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Infinitesimal Bishop-Gromov condition 
for Alexandrov spaces 

Kazuhiro Kuwae and Takashi Shioya 

Abstract. 

We prove the infinitesimal version of Bishop-Gromov volume com
parison condition for Alexandrov spaces. 

§1. Introduction 

We first present the definition of the infinitesimal Bishop-Gromov 
volume comparison condition for Alexandrov spaces. 

For a real number "'' we set 

{
sin( for)/ fo 

s"'(r) := r 

sinh(yfjKir)/M 

if /'1, > 0, 

if /'1, = 0, 

if /'1, < 0. 

The functions"' is the solution of the Jacobi equation s~(r) + "'s"'(r) = 0 
with initial condition s"'(O) = 0, s~(O) = 1. 

Let M be an Alexandrov space and set rp(x) := d(p, x) for p, x EM, 
where dis the distance function. For p EM and 0 < t:::; 1, we define a 
subset Wp,t C M and a map <Pp,t : Wp,t ----+ M as follows. We first set 
<Pp,t(P) := p E Wp,t· A point x (# p) belongs to Wp,t if and only if there 
exists y E M such that x E py and rp(x) : rp(y) = t : 1, where py is a 
minimal geodesic from p to y. Since a geodesic does not branch on an 
Alexandrov space, for a given point x E Wp,t such a point y is unique 
and we set <Pp,t(x) := y. The triangle comparison condition implies the 
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local Lipschitz continuity of the map 1>p,t : Wp,t -* M. We call 1>p,t the 
radial expansion map. 

Let 11 be a positive Radon measure with full support in M, and 
n 2: 1 a real number. 

Infinitesimal Bishop-Gromov Condition BG(K:, n) for 11: 
For any p E M and t E ( 0, 1], we have 

for any x EM such that rp(x) < nj~ if K: > 0, where 1>p,h/L is the 
push-forward by 1>p,t of f.L· 

For an n-dimensional complete Riemannian manifold, the Riemann
ian volume measure satisfies BG(K:, n) if and only if the Ricci curvature 
satisfies Ric 2: (n- 1)K: (see Theorem 3.2 of [10] for the 'only if' part). 
We see some studies on similar (or same) conditions to BG(K:, n) in 
[2, 18, 6, 7, 15, 10, 21] etc. BG(K:, n) is sometimes called the Mea
sure Contraction Property and is weaker than the curvature-dimension 
(or lower n-Ricci curvature) condition, CD((n- 1)K:, n), introduced by 
Sturm [19, 20] and Lott-Villani [9] in terms of mass transportation. 
For a measure on an Alexandrov space, BG(K:, n) is equivalent to the 
((n- 1)K:, n)-MCP introduced by Ohta [10]. In our paper [5, 8], we 
prove a splitting theorem under BG(O, N). For a survey of geometric 
analysis on Alexandrov spaces, we refer to [17] 

The purpose of this paper is to prove the following 

Theorem 1.1. Let M be an n-dimensional Alexandrov space of 
curvature 2: K:. Then, the n-dimensional Hausdorff measure 1-{n on M 
satisfies the infinitesimal Bishop-Gromov condition BG(K:, n). 

Note that we claimed this theorem in Lemma 6.1 of [6], but the proof 
in [6] is insufficient. The theorem also completes the proof of Proposition 
2.8 of [10]. 

For the proof of the theorem, we have the delicate problem that the 
topological boundary of the domain Wp,t of the radial expansion 1>p,t is 
not necessarily of 1-ln-measure zero. In fact, we have an example of an 
Alexandrov space such that the cut-locus at a point is dense (see Remark 
2.2), in which case the boundary of Wp,t has positive 1-ln-measure. This 
never happens for Riemannian manifolds. To solve this problem, we 
need some delicate discussion using the approximate differential of 1>p,t· 

Acknowledgments. The authors would like to thank Professor Shin
ichi Ohta for his comments. 
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§2. Preliminaries 

2.1. Alexandrov spaces 

In this paper, we mean by an Alexandrov space a complete locally 
compact geodesic space of curvature bounded below locally and of finite 
Hausdorff dimension. We refer to [1, 12, 4] for the basics for the geometry 
and analysis on Alexandrov spaces. Let M be an Alexandrov space of 
Hausdorff dimension n. Then, n coincides with the covering dimension 
of M which is a nonnegative integer. Take any point p E M and fix 
it. Denote by 'I'.pM the space of directions at p, and by KpM the 
tangent cone at p. 'I'. PM is an ( n - 1 )-dimensional compact Alexandrov 
space of curvature 2: 1 and KpM ann-dimensional Alexandrov space of 
curvature 2: 0. 

Definition 2.1 (Singular Point, 6-Singular Point). A point p EM 
is called a singular point of M if 'I'.pM is not isometric to the unit 
sphere 3n-1 . For 6 > 0, we say that a point p E M is 6-singular if 
Hn-l ('I'.pM) ::; vol( 3n-1 ) - 6. Let us denote the set of singular points 
of M by 8M and the set of 6-singular points of M by 88. 

We have 8M = u8>0 88. Since the map M 3 p f---4 Hn('I'.pM) is lower 
semi-continuous, the set 88 of 6-singular points in M is a closed set. 

Lemma 2.1 ([14]). Let 'Y be a minimal geodesic joining two points 
p and q in M. Then, the space of directions, 'I'.xM, at all interior points 
of"(, x E 'Y \ {p, q}, are isometric to each other. In particular, any 
minimal geodesic joining two non-singular ( resp. non-6 -singular) points 
is contained in the set of non-singular ( resp. non-6-singular) points (for 
any6>0). 

The following shows the existence of differentiable and Riemannian 
structure on M. 

Theorem 2.1. For an n-dimensional Alexandrov space M, we have 
the following: 

(1) 

(2) 
(3) 

There exists a number 6n > 0 depending only on n such that 
M* := M \ 88n is a manifold ([1]) and has a natural coo 
differentiable structure ([4]). 
The Hausdorff dimension of 8M is::; n- 1 ([1, 12]). 
We have a unique continuous Riemannian metric g on M \ 
8 M c M* such that the distance function induced from g coin
cides with the original one of M ([12]). The tangent space at 
each point in M \ 8 M is isometrically identified with the tan
gent cone ([12]). The volume measure on M* induced from g 
coincides with then-dimensional Hausdorff measure Hn ([12]). 
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Remark 2.1. In [4] we construct a coo structure only on M \ 
B(Son, t:), where B(A, t:) denotes the €-neighborhood of A. However this 
is independent of E and extends to M*. The coo structure is a refinement 
of the structures of [12, 11, 13] and is compatible with the DC structure 
of [13]. 

Note that the metric g is defined only on M* \ S M and does not 
continuously extend to any other point of M. 

Definition 2.2 (Cut-locus). Let p EM be a point. We say that a 
point x E M is a cut point of p if no minimal geodesic from p contains 
x as an interior point. Here we agree th~t p is not a cut point of p. The 
set of cut points of p is called the cut-locus of p and denoted by Cutp. 

Note that Cutp is not necessarily a closed set. For the Wp,t defined 
in §1, it follows that Uo<t<l Wp,t =X\ Cutp. The cut-locus Cutp is a 
Borel subset and satisfies 1-ln(Cutp) = 0 (Proposition 3.1 of [12]). 

Remark 2.2. There is an example of a 2-dimensional Alexandrov 
space M such that SM is dense in M (see [12]). For such an example, 
Cutp for any p E M is also dense in M, 

2.2. Approximate differential 
Definition 2.3 (Density; cf. 2.9.12 in [3]). Let X be a metric space 

with a Borel measure J1,. A subset A C X has density zero at a point 
x EX if 

lim M(B(x, r) n A) = O. 
r-->O J1,(B(x, r)) 

Definition 2.4 (Approximate Differential; cf. 3.1.2 in {3]). Let A c 
lRm be a subset and f : A --+ JRn a map. A linear map L : JRm --+ 

JRn is called the approximate differential of f at a point x E A if the 
approximate limit of 

I f(y)- f(x)- L(y- x) I 
ly-xl 

is equal to zero as y--+ x, i.e., foi: any 8 > 0, the set 

{ yEA\{x}Jif(y)-f(x)-L(y-x)l ?_ 8 } 
ly-xl 

has density zero at x, where we consider the Lebesgue (or equivalently 
m-dimensional Hausdorff) measure on JRm to measure the density. We 
say that f is approximately differentiable at a point x E A if the approx
imate differential off at x exists. Denote by 'apdfx' the approximate 



Bishop-Gromov condition 297 

differential of f at x. It is unique at each approximate differentiable 
point. 

Let M and N be two differentiable manifolds and let A C M. We 
give a map f : A ----. N and a point x E A. Take two charts (U, r.p) and 
(V, 1,b) around x and f(x) respectively. The map f is said to be approx
imately differentiable at x if 1,b o f o r.p- 1 is approximately differentiable 
at r.p(x). Iff is approximately differentiable at x, then the approximate 
differential 'apdfx' off at xis defined by 

The approximate differentiability off at x and ap dfx are both indepen
dent of (U, r.p) and (V, 7,U). 

§3. Proof of Theorem 1.1 

Let M be an Alexandrov space of curvature 2: ~>,. We first investigate 
the exponential map on M. Denote by op the vertex of the tangent cone 
KpM at a point p E M. We denote by Up C KpM the inside of the 
tangential cut-locus of p, i.e., v E Up if and only if there is a minimal 
geodesic 'Y: [O,a]----. M from p with a> 1 such that 'Y'(O) = v, where 
'Y'(t) denotes the element of K"!(t)M tangent to 'YI[t,t+<)' E > 0, and 
whose distance from o"!(t) E K"!(t)M is equal to the speed of parameter of 
'Y· Note that UP is not necessarily an open set. Since the exponential map 
expP luv :Up----. M \ Cutp is a homeomorphism and since Wp,t n B(p, r) 
is compact for any 0 < t:::; 1 and r > 0, the set 

u 
O<t:'O:l, r>O 

is a Borel subset of KpM. 
Denote by G(tla, b, ... ) a function of t, a, b,... such that 

G(tla, b, ... ) ----. 0 as t----. 0 for any fixed a, b, .... We use G(tla, b, ... ) as 
Landau symbols. 

Lemma 3.1. For any p E M, r > 0, and for any Hn-measurable 
subset A C B(op, r) c KpM, we have 

(1) 

(2) 

I Hn(expp(A n Up))- Hn(A) I:::; G(rlp, n) rn, 

Hn(B(op, r) \Up):::; G(rlp, n) rn. 

Note that G(rlp, n) here is independent of A. 
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Proof. Let p E M and r > 0. By the triangle comparison condition, 
expP : UpnB(op, r) --'> M is Lipschitz continuous with Lipschitz constant 
1 + 8(rlp). Therefore, for any Hn-measurable A C B(op, r), 

Hn(A) 2: (1- 8(rlp, n)) Hn(expp(A n Up)), 

Hn(B(op, r) \A) 2: (1- 8(rlp, n)) Hn(B(p, r) \ expp(A n Up)). 

According to Lemma 3.2 of [16], we have 

Combining those three formulas we have the lemma. Q.E.D. 

Let p E M and 0 < t :::; 1. We restrict the domain of the radial 
expansion map «<>p,t : Wp,t --'> M to the subset 

w;,t := Wp,t \ (ct>;;)(Cutp) U Son), 

where Son is as in Theorem 2.1. 

Lemma 3.2. We have «<>p,t(w;,t) = M \ (Cutp U S0J and the map 
«<>p,tlw;,, : w;,t -7 M \ (Cutp u S0J is bijective. In particular, the 
sets w;,t and «<>p,t(w;,t) are both contained in the coo manifold M* = 
M \ Son without boundary. 

Proof. Let us first prove «<>p,t(w;,t) c M \ (Cutp U S0J. It is clear 
that «<>p,t(w;,t) c M \ CutP. To prove «<>p,t(w;,t) c M \Son, we take 
any point x E w;,t. Since «<>p,t(x) is not a cut point of p and by Lemma 
2.1, «<>p,t(x) is not On-singular. Therefore, «<>p,t(w;,t) c M\ (CutpUS0J. 

Let us next prove «<>p,t(w;,t) ::J M \ (Cutp U S0J. Take any point 
y E M\(CutpUS0n) andjoinp toy by a minimal geodesic'"'(: [ 0, 1] --'> M. 
Then, «<>p,t('"Y(t)) = y. Since y 'f. Cutp, the geodesic'"'( is unique and so 
«<>p tlw' is injective. By Lemma 2.1, '"Y(t) = («<>p tlw' )-1 (y) is not 

' p,t ' p,t 

On-singular and belongs to w;,t. This completes the proof. Q.E.D. 

By the local Lipschitz continuity of «<>p,t and by 3.1.8 of [3], «<>p,tlw;,, 
is approximately differentiable Hn-a.e. on w;,t· The following lemma is 
essential for the proof of Theorem 1.1. 

Lemma 3.3. Let p E M and 0 < t < 1. Then, the approximate 
Jacobian determinant of «<>p tlw' satisfies that 

' p,t 

s"(rp(x)jt)n- 1 

ldetapd(«<>ptlw' )xl:::; ( ( )) 1 ' p,t t Sr> rp X n-

for any approximately differentiable point x E w;,t \ SM of «<>p,tlw;,,. 
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Proof. Let X E w;,t \ SM be an approximately differentiable point 
of !Pv,tlw~ .• and let E > 0 be a small number. Note that KxM and 
K<Pp,t(x)M are both isometric to Rn and identified with the tangent 
spaces. We take two charts (U, <p) and (V, '1/J) of M \ S6n around x 
and ~Pp,t(x) respectively such that I II.P(Y) ~ <p(z)l/d(y, z) - 11 < E for 
any different y, z E U and '1/J satisfies the same inequality on V. In 
particular, every eigenvalue of the differentials d<px : KxM -+ Rn and 
d'l/J<Pp,t(x) : K<Pp,t(x)M-+ Rn is between 1- E and 1 +E. Put 

<i> := '1/J o !Pv,tlw~ .• o <p-1 : <p(w;,t n U) -+ '1/J(V), 

X:= <p(x), L := apd<f>a:: Rn-+ Rn. 

For simplicity we set D := apd(!Pvtlw' )x: KxM-+ Kcp .(x)M. Then, 
' p,t p, 

D = (d'l/Jcpp,t(x))-1 0 L 0 d<px. 

By the definition of the approximate differential, for any r > 0 with 
B(x, r) C U, the set of fiE B(x, r) satisfying 

I <i'>(fi) - <i>(x) - L(fi- x) I ~ E I x - fi I 

has 1-ln-measure 5 e(rl<i>, x) 1-ln(B(x, r)), where B(x, r) is a Euclidean 
metric ball. Take any u E 'ExM and fix it. Let r > 0 be any number. 
We set 

C(u,r,E) := { v E B(ox,r) \{ox} C KxM I L(u,v) < E }. 

It follows from Lemma 3.1(1) that 

1-ln(<p(expx(C(u, r/2, E) nUx))) 

~ (1- E)n 1-ln(expx(C(u, r /2, E) nUx)) 

~ (1- E)n (1-tn(C(u, 1/2, E))- 6(rlx, n)) rn. 

Since 1-ln(C(u, 1/2, E)) is positive, we have 

r 1-ln(<p(expx(C(u,r/2, E) nUx))) 0 
r~ 1-ln(B(x, r)) > · 

Note that <p(expx( C(u, r /2, E) nUx)) is contained in B(x, r) because E is 
small enough. Therefore, supposing r «: E, there is a point fi E B(x, r) 
such that 

fiE <p(expx(C(u, rj2, E) nUx)), 

I <i'>(fi) - <i>(x) - L(fi- x) I < E d(x, fi). 
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Setting y := <p- 1(y) and Vxy := (expx lu.,)-1 (y), we have L(u, Vxy) <E. 
For simplicity we write a :S (1+8(Eip, t, x)) b+8(EIP, t, x) by a ;S b. Note 
that since r « E, all e(rl···) become 8(€1···). Since lvxyl = d(x,y) 
and ld'Px(Vxy)- (y- x)l :S 8(Eix) d(x, y) (cf. Lemma 3.6(2) of [12]), we 
have 

IL(y- x)l 
ID(u)l ;S ID(vxy/lvxyl)l ;S d(x, y) 

< l<l>(Y)- <l>(x)l < d(<I>v,t(x), <I>v,t(Y)) 
"' d(x,y) "' d(x,y) 

We are going to estimate the last formula. Denote by M 2 ( "') a 
complete simply connected 2-dimensional space form of curvature K. We 
take three points p,x,fl E M 2(K) such that d(p,x) = d(p,x), d(P,f;) = 
d(p, y), and d( x, fl) = d( x, y). The triangle comparison condition tells 
that d(<I>p,t(x), <I>p,t(Y)) :S d(<I>p,t(x), <I>v,tW)), where <I>v,t is the radial 
expansion on M 2(K). Since d(x, fl) = d(x, y) < r « E, we have 

d(<I>p,t(x), <I>v,t(fl)) < ld(<I>- )-(v--/lv--1)1. d(X, fl) rv p,t X xy xy 

Let i be the minimal geodesic from p passing through x. We denote by 
0 the angle between Vxfj and i'(tx), where tx is taken in SUCh a way that 
'Y(tx) = x. Set 

.:\(~) := 

A calculation using Jacobi fields yields ld(<I>v,th(vxfiflvxyl)l .:\(0). 
Combining the above estimates, we have 

ID(u)l ;S .:\(0). 

Let "( be the minimal geodesic from p passing through x and let tx be 
a number such that "((tx) = x. Denote by () the angle between Vxy 
and "(1(tx) and by Bu the angle between u and 'Y'(tx)· It follows from 
L(u,Vxy) < E that IB- Bul < E. By 5.6 of [1] we have IB- 01 :S 
e(rlp, t, x) :::; 8(Eip, t, x). Therefore we have ID(u)l ;S .:\(Bu)• Taking the 
limit as E --+ 0 yields that 

ID(u)l :S .:\(Bu) 

for any u E ExM, which together with Hadamard's inequality implies 

ldetDI < .:\(0).:\(7r/2)n-1 = s"'(rv(x)jt)n-1. 
- t s"'(rp(x))n-1 
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This completes the proof of Lemma 3.3. Q.E.D. 

Proof of Theorem 1.1. For the proof, it suffices to prove that 

(3.1) 1 f o <l> t(x) d1{n(x) ;::=: 1 f(y) t s"(trp(y))n-1 d1{n(y) 
p, s (r (y))n-1 

Wp,t M K P 

for any 1-{n-measurable function f : M ____, [ 0, +oo) with compact sup
port. Since <l>p,tlw~,, : w;,t ____, M \ (Cutp U S8J is bijective, the area 
formula ( cf. 3.2.20 of [3]) implies that 

(3.2) fw, Fo<l>p,t(x)ldetapd(<l>p,tlw~,)xldHn(x) 
p,t 

= { F(y) dHn(y) 
j M\(CutpUS0n) 

for any 1-{n-measurable function F : M ____, [ 0, +oo) with compact sup
port. We set 

F( ) ·= f( ) ts"(trp(y))n-1 
y . y s"(rp(y))n-1 ' 

in (3.2). Then, since Hn(Cutp) = 1{n(S8n) = 0 and by Lemma 3.3, we 
obtain (3.1). This completes the proof of the theorem. Q.E.D. 
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