3)2 ' x - 28 (x- 3)3 ' 

and K,x = ~ -0 1 , where p(x) = x4 - 716x3 + 422x2 + 452x -15, q(x) = 
X XXX 

12374x3 - 7166x2 - 7630x + 246. The BCOV ring R~0i:ov at the other 
cusp (z = 0) is defined with respect to a different symplectic basis B=. 
However we verify from the results in [19] that the ring is determined 
with £ZZ = £XX(dz) £Z =£X £ = £ (dx) and fl,z = fl,x(dz). From 

z x dx ' z x ' z x dz dx 
this, we observe that the BCOV ring R~cov is invariant under the 
symplectic transformation which connects B0 and B=. 

§4. BCOV holomorphic anomaly equation in R~';f~v 

(4-1) BCOV holomorphic anomaly equation. The original 
form of the BCOV anomaly equation has been formulated based on the 
special Kahler geometry over the moduli space M. Although mathemat
ical ground of this anomaly equation has not yet been established, up to 
now, this equation provides the only way to a systematic calculation of 
higher genus Gromov-Witten potential F9 (t) for Calabi-Yau complete 
intersections and some cases beyond them. About this equation, re
cently, several important progress has been made in physics literatures 
[32], [1], [16], [19], [2]. In particular, the polynomial property found by 
Yamaguchi and Yau [32] and also in [2] is the one which we followed for 
our definition of the BCOV ring R~cov· 

To summarize the recursive procedure given in [5], let us write the 
anomaly equation in the following form, which appeared in [32] and [2], 

(4.1) 

fJFC9 l 1 1 g-l 
--- = -D·D-F(g-1) +- "D-F(g-hJn.;:Ch) 
fJSii 2 " 1 2 L..... " 1 ' 

h=l 

- k fJF(g) - · fJF(g) fJF(g) 
0 = S 1 --- + S 1--- + --- (g ~ 2). 

fJSk aS 8Ki 
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Then the recursion proceeds as follows, with h1, hij, £ik in (3.9), (3.11), 
(3.12), respectively, being unknown: 

Step 1. We start with the fact that there exists a polynomial j 0 (x) and 
a choice h1 ( x) such that 

DiF(l) = ~Cimn§mn- (~ -1)Ki + h,i(x), (h,i := adogfo) 

gives the genus one Gromov-Witten potential F1 (t) of the mirror Calabi
Yau manifold X (with its Euler number x) when we take the holomorphic 
limit. We refer [4], [5] for details of F1 (t). The polynomial f 0 (x) is 
essentially given by the discriminant of the family. We define, using the 
bracket notation, 

nf/bov = R~cov[{h,i(x)}] , 

and regard DiF(l) (and h,i) as an element of weight zero in n~bov· 

Step 2. Suppose we have DiF(l) and R~'bov as above. Consider the 
anomaly equation (4.1) for g = 2 in the ring n~bov to find a (unique) 

solution F62 ) of weight ( -2, 0) under the condition F62 ) ls'j=Skd'=o = 0. 
Then the observation made in [5] is that there exist a rational section 
h ( x) of ( .C -l) 02 and suitable choices hij ( x) and £ik ( x) such that 

F(2) = F62l + h(x) , 

gives the Gromov-Witten potential F2 (t) under the holomorphic limit. (n (X) in step 1 and hij (X), £ik (X) in step 2 fix the lifting Saf3 to §af3, and 

thus R~cov·) We extend our BCOVring to R~'6ov= R~'bov[{h(x)}]. 

For g 2:: 3, this procedure continues genus by genus enlarging the 
BCOV ring by some rational section f 9 (x) of the line bundle £ 2 - 29 to 

R~~-+o~ = R~~ov[{f9 }]. When we define a notation 

nr,oo r nr,g 
BCOV = ~ BCOV ' 

the solutions F 9 are (scalar) elements in this ring of weight (2- 2g, 0). 

Remark 4.1. In general, the ring R~'llov is a large ring. However, 

we note that, since R~'llov consists ofr-invariants, working in an affine 
coordinate U C M of the toric variety M = P Sec(E) makes sense. Let 
us consider an affine coordinate of U and consider the field of rational 
functions Q(x) on U. We assume that the unknowns £ikl, £ik, Ei, I'Cm are 
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rational functions on U (as seen in Example 2 and 3 of (3-4)). Then, 
due to the rationality of cijk and Jg(x), we observe 

(4.2) 

The ring in the r.h.s. of the inclusion is the local form which we see the 
BCOV ring R~~ov in physics literatures, for example [32], [16], [19]. In 
reference [16], in particular, following the idea of [29], [13], an efficient 
way to impose certain boundary conditions to determine Jg(x) has been 
found. 

(4-2) BCOV anomaly equation in R~';;~v· As briefly sketched 
above, solving BCOV anomaly equation (4.1) contains a process finding 
a suitable fg(x) at each genus. This is the main problem to determine 
the Gromov-Witten potential Fg from the anomaly equation. Apart 
from this important problem, we can extract some algebraic ( combina
torial) structure of the equation by considering the same BCOV anomaly 
equation (4.1) in the reduced ring R~';;~v defined in (3.8). 

0 red · · k Let us first note that RJ3cov is generated by S"J, S , S, Ki and 
Cijk over Q in the quotient ring, with the 'reduced' differential Di (see 
Remark 3.9). Hereafter all manipulations should be understood in this 
quotient ring, although we abuse the same notations. The BCOV anom
aly equation has the same form as ( 4.1) with obvious replacements of 
the generators, e.g. §iJ by SiJ. Then the following property is due to 
[2]: 

Proposition 4.2. Define new generators by 

then the second equation of (4.1) implies simply ~~ = 0, namely 

:F(g) E Q[S'ij s' k s' C ] Q[SiJ Sk S K C ] ( 'DO, red ) , , , ijk C ' ' ' m, ijk = '""BCOV · 

Using the new generators above, the l.h.s of the first equation of 
(4.1) may be written as 

f):F(g) f):F(g) 1 f):F(g) 
-,--K--,- + -KiK·--,-
f)SiJ 1 8Si 2 1 88 
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while the r.h.s. of that equation has the following expansion, 

(4.3) 

Here one should note that by the above Proposition, the dependence 
on Ki comes only from the covariant derivatives. Now comparing each 
coefficient of 1, Ki, KiKj, we have, 

Proposition 4.3. The BCOV anomaly equation in n~;;tv is equiv
alent to the following first order system of linear differential equations; 

(4.4) a:F(g) _ Q(g-1) a:F(g) _ Q(g-1) a:r88~g) = Q(g-1) (g >_ 2). 
a§ij - ij , a§i -- i ' 

With the initial data Q~J), Q~1), Q(1) which follow from (4.3} with Di:F(1) 

= !Cijk§ik -(:2'i-- 1)Ki, this equation has a unique solution :F(g) E 
A,, A k A 

Q[S'1 , S , S, Cijk] of weight (2- 2g, 0). 

The uniqueness of the solution above follows from the weight con
sideration for the possible 'constants of integration' in the ring n~;;tv· 

For the application to Gromov-Witten potential F9 (t), the BCOV 
anomaly equation should be considered in the ring nii~ov' as we have 
summarized briefly in the previous section. However, the simple struc
ture (4.4) extracted above in n~;;tv is still valid for the BCOV anomaly 
equation in the ring nii~ov· In fact, the form (4.4) of the BCOV equa
tion has appeared fj.rst in [[19], Section (3-4)] to make the solutions :F(g) 
(F9 (t)). 

§5. Conclusions and discussions 

After a self-contained introduction to the special Kahler geometry, 
we have introduced the differential ring n~cov' which is geometric 
in nature. Combined with the modular property, we considered the 
r -invariant 'lifts' §ii, §k, S of the propagators. The 'lifting' process 
has been identified with that of fixing 'meromorphic ambiguities' in [5]. 
With a choice of r -invariant lifts of the propagators, we defined the ring 
R1cov' which depends on the choice of the lifts. After taking a sym
plectic basis B, we defined the holomorphic limit n~otov following [5]. 
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In case of an elliptic curve, we have shown a close relation of our BCOV 
rings to the theory of quasi-modular forms due to Kaneko-Zagier[23]. 

Considering a suitable quotient, we have reduced the ring R~cov 
to a finitely generated differential ring R~";;~v· In this reduced ring, we 
have extracted a simple algebraic structure of the BCOV holomorphic 
anomaly equation which still exists before the reduction. 

As briefly summarized in Section 4, our construction of the BCOV 
ring is an abstraction of the important progress made in [32] and [2] 
for the solutions of BCOV holomorphic anomaly equation. In 1999, in 
case of a rational elliptic surface ~K3, M.-H. Saito, A. Takahashi and 
the present author [21] found a similar recursion formula for Gromov
Witten potentials, 

1 n- 1 n(n+1) 
24 L L s(n- s)Zg';sZg";n-s + 24 Zg-1;n 

g' +9'' =g s=1 
g' ,g"?_O 

in terms of quasi-modular forms Zg;n=Pg;n '1(';.;, 2 n (Pg;n E Q[Ez, E4, E6]) 
1 

with the initial data Zo; 1 = Jc:~~ (this generalized a previous result in 
[25], [26] for g = 0 case). Later it has been conjectured that the above 
recursion relation (5.1) is equivalent to the BCOV holomorphic anomaly 
equation evaluating :F(g) for g ::; 3 [18]. Due to recent progress made in 
[32] and [2], we have now the BCOV anomaly equation of the form, 

f):F(g) 1 g-1 
-- = - ("""' D :F(g-h) D ;:Ch) + D D ;:C9 - 1l) a SYY 2 L.... y y y y ' 

h=1 

which is defined over a suitable BCOV ring Rfi'/;ov· In this form, we 
can prove the equivalence of the 'modular anomaly equation' (5.1) to the 
BCOV holomorphic anomaly equation. It is almost clear that the close 
relationship between the ring of the quasi-modular forms and our BCOV 
ring presented in Section 3 plays a central role for the equivalence. The 
detailed results will be reported elsewhere [20]. 
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