Infinitesimal Bishop-Gromov condition for Alexandrov spaces

Kazuhiro Kuwae and Takashi Shioya

Abstract

. We prove the infinitesimal version of Bishop-Gromov volume comparison condition for Alexandrov spaces.

§1. Introduction

We first present the definition of the infinitesimal Bishop-Gromov volume comparison condition for Alexandrov spaces.

For a real number κ, we set

$$
s_{\kappa}(r):= \begin{cases}\sin (\sqrt{\kappa} r) / \sqrt{\kappa} & \text { if } \kappa>0 \\ r & \text { if } \kappa=0 \\ \sinh (\sqrt{|\kappa|} r) / \sqrt{|\kappa|} & \text { if } \kappa<0\end{cases}
$$

The function s_{κ} is the solution of the Jacobi equation $s_{\kappa}^{\prime \prime}(r)+\kappa s_{\kappa}(r)=0$ with initial condition $s_{\kappa}(0)=0, s_{\kappa}^{\prime}(0)=1$.

Let M be an Alexandrov space and set $r_{p}(x):=d(p, x)$ for $p, x \in M$, where d is the distance function. For $p \in M$ and $0<t \leq 1$, we define a subset $W_{p, t} \subset M$ and a map $\Phi_{p, t}: W_{p, t} \rightarrow M$ as follows. We first set $\Phi_{p, t}(p):=p \in W_{p, t}$. A point $x(\neq p)$ belongs to $W_{p, t}$ if and only if there exists $y \in M$ such that $x \in p y$ and $r_{p}(x): r_{p}(y)=t: 1$, where $p y$ is a minimal geodesic from p to y. Since a geodesic does not branch on an Alexandrov space, for a given point $x \in W_{p, t}$ such a point y is unique and we set $\Phi_{p, t}(x):=y$. The triangle comparison condition implies the

[^0]local Lipschitz continuity of the map $\Phi_{p, t}: W_{p, t} \rightarrow M$. We call $\Phi_{p, t}$ the radial expansion map.

Let μ be a positive Radon measure with full support in M, and $n \geq 1$ a real number.

Infinitesimal Bishop-Gromov Condition $\operatorname{BG}(\kappa, n)$ for μ :

For any $p \in M$ and $t \in(0,1]$, we have

$$
d\left(\Phi_{p, t *} \mu\right)(x) \geq \frac{t s_{\kappa}\left(t r_{p}(x)\right)^{n-1}}{s_{\kappa}\left(r_{p}(x)\right)^{n-1}} d \mu(x)
$$

for any $x \in M$ such that $r_{p}(x)<\pi / \sqrt{\kappa}$ if $\kappa>0$, where $\Phi_{p, t *} \mu$ is the push-forward by $\Phi_{p, t}$ of μ.

For an n-dimensional complete Riemannian manifold, the Riemannian volume measure satisfies $\operatorname{BG}(\kappa, n)$ if and only if the Ricci curvature satisfies Ric $\geq(n-1) \kappa$ (see Theorem 3.2 of [10] for the 'only if' part). We see some studies on similar (or same) conditions to $\operatorname{BG}(\kappa, n)$ in $[2,18,6,7,15,10,21]$ etc. $\mathrm{BG}(\kappa, n)$ is sometimes called the Measure Contraction Property and is weaker than the curvature-dimension (or lower n-Ricci curvature) condition, $\mathrm{CD}((n-1) \kappa, n)$, introduced by Sturm [19, 20] and Lott-Villani [9] in terms of mass transportation. For a measure on an Alexandrov space, $\mathrm{BG}(\kappa, n)$ is equivalent to the $((n-1) \kappa, n)$-MCP introduced by Ohta [10]. In our paper [5, 8], we prove a splitting theorem under $\mathrm{BG}(0, N)$. For a survey of geometric analysis on Alexandrov spaces, we refer to [17]

The purpose of this paper is to prove the following
Theorem 1.1. Let M be an n-dimensional Alexandrov space of curvature $\geq \kappa$. Then, the n-dimensional Hausdorff measure \mathcal{H}^{n} on M satisfies the infinitesimal Bishop-Gromov condition $\mathrm{BG}(\kappa, n)$.

Note that we claimed this theorem in Lemma 6.1 of [6], but the proof in [6] is insufficient. The theorem also completes the proof of Proposition 2.8 of [10].

For the proof of the theorem, we have the delicate problem that the topological boundary of the domain $W_{p, t}$ of the radial expansion $\Phi_{p, t}$ is not necessarily of \mathcal{H}^{n}-measure zero. In fact, we have an example of an Alexandrov space such that the cut-locus at a point is dense (see Remark 2.2), in which case the boundary of $W_{p, t}$ has positive \mathcal{H}^{n}-measure. This never happens for Riemannian manifolds. To solve this problem, we need some delicate discussion using the approximate differential of $\Phi_{p, t}$.
Acknowledgments. The authors would like to thank Professor Shinichi Ohta for his comments.

§2. Preliminaries

2.1. Alexandrov spaces

In this paper, we mean by an Alexandrov space a complete locally compact geodesic space of curvature bounded below locally and of finite Hausdorff dimension. We refer to $[1,12,4]$ for the basics for the geometry and analysis on Alexandrov spaces. Let M be an Alexandrov space of Hausdorff dimension n. Then, n coincides with the covering dimension of M which is a nonnegative integer. Take any point $p \in M$ and fix it. Denote by $\Sigma_{p} M$ the space of directions at p, and by $K_{p} M$ the tangent cone at $p . \Sigma_{p} M$ is an $(n-1)$-dimensional compact Alexandrov space of curvature ≥ 1 and $K_{p} M$ an n-dimensional Alexandrov space of curvature ≥ 0.

Definition 2.1 (Singular Point, δ-Singular Point). A point $p \in M$ is called a singular point of M if $\Sigma_{p} M$ is not isometric to the unit sphere S^{n-1}. For $\delta>0$, we say that a point $p \in M$ is δ-singular if $\mathcal{H}^{n-1}\left(\Sigma_{p} M\right) \leq \operatorname{vol}\left(S^{n-1}\right)-\delta$. Let us denote the set of singular points of M by S_{M} and the set of δ-singular points of M by S_{δ}.

We have $S_{M}=\bigcup_{\delta>0} S_{\delta}$. Since the map $M \ni p \mapsto \mathcal{H}^{n}\left(\Sigma_{p} M\right)$ is lower semi-continuous, the set S_{δ} of δ-singular points in M is a closed set.

Lemma 2.1 ([14]). Let γ be a minimal geodesic joining two points p and q in M. Then, the space of directions, $\Sigma_{x} M$, at all interior points of $\gamma, x \in \gamma \backslash\{p, q\}$, are isometric to each other. In particular, any minimal geodesic joining two non-singular (resp. non- δ-singular) points is contained in the set of non-singular (resp. non- δ-singular) points (for any $\delta>0$).

The following shows the existence of differentiable and Riemannian structure on M.

Theorem 2.1. For an n-dimensional Alexandrov space M, we have the following:
(1) There exists a number $\delta_{n}>0$ depending only on n such that $M^{*}:=M \backslash S_{\delta_{n}}$ is a manifold ([1]) and has a natural C^{∞} differentiable structure ([4]).
(2) The Hausdorff dimension of S_{M} is $\leq n-1([1,12])$.
(3) We have a unique continuous Riemannian metric g on $M \backslash$ $S_{M} \subset M^{*}$ such that the distance function induced from g coincides with the original one of M ([12]). The tangent space at each point in $M \backslash S_{M}$ is isometrically identified with the tangent cone ([12]). The volume measure on M^{*} induced from g coincides with the n-dimensional Hausdorff measure \mathcal{H}^{n} ([12]).

Remark 2.1. In [4] we construct a C^{∞} structure only on $M \backslash$ $B\left(S_{\delta_{n}}, \epsilon\right)$, where $B(A, \epsilon)$ denotes the ϵ-neighborhood of A. However this is independent of ϵ and extends to M^{*}. The C^{∞} structure is a refinement of the structures of $[12,11,13]$ and is compatible with the DC structure of [13].

Note that the metric g is defined only on $M^{*} \backslash S_{M}$ and does not continuously extend to any other point of M.

Definition 2.2 (Cut-locus). Let $p \in M$ be a point. We say that a point $x \in M$ is a cut point of p if no minimal geodesic from p contains x as an interior point. Here we agree that p is not a cut point of p. The set of cut points of p is called the cut-locus of p and denoted by Cut_{p}.

Note that Cut_{p} is not necessarily a closed set. For the $W_{p, t}$ defined in $\S 1$, it follows that $\bigcup_{0<t<1} W_{p, t}=X \backslash \operatorname{Cut}_{p}$. The cut-locus Cut_{p} is a Borel subset and satisfies $\mathcal{H}^{n}\left(\mathrm{Cut}_{p}\right)=0$ (Proposition 3.1 of [12]).

Remark 2.2. There is an example of a 2-dimensional Alexandrov space M such that S_{M} is dense in M (see [12]). For such an example, Cut_{p} for any $p \in M$ is also dense in M.

2.2. Approximate differential

Definition 2.3 (Density; cf. 2.9.12 in [3]). Let X be a metric space with a Borel measure μ. A subset $A \subset X$ has density zero at a point $x \in X$ if

$$
\lim _{r \rightarrow 0} \frac{\mu(B(x, r) \cap A)}{\mu(B(x, r))}=0
$$

Definition 2.4 (Approximate Differential; cf. 3.1.2 in [3]). Let $A \subset$ \mathbb{R}^{m} be a subset and $f: A \rightarrow \mathbb{R}^{n}$ a map. A linear map $L: \mathbb{R}^{m} \rightarrow$ \mathbb{R}^{n} is called the approximate differential of f at a point $x \in A$ if the approximate limit of

$$
\frac{|f(y)-f(x)-L(y-x)|}{|y-x|}
$$

is equal to zero as $y \rightarrow x$, i.e., for any $\delta>0$, the set

$$
\left\{y \in A \backslash\{x\} \left\lvert\, \frac{|f(y)-f(x)-L(y-x)|}{|y-x|} \geq \delta\right.\right\}
$$

has density zero at x, where we consider the Lebesgue (or equivalently m-dimensional Hausdorff) measure on \mathbb{R}^{m} to measure the density. We say that f is approximately differentiable at a point $x \in A$ if the approximate differential of f at x exists. Denote by 'ap $d f_{x}$ ' the approximate
differential of f at x. It is unique at each approximate differentiable point.

Let M and N be two differentiable manifolds and let $A \subset M$. We give a map $f: A \rightarrow N$ and a point $x \in A$. Take two charts (U, φ) and (V, ψ) around x and $f(x)$ respectively. The map f is said to be approximately differentiable at x if $\psi \circ f \circ \varphi^{-1}$ is approximately differentiable at $\varphi(x)$. If f is approximately differentiable at x, then the approximate differential 'ap $d f_{x}$ ' of f at x is defined by

$$
\operatorname{ap} d f_{x}:=\left(d \psi_{f(x)}\right)^{-1} \circ \operatorname{ap} d\left(\psi \circ f \circ \varphi^{-1}\right)_{\varphi(x)} \circ d \varphi_{x}: T_{x} M \rightarrow T_{f(x)} N
$$

The approximate differentiability of f at x and ap $d f_{x}$ are both independent of (U, φ) and (V, ψ).

§3. Proof of Theorem 1.1

Let M be an Alexandrov space of curvature $\geq \kappa$. We first investigate the exponential map on M. Denote by o_{p} the vertex of the tangent cone $K_{p} M$ at a point $p \in M$. We denote by $U_{p} \subset K_{p} M$ the inside of the tangential cut-locus of p, i.e., $v \in U_{p}$ if and only if there is a minimal geodesic $\gamma:[0, a] \rightarrow M$ from p with $a>1$ such that $\gamma^{\prime}(0)=v$, where $\gamma^{\prime}(t)$ denotes the element of $K_{\gamma(t)} M$ tangent to $\left.\gamma\right|_{[t, t+\epsilon)}, \epsilon>0$, and whose distance from $o_{\gamma(t)} \in K_{\gamma(t)} M$ is equal to the speed of parameter of γ. Note that U_{p} is not necessarily an open set. Since the exponential map $\left.\exp _{p}\right|_{U_{p}}: U_{p} \rightarrow M \backslash \operatorname{Cut}_{p}$ is a homeomorphism and since $W_{p, t} \cap \bar{B}(p, r)$ is compact for any $0<t \leq 1$ and $r>0$, the set

$$
U_{p}=\bigcup_{0<t \leq 1, r>0}\left(\left.\exp _{p}\right|_{U_{p}}\right)^{-1}\left(W_{p, t} \cap \bar{B}(p, r)\right)
$$

is a Borel subset of $K_{p} M$.
Denote by $\Theta(t \mid a, b, \ldots)$ a function of t, a, b, \ldots such that $\Theta(t \mid a, b, \ldots) \rightarrow 0$ as $t \rightarrow 0$ for any fixed a, b, \ldots We use $\Theta(t \mid a, b, \ldots)$ as Landau symbols.

Lemma 3.1. For any $p \in M, r>0$, and for any \mathcal{H}^{n}-measurable subset $A \subset B\left(o_{p}, r\right) \subset K_{p} M$, we have

$$
\begin{align*}
\left|\mathcal{H}^{n}\left(\exp _{p}\left(A \cap U_{p}\right)\right)-\mathcal{H}^{n}(A)\right| & \leq \Theta(r \mid p, n) r^{n} \tag{1}\\
\mathcal{H}^{n}\left(B\left(o_{p}, r\right) \backslash U_{p}\right) & \leq \Theta(r \mid p, n) r^{n} \tag{2}
\end{align*}
$$

Note that $\Theta(r \mid p, n)$ here is independent of A.

Proof. Let $p \in M$ and $r>0$. By the triangle comparison condition, $\exp _{p}: U_{p} \cap B\left(o_{p}, r\right) \rightarrow M$ is Lipschitz continuous with Lipschitz constant $1+\Theta(r \mid p)$. Therefore, for any \mathcal{H}^{n}-measurable $A \subset B\left(o_{p}, r\right)$,

$$
\begin{aligned}
\mathcal{H}^{n}(A) & \geq(1-\Theta(r \mid p, n)) \mathcal{H}^{n}\left(\exp _{p}\left(A \cap U_{p}\right)\right), \\
\mathcal{H}^{n}\left(B\left(o_{p}, r\right) \backslash A\right) & \geq(1-\Theta(r \mid p, n)) \mathcal{H}^{n}\left(B(p, r) \backslash \exp _{p}\left(A \cap U_{p}\right)\right) .
\end{aligned}
$$

According to Lemma 3.2 of [16], we have

$$
\lim _{\rho \rightarrow 0} \frac{\mathcal{H}^{n}(B(p, \rho))}{\rho^{n}}=\mathcal{H}^{n}\left(B\left(o_{p}, 1\right)\right)=\frac{\mathcal{H}^{n}\left(B\left(o_{p}, r\right)\right)}{r^{n}} .
$$

Combining those three formulas we have the lemma.
Q.E.D.

Let $p \in M$ and $0<t \leq 1$. We restrict the domain of the radial expansion map $\Phi_{p, t}: W_{p, t} \rightarrow M$ to the subset

$$
W_{p, t}^{\prime}:=W_{p, t} \backslash\left(\Phi_{p, t}^{-1}\left(\operatorname{Cut}_{p}\right) \cup S_{\delta_{n}}\right),
$$

where $S_{\delta_{n}}$ is as in Theorem 2.1.
Lemma 3.2. We have $\Phi_{p, t}\left(W_{p, t}^{\prime}\right)=M \backslash\left(\operatorname{Cut}_{p} \cup S_{\delta_{n}}\right)$ and the map $\left.\Phi_{p, t}\right|_{W_{p, t}^{\prime}}: W_{p, t}^{\prime} \rightarrow M \backslash\left(\operatorname{Cut}_{p} \cup S_{\delta_{n}}\right)$ is bijective. In particular, the sets $W_{p, t}^{\prime}$ and $\Phi_{p, t}\left(W_{p, t}^{\prime}\right)$ are both contained in the C^{∞} manifold $M^{*}=$ $M \backslash S_{\delta_{n}}$ without boundary.

Proof. Let us first prove $\Phi_{p, t}\left(W_{p, t}^{\prime}\right) \subset M \backslash\left(\operatorname{Cut}_{p} \cup S_{\delta_{n}}\right)$. It is clear that $\Phi_{p, t}\left(W_{p, t}^{\prime}\right) \subset M \backslash \operatorname{Cut}_{p}$. To prove $\Phi_{p, t}\left(W_{p, t}^{\prime}\right) \subset M \backslash S_{\delta_{n}}$, we take any point $x \in W_{p, t}^{\prime}$. Since $\Phi_{p, t}(x)$ is not a cut point of p and by Lemma 2.1, $\Phi_{p, t}(x)$ is not δ_{n}-singular. Therefore, $\Phi_{p, t}\left(W_{p, t}^{\prime}\right) \subset M \backslash\left(\operatorname{Cut}_{p} \cup S_{\delta_{n}}\right)$.

Let us next prove $\Phi_{p, t}\left(W_{p, t}^{\prime}\right) \supset M \backslash\left(\operatorname{Cut}_{p} \cup S_{\delta_{n}}\right)$. Take any point $y \in M \backslash\left(\operatorname{Cut}_{p} \cup S_{\delta_{n}}\right)$ and join p to y by a minimal geodesic $\gamma:[0,1] \rightarrow M$. Then, $\Phi_{p, t}(\gamma(t))=y$. Since $y \notin \operatorname{Cut}_{p}$, the geodesic γ is unique and so $\left.\Phi_{p, t}\right|_{W_{p, t}^{\prime}}$ is injective. By Lemma 2.1, $\gamma(t)=\left(\left.\Phi_{p, t}\right|_{W_{p, t}^{\prime}}\right)^{-1}(y)$ is not δ_{n}-singular and belongs to $W_{p, t}^{\prime}$. This completes the proof. Q.E.D.

By the local Lipschitz continuity of $\Phi_{p, t}$ and by 3.1 .8 of $[3],\left.\Phi_{p, t}\right|_{W_{p, t}^{\prime}}$ is approximately differentiable \mathcal{H}^{n}-a.e. on $W_{p, t}^{\prime}$. The following lemma is essential for the proof of Theorem 1.1.

Lemma 3.3. Let $p \in M$ and $0<t<1$. Then, the approximate Jacobian determinant of $\left.\Phi_{p, t}\right|_{W_{p, t}^{\prime}}$ satisfies that

$$
\left|\operatorname{det} \operatorname{ap} d\left(\Phi_{p, t} \mid W_{p, t}^{\prime}\right)_{x}\right| \leq \frac{s_{\kappa}\left(r_{p}(x) / t\right)^{n-1}}{t s_{\kappa}\left(r_{p}(x)\right)^{n-1}}
$$

for any approximately differentiable point $x \in W_{p, t}^{\prime} \backslash S_{M}$ of $\left.\Phi_{p, t}\right|_{W_{p, t}^{\prime}}$.

Proof. Let $x \in W_{p, t}^{\prime} \backslash S_{M}$ be an approximately differentiable point of $\left.\Phi_{p, t}\right|_{W_{p, t}^{\prime}}$ and let $\epsilon>0$ be a small number. Note that $K_{x} M$ and $K_{\Phi_{p, t}(x)} M$ are both isometric to \mathbb{R}^{n} and identified with the tangent spaces. We take two charts (U, φ) and (V, ψ) of $M \backslash S_{\delta_{n}}$ around x and $\Phi_{p, t}(x)$ respectively such that $||\varphi(y)-\varphi(z)| / d(y, z)-1|<\epsilon$ for any different $y, z \in U$ and ψ satisfies the same inequality on V. In particular, every eigenvalue of the differentials $d \varphi_{x}: K_{x} M \rightarrow \mathbb{R}^{n}$ and $d \psi_{\Phi_{p, t}(x)}: K_{\Phi_{p, t}(x)} M \rightarrow \mathbb{R}^{n}$ is between $1-\epsilon$ and $1+\epsilon$. Put

$$
\begin{aligned}
& \bar{\Phi}:=\left.\psi \circ \Phi_{p, t}\right|_{W_{p, t}^{\prime}} \circ \varphi^{-1}: \varphi\left(W_{p, t}^{\prime} \cap U\right) \rightarrow \psi(V) \\
& \bar{x}:=\varphi(x), \quad L:=\operatorname{ap} d \bar{\Phi}_{\bar{x}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
\end{aligned}
$$

For simplicity we set $D:=\operatorname{ap} d\left(\left.\Phi_{p, t}\right|_{W_{p, t}^{\prime}}\right)_{x}: K_{x} M \rightarrow K_{\Phi_{p, t}(x)} M$. Then,

$$
D=\left(d \psi_{\Phi_{p, t}(x)}\right)^{-1} \circ L \circ d \varphi_{x}
$$

By the definition of the approximate differential, for any $r>0$ with $B(x, r) \subset U$, the set of $\bar{y} \in B(\bar{x}, r)$ satisfying

$$
|\bar{\Phi}(\bar{y})-\bar{\Phi}(\bar{x})-L(\bar{y}-\bar{x})| \geq \epsilon|\bar{x}-\bar{y}|
$$

has \mathcal{H}^{n}-measure $\leq \Theta(r \mid \bar{\Phi}, \bar{x}) \mathcal{H}^{n}(B(\bar{x}, r))$, where $B(\bar{x}, r)$ is a Euclidean metric ball. Take any $u \in \Sigma_{x} M$ and fix it. Let $r>0$ be any number. We set

$$
C(u, r, \epsilon):=\left\{v \in B\left(o_{x}, r\right) \backslash\left\{o_{x}\right\} \subset K_{x} M \mid \angle(u, v)<\epsilon\right\}
$$

It follows from Lemma 3.1(1) that

$$
\begin{aligned}
& \mathcal{H}^{n}\left(\varphi\left(\exp _{x}\left(C(u, r / 2, \epsilon) \cap U_{x}\right)\right)\right) \\
& \geq(1-\epsilon)^{n} \mathcal{H}^{n}\left(\exp _{x}\left(C(u, r / 2, \epsilon) \cap U_{x}\right)\right) \\
& \geq(1-\epsilon)^{n}\left(\mathcal{H}^{n}(C(u, 1 / 2, \epsilon))-\Theta(r \mid x, n)\right) r^{n}
\end{aligned}
$$

Since $\mathcal{H}^{n}(C(u, 1 / 2, \epsilon))$ is positive, we have

$$
\lim _{r \rightarrow 0} \frac{\mathcal{H}^{n}\left(\varphi\left(\exp _{x}\left(C(u, r / 2, \epsilon) \cap U_{x}\right)\right)\right)}{\mathcal{H}^{n}(B(\bar{x}, r))}>0
$$

Note that $\varphi\left(\exp _{x}\left(C(u, r / 2, \epsilon) \cap U_{x}\right)\right)$ is contained in $B(\bar{x}, r)$ because ϵ is small enough. Therefore, supposing $r \ll \epsilon$, there is a point $\bar{y} \in B(\bar{x}, r)$ such that

$$
\begin{aligned}
& \bar{y} \in \varphi\left(\exp _{x}\left(C(u, r / 2, \epsilon) \cap U_{x}\right)\right) \\
& |\bar{\Phi}(\bar{y})-\bar{\Phi}(\bar{x})-L(\bar{y}-\bar{x})|<\epsilon d(\bar{x}, \bar{y})
\end{aligned}
$$

Setting $y:=\varphi^{-1}(\bar{y})$ and $v_{x y}:=\left(\left.\exp _{x}\right|_{U_{x}}\right)^{-1}(y)$, we have $\angle\left(u, v_{x y}\right)<\epsilon$. For simplicity we write $a \leq(1+\Theta(\epsilon \mid p, t, x)) b+\Theta(\epsilon \mid p, t, x)$ by $a \lesssim b$. Note that since $r \ll \epsilon$, all $\Theta(r \mid \cdots)$ become $\Theta(\epsilon \mid \cdots)$. Since $\left|v_{x y}\right|=d(x, y)$ and $\left|d \varphi_{x}\left(v_{x y}\right)-(\bar{y}-\bar{x})\right| \leq \Theta(\epsilon \mid x) d(x, y)$ (cf. Lemma 3.6(2) of [12]), we have

$$
\begin{aligned}
|D(u)| & \lesssim\left|D\left(v_{x y} /\left|v_{x y}\right|\right)\right| \lesssim \frac{|L(\bar{y}-\bar{x})|}{d(x, y)} \\
& \lesssim \frac{|\bar{\Phi}(\bar{y})-\bar{\Phi}(\bar{x})|}{d(x, y)} \lesssim \frac{d\left(\Phi_{p, t}(x), \Phi_{p, t}(y)\right)}{d(x, y)}
\end{aligned}
$$

We are going to estimate the last formula. Denote by $M^{2}(\kappa)$ a complete simply connected 2-dimensional space form of curvature κ. We take three points $\tilde{p}, \tilde{x}, \tilde{y} \in M^{2}(\kappa)$ such that $d(\tilde{p}, \tilde{x})=d(p, x), d(\tilde{p}, \tilde{y})=$ $d(p, y)$, and $d(\tilde{x}, \tilde{y})=d(x, y)$. The triangle comparison condition tells that $d\left(\Phi_{p, t}(x), \Phi_{p, t}(y)\right) \leq d\left(\Phi_{\tilde{p}, t}(\tilde{x}), \Phi_{\tilde{p}, t}(\tilde{y})\right)$, where $\Phi_{\tilde{p}, t}$ is the radial expansion on $M^{2}(\kappa)$. Since $d(\tilde{x}, \tilde{y})=d(x, y)<r \ll \epsilon$, we have

$$
\frac{d\left(\Phi_{\tilde{p}, t}(\tilde{x}), \Phi_{\tilde{p}, t}(\tilde{y})\right)}{d(\tilde{x}, \tilde{y})} \lesssim\left|d\left(\Phi_{\tilde{p}, t}\right)_{\tilde{x}}\left(v_{\tilde{x} \tilde{y}} /\left|v_{\tilde{x} \tilde{y}}\right|\right)\right|
$$

Let $\tilde{\gamma}$ be the minimal geodesic from \tilde{p} passing through \tilde{x}. We denote by $\tilde{\theta}$ the angle between $v_{\tilde{x} \tilde{y}}$ and $\tilde{\gamma}^{\prime}\left(t_{\tilde{x}}\right)$, where $t_{\tilde{x}}$ is taken in such a way that $\tilde{\gamma}\left(t_{\tilde{x}}\right)=\tilde{x}$. Set

$$
\lambda(\xi):=\sqrt{\frac{1}{t^{2}} \cos ^{2} \xi+\frac{s_{\kappa}\left(r_{p}(x) / t\right)^{2}}{s_{\kappa}\left(r_{p}(x)\right)^{2}} \sin ^{2} \xi}, \quad \xi \in \mathbb{R}
$$

A calculation using Jacobi fields yields $\left|d\left(\Phi_{\tilde{p}, t}\right)_{\tilde{x}}\left(v_{\tilde{x} \tilde{y}} /\left|v_{\tilde{x} \tilde{y}}\right|\right)\right|=\lambda(\tilde{\theta})$. Combining the above estimates, we have

$$
|D(u)| \lesssim \lambda(\tilde{\theta})
$$

Let γ be the minimal geodesic from p passing through x and let t_{x} be a number such that $\gamma\left(t_{x}\right)=x$. Denote by θ the angle between $v_{x y}$ and $\gamma^{\prime}\left(t_{x}\right)$ and by θ_{u} the angle between u and $\gamma^{\prime}\left(t_{x}\right)$. It follows from $\angle\left(u, v_{x y}\right)<\epsilon$ that $\left|\theta-\theta_{u}\right|<\epsilon$. By 5.6 of [1] we have $|\theta-\tilde{\theta}| \leq$ $\Theta(r \mid p, t, x) \leq \Theta(\epsilon \mid p, t, x)$. Therefore we have $|D(u)| \lesssim \lambda\left(\theta_{u}\right)$. Taking the limit as $\epsilon \rightarrow 0$ yields that

$$
|D(u)| \leq \lambda\left(\theta_{u}\right)
$$

for any $u \in \Sigma_{x} M$, which together with Hadamard's inequality implies

$$
|\operatorname{det} D| \leq \lambda(0) \lambda(\pi / 2)^{n-1}=\frac{s_{\kappa}\left(r_{p}(x) / t\right)^{n-1}}{t s_{\kappa}\left(r_{p}(x)\right)^{n-1}}
$$

This completes the proof of Lemma 3.3.
Q.E.D.

Proof of Theorem 1.1. For the proof, it suffices to prove that

$$
\begin{equation*}
\int_{W_{p, t}} f \circ \Phi_{p, t}(x) d \mathcal{H}^{n}(x) \geq \int_{M} f(y) \frac{t s_{\kappa}\left(t r_{p}(y)\right)^{n-1}}{s_{\kappa}\left(r_{p}(y)\right)^{n-1}} d \mathcal{H}^{n}(y) \tag{3.1}
\end{equation*}
$$

for any \mathcal{H}^{n}-measurable function $f: M \rightarrow[0,+\infty)$ with compact support. Since $\left.\Phi_{p, t}\right|_{W_{p, t}^{\prime}}: W_{p, t}^{\prime} \rightarrow M \backslash\left(\operatorname{Cut}_{p} \cup S_{\delta_{n}}\right)$ is bijective, the area formula (cf. 3.2.20 of [3]) implies that

$$
\begin{align*}
& \int_{W_{p, t}^{\prime}} F \circ \Phi_{p, t}(x)\left|\operatorname{det} \operatorname{ap} d\left(\left.\Phi_{p, t}\right|_{W_{p, t}^{\prime}}\right)_{x}\right| d \mathcal{H}^{n}(x) \tag{3.2}\\
& =\int_{M \backslash\left(\operatorname{Cut}_{p} \cup S_{\delta_{n}}\right)} F(y) d \mathcal{H}^{n}(y)
\end{align*}
$$

for any \mathcal{H}^{n}-measurable function $F: M \rightarrow[0,+\infty)$ with compact support. We set

$$
F(y):=f(y) \frac{t s_{\kappa}\left(t_{p}(y)\right)^{n-1}}{s_{\kappa}\left(r_{p}(y)\right)^{n-1}}, \quad y \in M \backslash \operatorname{Cut}_{p}
$$

in (3.2). Then, since $\mathcal{H}^{n}\left(\mathrm{Cut}_{p}\right)=\mathcal{H}^{n}\left(S_{\delta_{n}}\right)=0$ and by Lemma 3.3, we obtain (3.1). This completes the proof of the theorem.
Q.E.D.

References

[1] Yu. Burago, M. Gromov and G. Perel'man, A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk, 47 (1992), no. 2 (284), 3-51, 222, translation in Russian Math. Surveys, 47 (1992), no. 2, 1-58.
[2] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 46 (1997), 406-480.
[3] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, 1969.
[4] K. Kuwae, Y. Machigashira and T. Shioya, Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z., 238 (2001), 269-316.
[5] K. Kuwae and T. Shioya, A topological splitting theorem for weighted Alexandrov spaces, preprint.
[6] , On generalized measure contraction property and energy functionals over Lipschitz maps, Potential Anal., 15 (2001), 105-121, ICPA98 (Hammamet).
[7] , Sobolev and Dirichlet spaces over maps between metric spaces, J. Reine Angew. Math., 555 (2003), 39-75.
[8]_, Laplacian comparison for Alexandrov spaces, preprint, 2007.
[9] J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903-991.
[10] S. Ohta, On the measure contraction property of metric measure spaces, Comment. Math. Helv., 82 (2007), 805-828.
[11] Y. Otsu, Almost everywhere existance of second differentiable structure of Alexandrov spaces, preprint.
[12] Y. Otsu and T. Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom., 39 (1994), 629-658.
[13] G. Perelman, DC-structure on Alexandrov space, preprint.
[14] A. Petrunin, Parallel transportation for Alexandrov space with curvature bounded below, Geom. Funct. Anal., 8 (1998), 123-148.
[15] A. Ranjbar-Motlagh, Poincaré inequality for abstract spaces, Bull. Austral. Math. Soc., 71 (2005), 193-204.
[16] T. Shioya, Mass of rays in Alexandrov spaces of nonnegative curvature, Comment. Math. Helv., 69 (1994), 208-228.
[17] , Geometric analysis on Alexandrov spaces, to appear in Sugaku Expositions.
[18] K.-T. Sturm, Diffusion processes and heat kernels on metric spaces, Ann. Probab., 26 (1998), 1-55.
[19] _ On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65-131.
[20] _ , On the geometry of metric measure spaces. II, Acta Math., 196 (2006), 133-177.
[21] M. Watanabe, Local cut points and metric measure spaces with Ricci curvature bounded below, Pacific J. Math., 233 (2007), 229-256.

Kazuhiro Kuwae

Department of Mathematics and Engineering
Graduate School of Science and Technology
Kumamoto University
Kumamoto, 860-8555
Japan
Takashi Shioya
Mathematical Institute
Tohoku University
Sendai 980-8578
Japan
E-mail address: kuwae@gpo.kumamoto-u.ac.jp
shioya@math.tohoku.ac.jp

[^0]: Received January 9, 2009.
 Revised March 13, 2009.
 2000 Mathematics Subject Classification. Primary 53C20, 53C21, 53C23.
 Key words and phrases. Ricci curvature, Bishop-Gromov inequality.
 The authors are partially supported by a Grant-in-Aid for Scientific Research No. 19540220 and 20540058 from the Japan Society for the Promotion of Science.

