Topology of abelian pencils of curves

Mutsuo Oka

Abstract

. We study the geometry of a linear system of plane curves $C(\tau)(\tau \in$ $\mathbb{C})$ spanned by two irreducible curves C, C^{\prime} of degree d such that $\pi_{1}\left(\mathbb{P}^{2}-C \cup C^{\prime}\right)$ is abelian. We will show that the fundamental group $\pi_{1}\left(\mathbb{C}^{2}-C(\vec{\tau})\right)$ is isomorphic to $\mathbb{Z} \times F(r-1)$ for a generic $\vec{\tau}$ where $\vec{\tau}=\left(\tau_{1}, \ldots, \tau_{r}\right)$ and $C(\vec{\tau})=C\left(\tau_{1}\right) \cup \cdots \cup C\left(\tau_{r}\right)$.

§1. Introduction

Consider two irreducible plane curves $C: F(X, Y, Z)=0$ and C^{\prime} : $G(X, Y, Z)=0$ of the same degree d. Let $C \cap C^{\prime}=\left\{P_{1}, \ldots, P_{s}\right\}$ and let m_{i} be the local intersection number of C and C^{\prime} at P_{i}. We consider a linear family of curves (which we call simply a pencil of curves in this paper) :

$$
C(\tau): \quad \tau F(X, Y, Z)+(1-\tau) G(X, Y, Z)=0, \tau \in \mathbb{C}
$$

Choose a generic line at infinity $L_{\infty}: Z=0$ such that the affine space $\mathbb{C}^{2}:=\mathbb{P}^{2}-L_{\infty}$ contains all the base points $\left\{P_{1}, \ldots, P_{s}\right\}$. Our pencil is defined in this affine space by

$$
C(\tau): \quad \tau f(x, y)+(1-\tau) g(x, y)=0, \tau \in \mathbb{C}
$$

where $x=X / Z, y=Y / Z$ and $f(x, y)=F(x, y, 1), g(x, y)=G(x, y, 1)$. We consider a union of generic r curves in this pencil:

$$
C(\vec{\tau}):=C\left(\tau_{1}\right) \cup \cdots \cup C\left(\tau_{r}\right), \vec{\tau}=\left(\tau_{1}, \ldots, \tau_{r}\right)
$$

The parameters $\tau_{1}, \ldots, \tau_{r}$ are generic so that the topology of the pair $\left(\mathbb{P}^{2}, C(\vec{\tau})\right)$ does not depend on the choice of $\tau_{1}, \ldots, \tau_{r}$ (see $\S 3.1$). We call

Received November 2, 2007.
Revised July 15, 2008.
2000 Mathematics Subject Classification. 14H45, 14H30.
Key words and phrases. Generic pencil curves, abelian pencil of curves.
$C(\vec{\tau})$ a generic r-fold pencil curve of the pencil $C(\tau), \tau \in \mathbb{C}$. The pencil $C(\tau), \tau \in \mathbb{C}$ is called abelian if $\pi_{1}\left(\mathbb{P}^{2}-C\left(\tau_{1}\right) \cup C\left(\tau_{2}\right)\right)$ is abelian for any generic τ_{1}, τ_{2}. Then $\left.\pi_{1}\left(\mathbb{C}^{2}-C\left(\tau_{1}\right) \cup C\left(\tau_{2}\right)\right)\right)$ is also abelian, because L_{∞} is assumed to be generic and thus we can use the central extension of fundamental groups:

$$
1 \rightarrow \mathbb{Z} \rightarrow \pi_{1}\left(\mathbb{C}^{2}-C\left(\tau_{1}\right) \cup C\left(\tau_{2}\right)\right) \rightarrow \pi_{1}\left(\mathbb{P}^{2}-C\left(\tau_{1}\right) \cup C\left(\tau_{2}\right)\right) \rightarrow 1
$$

by [8]. We consider the d^{2}-fold branched covering:

$$
\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \quad \varphi(x, y)=(f(x, y), g(x, y))
$$

and we consider the pencil of lines: $L(\tau)=\{\tau x+(1-\tau) y=0\}, \tau \in \mathbb{C}$. Put

$$
L(\vec{\tau}):=L\left(\tau_{1}\right) \cup L\left(\tau_{2}\right) \cup \cdots \cup L\left(\tau_{r}\right), \vec{\tau}=\left(\tau_{1}, \ldots, \tau_{r}\right)
$$

Then we see that $\varphi^{-1}(L(\vec{\tau}))=C(\vec{\tau})$. Our main result is:

$$
\varphi_{\sharp}: \pi_{1}\left(\mathbb{C}^{2}-C(\vec{\tau})\right) \rightarrow \pi_{1}\left(\mathbb{C}^{2}-L(\vec{\tau})\right)
$$

is an isomorphism, if $C(\tau), \tau \in \mathbb{C}$ is an abelian pencil. In particular, $\pi_{1}\left(\mathbb{C}^{2}-C(\vec{\tau})\right) \cong \mathbb{Z} \times F(r-1)$ and $C(\vec{\tau})(\tau \in \mathbb{C})$ is of a non-torus type and the Alexander polynomial of $C(\vec{\tau})$ is given by $\left(t^{r}-1\right)^{r-2}(t-1)$ (Main Theorem 7).

§2. Preliminaries

2.1. Taylor expansions and intersection numbers

Suppose that we have two smooth germs of curves at the origin $o=(0,0): C: f(x, y)=0$ and $C^{\prime}: g(x, y)=0$ and let $y=\varphi(x)$ be the solution of $f(x, y)=0$ in y, assuming that $\frac{\partial f}{\partial y}(0,0) \neq 0$. Then the local intersection number, denoted as $I\left(C, C^{\prime} ; o\right)$, is defined to be $\operatorname{ord}_{x} g(x, \varphi(x))$. Suppose that $y=\psi(x)$ is the solution of $g(x, y)=0$ and consider their Taylor expansions:

$$
\varphi(x)=t_{1} x+t_{2} x^{2}+\ldots, \quad \psi(x)=s_{1} x+s_{2} x^{2}+\ldots
$$

and put $m=\min \left\{j \mid t_{j} \neq s_{j}\right\}$. Then we have $I\left(C, C^{\prime} ; o\right)=m$.

2.2. Alexander polynomial

Let $C(\tau)$ be a pencil of smooth curves of degree d with base points P_{1}, \ldots, P_{s}. Let m_{i} be the intersection multiplicity of two pencil lines $C(\tau)$ and $C\left(\tau^{\prime}\right)$ at P_{i}. We consider a generic r-fold pencil curve $C(\vec{\tau})$. Take local coordinates $\left(u_{i}, w_{i}\right)$ at P_{i} and let $w_{i}=\phi_{i, 0}\left(u_{i}\right)$ be the solution
of $f(x, y, \tau)=0$ in w_{i}. Change the local coordinates at P_{i} as $\left(u_{i}, v_{i}\right)$, where $v_{i}:=w_{i}-\varphi_{i, 0}\left(u_{i}\right)$. Then the local defining equation of $C(\vec{\tau})$ is given by

$$
\prod_{i=1}^{r}\left(v_{i}-c_{i}\left(\tau_{i}\right) u_{i}^{m_{i}}\right)+(\text { higher terms })=0
$$

and the Newton boundary is non-degenerate and the weight vector is given by ${ }^{t}\left(1, m_{i}\right)$, which is independent of r. The local adjunction ideal $\mathcal{I}_{k}\left(P_{i}\right) \subset \mathcal{O}_{P_{i}}$ is given by the following equality ($\left.[1,10,11]\right)$:

$$
\mathcal{I}_{k}\left(P_{i}\right)=\left\langle u_{i}^{a} v_{i}^{b} \mid a+m_{i} b \geq \alpha_{i, k}\right\rangle, \alpha_{i, k}:=\left[\frac{k m_{i}}{d}\right]-m_{i} .
$$

An important observation here is that $\alpha_{i, k}$ does not depend on r. Put

$$
\mathcal{O}(1, s)=\oplus_{i=1}^{s} \mathcal{O}_{P_{i}}, \quad V_{k}\left(P_{i}\right)=\mathcal{O}_{P_{i}} / \mathcal{I}_{k}\left(P_{i}\right), \quad V_{k}(1, s)=\oplus_{i=1}^{s} V_{k}\left(P_{i}\right)
$$

Let $O(j)$ be the set of polynomials in x, y whose degree is less than or equal to j. We consider the following canonical mappings:

$$
\sigma_{k, i},: O(k-3) \rightarrow \mathcal{O}_{P_{i}}, \sigma_{k}:=\oplus \sigma_{k, i}: O(k-3) \rightarrow \oplus_{i=1}^{s} \mathcal{O}_{P_{i}}
$$

We denote the composites $O(k-3) \rightarrow \mathcal{O}_{P_{i}} \rightarrow V_{k}\left(P_{i}\right)$ by $\bar{\sigma}_{k, i}$ and their direct sum $O(k-3) \rightarrow \mathcal{O}(1, s) \rightarrow V_{k}(1, s)$ by $\bar{\sigma}_{k}$ respectively:

$$
\bar{\sigma}_{k, i},: O(k-3) \rightarrow V_{k}\left(P_{i}\right), \bar{\sigma}_{k}:=\oplus \sigma_{k, i}: O(k-3) \rightarrow V_{k}(1, s) .
$$

For positive integers n, j with $0<j<n$, we put

$$
\Delta_{n, j}=\left(t-\exp \left(\frac{2 \pi j \sqrt{-1}}{n}\right)\right)\left(t-\exp \left(\frac{2 \pi(n-j) \sqrt{-1}}{n}\right)\right)
$$

Then the Alexander polynomial of $C(\vec{\tau})$ is given as follows (see $[1,6]$).

Lemma 1.

$$
\begin{equation*}
\Delta_{C(\vec{r})}(t)=(t-1)^{r-1} \prod_{j=1}^{r d-1} \Delta_{r d, j}(t)^{\ell_{j}} \tag{1}
\end{equation*}
$$

where the multiplicity ℓ_{j} is given by the dimension of the cokernel of $\bar{\sigma}_{j}$.

2.3. Fox calculus.

Let X be a path-connected topological space. Suppose that φ : $\pi_{1}(X) \rightarrow \mathbf{Z}$ is a given surjective homomorphism. Assume that $\pi_{1}(X)$ has a finite presentation:

$$
\pi_{1}(X) \cong\left\langle x_{1}, \ldots, x_{n} \mid R_{1}, \ldots, R_{m}\right\rangle
$$

where R_{i} is a word of x_{1}, \ldots, x_{n}. This implies that we have a surjective homomorphism $\psi: F(n) \rightarrow \pi_{1}(X)$ where $F(n)$ is a free group of rank n, generated by x_{1}, \ldots, x_{n} and the kernel of ψ is normally generated by R_{1}, \ldots, R_{m}. Consider the group ring of $F(n)$ with \mathbb{C}-coefficients $\mathbb{C}[F(n)]$. The Fox differential

$$
\frac{\partial}{\partial x_{j}}: \mathbb{C}[F(n)] \rightarrow \mathbb{C}[F(n)]
$$

is a \mathbb{C}-linear map which is characterized by the following property on words:

$$
\frac{\partial}{\partial x_{j}} x_{i}=\delta_{i, j}, \quad \frac{\partial}{\partial x_{j}}(u v)=\frac{\partial u}{\partial x_{j}}+u \frac{\partial v}{\partial x_{j}}, u, v \in F(n) \subset \mathbb{C}[F(n)] .
$$

The composite $\varphi \circ \psi: F(n) \rightarrow \mathbf{Z}$ gives a ring homomorphism γ : $\mathbb{C}[F(n)] \rightarrow \mathbb{C}\left[t, t^{-1}\right]$. The Alexander matrix A is the $m \times n$ matrix with coefficients in $\mathbb{C}\left[t, t^{-1}\right]$ whose (i, j)-component is given by $\gamma\left(\frac{\partial R_{i}}{\partial x_{j}}\right)$. Then it is known that the Alexander polynomial $\Delta(t)$ is given by the greatest common divisor of the $(n-1)$-minors of $A([2])$.

2.4. A smooth pencil of curves

Let $C(\tau): F(X, Y, Z, \tau)=0, \tau \in \mathbb{C}$ be a linear family of curves of degree d. The linear family $C(\tau), \tau \in \mathbb{C}$ is called a smooth pencil of curves of degree d with the base point P_{1}, \ldots, P_{s} and the respective intersection multiplicities m_{1}, \ldots, m_{s}, if it satisfies the following conditions.
(1) For a generic $\tau, C(\tau)$ is an irreducible smooth plane curve of degree d. (This means $C(\tau)$ is smooth except for a finite number of parameters.)
(2) Every curve $C(\tau)$ passes through the base points P_{1}, \ldots, P_{s} and the local intersection number $I\left(C(\tau), C\left(\tau^{\prime}\right) ; P_{i}\right)$ is equal to m_{i} for any $\tau \neq \tau^{\prime}$ and $i=1, \ldots, s$ and the equality $\sum_{i=1}^{s} m_{i}=d^{2}$ holds.
The following is an immediate result of the definition.
Proposition 2. Assume that $C_{1}: F(X, Y, Z)=0$ and $C_{2}: G(X, Y$, $Z)=0$ are two smooth irreducible curves of degree d and let $C_{1} \cap C_{2}=$ $\left\{P_{1}, \ldots, P_{s}\right\}$ and put $m_{i}=I\left(C_{1}, C_{2} ; P_{i}\right), i=1, \ldots, s$. Then the pencil of curves

$$
C(\tau): \tau F(X, Y, Z)+(1-\tau) G(X, Y, Z)=0, \tau \in \mathbb{C}
$$

is a smooth pencil with the base points P_{1}, \ldots, P_{s} and the respective intersection numbers are m_{1}, \ldots, m_{s}. Conversely any smooth pencil $C(\tau)$ is given in this way by choosing two smooth curves in the pencil.

A smooth pencil $C(\tau), \tau \in \mathbb{C}$ is called of a strict non-torus type if $\bar{\sigma}_{j}: O(j-3) \rightarrow V_{j}(1, s)$ is surjective for $j<2 d$ and dim Coker $\bar{\sigma}_{2 d}=1$. In [12], we used terminology "a pencil of a non-torus type" for a pencil of a strict non-torus type. As it might be confused with a curve of a non-torus type, we change the terminology to "pencil of a strict nontorus type". In [12] we have shown the following. For $\vec{\tau}=\left(\tau_{1}, \ldots, \tau_{r}\right)$ with a positive integer r, put $C(\vec{\tau}):=C\left(\tau_{1}\right) \cup \cdots \cup C\left(\tau_{r}\right)$ as before.

Theorem 3. ([12]) Assume that $C(\tau), \tau \in \mathbb{C}$ be a smooth pencil of curves of a strict non-torus type. Then the generic Alexander polynomial of $C(\vec{\tau})$ is given by $\left(t^{r}-1\right)^{r-2}(t-1)$.

Remark 4. For a pencil $C(\tau), \tau \in \mathbb{C}$ to be of a strict non-torus type, it is necessary that each curve $C(\tau)$ is a curve of a non-torus type. However the sufficiency is not clear. Recall that $C(\tau)$ is a curve of a torus type if it can be defined by a polynomial of the type $F_{n}^{p}(X, Y, Z)+$ $F_{m}^{q}(X, Y, Z)=0$ with $n p=m q=\operatorname{deg} C(\tau), 1<p<q$ and F_{n}, F_{m} are homogeneous polynomials of degree n, m respectively.

2.5. A central line arrangement

Consider a central line arrangement of r lines $L^{(r)}=\bigcup_{i=1}^{r} L_{i}$ in \mathbb{C}^{2}. The topology of the complement does not depend on the choice of the lines L_{1}, \ldots, L_{r}. We may assume that

$$
L^{(r)}: \quad y^{r}-x^{r}=0
$$

The fundamental group $G^{(r)}=\pi_{1}\left(\mathbb{C}^{2}-L^{(r)}\right)$ can be easily computed using the van Kampen-Zariski pencil method ([15]) as follows.

$$
G^{(r)}:=\left\langle g_{1}, \ldots, g_{r}, \omega \mid \omega=g_{r} g_{r-1} \cdots g_{1}, \omega g_{i}=g_{i} \omega, i=1, \ldots, r\right\rangle
$$

Eliminating either g_{r} or ω, we have two equivalent presentations

$$
\begin{align*}
& G^{(r)}=\left\langle g_{1}, \ldots, g_{r-1}, \omega \mid g_{i} \omega=\omega g_{i}, i=1, \ldots, r-1\right\rangle \tag{2}\\
& \quad=\left\langle g_{1}, \ldots, g_{r} \mid g_{r} g_{r-1} \cdots g_{1}=g_{r-1} \cdots g_{1} g_{2}=\cdots=g_{1} g_{r} \cdots g_{2}\right\rangle
\end{align*}
$$

where the generators are taken in the line $x=1$ as in Figure 1, where the bullets denote small loops which are oriented counterclockwise around the center. We call such loops lassos for $L^{(r)}$. The Alexander polynomial of $L^{(r)}$ is given by

$$
\Delta_{L^{(r)}}(t)=\left(t^{r}-1\right)^{r-2}(t-1)
$$

This can be obtained either by the Fox calculus from the above presentation, or by Lemma 1. This also follows from a result of Randell [13].

Fig. 1. Generators in $x=1$

By the above presentation (2), we get
Proposition 5. $G^{(r)}$ is isomorphic to $\mathbb{Z} \times F(r-1)$, where $F(r-1)$ is a free group generated by g_{1}, \ldots, g_{r-1} and $\omega:=g_{r} \cdots g_{1}$ is in the center and ω generates the first factor \mathbb{Z}.

§3. Abelian pencil and the main result

Let $C(\tau), \tau \in \mathbb{C}$ be a pencil of curves of degree d, defined by

$$
\begin{equation*}
C(\tau): \quad \tau F(X, Y, Z)+(1-\tau) G(X, Y, Z)=0, \quad \tau \in \mathbb{C} \tag{4}
\end{equation*}
$$

with the base points P_{1}, \ldots, P_{s} and assume that $I\left(C(\tau), C\left(\tau^{\prime}\right) ; P_{i}\right)=m_{i}$ for $i=1, \ldots, s$ and $\tau \neq \tau^{\prime}$. This implies that $\sum_{i=1}^{s} m_{i}=d^{2}$. We assume that two generating curves $C(0), C(1)$ are irreducible.

3.1. Generic pencil curves

Let C be a reduced curve in \mathbb{P}^{2}. The sum of the local Milnor numbers $\mu(C, P)$ for all the singular points P of C is called the total Milnor number of C and we denote it by $\mu(C)$. Let $C(\tau), \tau \in \mathbb{C}$ be the above pencil of curves which is not necessarily smooth. Note that if the generating
curves $C(0)$ and $C(1)$ have singularities simultaneously at some base point P_{i}, every pencil curve $C(\tau)$ has also a singularity at P_{i}. A curve in the pencil $C(\tau)$ is called generic if the total Milnor number $\mu(C(\tau))$ is minimal among all pencil curves. If $C(\tau)$ is generic, it is irreducible. Furthermore by the upper-semicontinuity of the local Milnor number, a generic curve $C(\tau)$ is smooth outside of the base points $\left\{P_{1}, \ldots, P_{s}\right\}$ and $\mu\left(C(\tau), P_{i}\right) \leq \mu\left(C(t), P_{i}\right)$ for any $t \in \mathbb{C}$ and $i=1, \ldots, s$. Let $U_{1} \subset \mathbb{C}$ be the set of parameters τ such that $C(\tau)$ is generic. Then $\mathbb{C}-U_{1}$ contains only finite points. This follows from Bertini's theorem (see for example [4]). Now consider the set:

$$
U_{r}:=\left\{\left(\tau_{1}, \ldots, \tau_{r}\right) \in \mathbb{C}^{r} \mid \tau_{i} \in U_{1}(i=1, \ldots, r), \tau_{i} \neq \tau_{j}, \text { if } i \neq j\right\}
$$

An r-fold pencil curve $C(\vec{\tau})$ is called generic if $\vec{\tau} \in U_{r}$.
For the affine case, we fix a line at infinity L_{∞} and we ask further the transversality condition. Thus we say that $C(\tau)$ is affine generic if $\tau \in U_{1}$ and $C(\tau)$ intersects L_{∞} transversely. An r-fold curve $C(\vec{\tau})$ is affine generic if $\vec{\tau} \in U_{r}$ and $C(\vec{\tau})$ intersects L_{∞} transversely.

Assertion 6. The topology of $\left(\mathbb{P}^{2}, C(\vec{\tau})\right)$ is independent of $\vec{\tau} \in U_{r}$. Similarly the topology of $\left(\mathbb{C}^{2}, C(\vec{\tau}) \cap \mathbb{C}^{2}\right)$ is independent of an affine generic curve $C(\vec{\tau})$.

Proof. First by the definition of U_{1}, the local Milnor numbers $\mu\left(C(\tau), P_{i}\right), \tau \in U_{1}$ is constant. Thus by a result of D.T. Lê ([5]), the local embedded topology of $\left(C(\tau), P_{i}\right)$ (and also the global embedded topology in \mathbb{P}^{2}) is independent of $\tau \in U_{1}$. Suppose that $\mu\left(C(\tau), P_{i}\right)>0$. Assume that $C(\tau)_{i, 1}, \ldots, C(\tau)_{i, r_{i}}$ be the local irreducible components of the germ $\left(C(\tau), P_{i}\right)$. Note that r_{i} is independent of $\tau \in U_{1}$ by the topological equivalence of the germs $\left(C(\tau), P_{i}\right)$ for $\tau \in U_{1}$ and the germs $\left(C(\tau)_{i, j}, P_{i}\right), \tau \in U_{1}$ are topologically equivalent for any fixed $j, 1 \leq j \leq r_{i}$.

Now we consider the germs of a curve $\left(C(\vec{\tau}), P_{i}\right)$ for $\vec{\tau} \in U_{r}$. Irreducible components are $\left\{C\left(\tau_{a}\right)_{a, j} \mid 1 \leq a \leq r, 1 \leq j \leq r_{a}\right\}$. First observe that the local intersection number $I\left(C\left(\tau_{a}\right), C\left(\tau_{b}\right) ; P_{i}\right)$ is constant and equal to m_{i} by the assumption. By the equality

$$
I\left(C\left(\tau_{a}\right), C\left(\tau_{b}\right) ; P_{i}\right)=\sum_{j, k=1}^{r_{i}} I\left(C\left(\tau_{a}\right)_{i, j}, C\left(\tau_{b}\right)_{i, k} ; P_{i}\right), 1 \leq a<b \leq r
$$

and by the upper-semicontinuity of the local intersection numbers, the local intersection numbers $I\left(C\left(\tau_{a}\right)_{i, j}, C\left(\tau_{b}\right)_{i, k} ; P_{i}\right), \vec{\tau} \in U_{r}$ are constant for $a \neq b$ and fixed j, k. Certainly $I\left(C\left(\tau_{a}\right)_{i, j}, C\left(\tau_{a}\right)_{i, k} ; P_{i}\right)$ are independent of $\tau_{a} \in U_{1}$. Thus the local intersection numbers of irreducible components of $\left(C(\vec{\tau}), P_{i}\right)$ are independent of $\vec{\tau} \in U_{r}$ and therefore $\left(C(\vec{\tau}), P_{i}\right)$
$\left(\vec{\tau} \in U_{r}\right)$ is a topologically equivalent family with a constant local Milnor numbers $\mu\left(C(\vec{\tau}), P_{i}\right)$ by Theorem 3.1 ([5]). Thus the family of curves $C(\vec{\tau}), \vec{\tau} \in U_{r}$ is a topologically equivalent family of curves in \mathbb{P}^{2}. The second assertion is proved similarly.
Q.E.D.

3.2. Main result

Recall that the pencil $C(\tau)(\tau \in \mathbb{C})$ is called abelian if $\pi_{1}\left(\mathbb{P}^{2}-C\left(\tau_{1}\right) \cup\right.$ $C\left(\tau_{2}\right)$) is abelian for any pair of generic pencil curves $C\left(\tau_{1}\right), C\left(\tau_{2}\right)$. Take a generic line at infinity $L_{\infty}: Z=0$ for $C\left(\tau_{1}\right) \cup C\left(\tau_{2}\right)$ and put $f(x, y)=$ $F(x, y, 1)$ and $g(x, y)=G(x, y, 1)$ so that $C(\tau)$ is defined by $\tau f(x, y)+$ $(1-\tau) g(x, y)=0$ in \mathbb{C}^{2}. Now we can state our main result of this paper. We consider the d^{2}-fold branched covering:

$$
\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \quad \varphi(x, y)=(f(x, y), g(x, y))
$$

We also consider the following central line arrangement

$$
L(\vec{\tau})=L\left(\tau_{1}\right) \cup L\left(\tau_{2}\right) \cup \cdots \cup L\left(\tau_{r}\right), \vec{\tau}=\left(\tau_{1}, \ldots, \tau_{r}\right)
$$

where $L(\tau)$ is defined by $\tau x+(1-\tau) y=0$.
Main Theorem 7. Let $C(\tau), \tau \in \mathbb{C}$ be an abelian pencil of curves of degree d. Let r be a positive integer and $C(\vec{\tau})$ be an affine generic r-fold pencil curve. Then $\varphi:\left(\mathbb{C}^{2}, C(\vec{\tau})\right) \rightarrow\left(\mathbb{C}^{2}, L(\vec{\tau})\right)$ induces an isomorphism of the fundamental groups

$$
\varphi_{\sharp}: \pi_{1}\left(\mathbb{C}^{2}-C(\vec{\tau})\right) \rightarrow \pi_{1}\left(\mathbb{C}^{2}-L(\vec{\tau})\right)=G^{(r)}
$$

In particular, the Alexander polynomial of a generic curve $C(\vec{\tau})$ is given by $\left(t^{r}-1\right)^{r-2}(t-1)$ and $C(\vec{\tau})$ is a curve of a non-torus type.

Proposition-Remark 8. Assume that $C(\tau), \tau \in \mathbb{C}$ is a smooth abelian pencil. The second assertion $\Delta_{C(\vec{\tau})}=\left(t^{r}-1\right)^{r-2}(t-1)$ of Main Theorem 7 follows from the surjectivity of φ_{\sharp}.

Proof. We only use the surjectivity of φ_{\sharp} which is easy to be proved (see Appendix 4.3). In fact, assume that $r=3$. The surjectivity of φ_{\sharp} implies the divisibility of $\Delta_{C(\vec{\tau})}(t)$ by $\Delta_{L(\vec{\tau})}(t)=\left(t^{3}-1\right)(t-1)$. On the other hand, we will show show in the next section that $\pi_{1}\left(\mathbb{C}^{2}-C(\vec{\tau})\right)$ is generated by three lasso generators g, h, k and they satisfy the relations $[g, k h]=[g k, h]=e$ where $[\alpha, \beta]=\alpha \beta \alpha^{-1} \beta^{-1}$. On the other hand, the abstract group

$$
G=\langle g, k, h \mid[g, k h]=[g k, h]=e\rangle
$$

has the Alexander polynomial $\left(t^{3}-1\right)(t-1)$ (with respect to the canonical surjection $\phi: G \rightarrow \mathbb{Z}, g, k, h \mapsto 1)$ which can be proved by a Fox calculus. As the presentation of $\pi_{1}\left(\mathbb{C}^{2}-C(\vec{\tau})\right)$ is obtained from G by adding some more relations, $\Delta_{C(\vec{\tau})}(t)$ divides $\Delta_{G}(t)=\left(t^{3}-1\right)(t-1)$. Thus $\Delta_{C(\vec{\tau})}(t)=\left(t^{3}-1\right)(t-1)$ and the assertion is true for $r=3$. Now this implies that $\bar{\sigma}_{j}: O(j-3) \rightarrow V_{j}(1, s)$ is surjective for $j<2 d$ and $\bar{\sigma}_{2 d}$ has 1 dimensional cokernel by Lemma 1 and therefore $C(\tau), \tau \in \mathbb{C}$ is a smooth pencil of a strict non-torus type. Now the assertion follows from Theorem 3.
Q.E.D.

Remark 9. Shimada has considered curves which are pull backs of weighted homogeneous hypersurfaces by polynomial mappings from \mathbb{P}^{2} to \mathbb{P}^{n} and also their fundamental groups ([14]). See also Oka [9].

§4. Proof of the main theorem

In this section, we prove Main Theorem 7.

4.1. Computation of the monodromy relations.

Consider a pencil of curves

$$
C(\tau):(1-\tau) G(X, Y, Z)+\tau F(X, Y, Z)=0, \tau \in \mathbb{C}
$$

as before which is generated by two irreducible curves $C(1)=\{F(X, Y$, $Z)=0\}$ and $C(0)=\{G(X, Y, Z)=0\}$ of degree d. We may assume that $C(\tau)$ is generic for any $\tau, 0 \leq \tau \leq 1$, changing $C(0), C(1)$ if necessary. This can be done as follows. Take a generic curve $C\left(t_{1}\right)$ and choose a generic line at infinity L_{∞} for $C\left(t_{1}\right)$ and fix it. Then choose $\varepsilon>0$ so that $C(\tau)$ is affine generic for any $\tau,\left|\tau-t_{1}\right| \leq \varepsilon$. Replace $C(0)$ by $C\left(t_{1}\right)$ and $C(1)$ by $C\left(t_{1}+\varepsilon\right)$ and reparametrize the pencil. Let $C^{(2)}:=C(0) \cup C(1)$ and $C^{(3)}(\tau)=C^{(2)} \cup C(\tau)$. Thus the base points $P_{j}(j=1, \ldots, s)$ are in the affine part $C(\tau) \cap \mathbb{C}^{2}$. We consider the pencil of lines $L_{\eta}:=\{x=\eta\}$ to compute the fundamental group. Take a generic member of the pencil line $L_{\eta_{0}}$ and we fix η_{0}. Put

$$
C(0) \cap L_{\eta_{0}}=\left\{\rho_{1}, \ldots, \rho_{d}\right\}, \quad C(1) \cap L_{\eta_{0}}=\left\{\xi_{1}, \ldots, \xi_{d}\right\} .
$$

Note that $\rho_{j} \neq \xi_{i}$ for any $1 \leq i, j \leq d$. We take generators $\left\{g_{j}, h_{j} \mid j=\right.$ $1, \ldots, d\}$ of $\pi_{1}\left(L_{\eta_{0}}-L_{\eta_{0}} \cap C^{(2)}\right)$ where g_{1}, \ldots, g_{d} (respectively h_{1}, \ldots, h_{d}) are lassos of $C(0)$ (resp. of $C(1))$) and g_{j}, h_{j} are given as in Figure 2. The oriented arc ℓ_{j} and the disk D_{j} are explained in Observation 11. Hereafter every lasso has the counterclockwise orientation.

Fig. 2. Generators g_{j}, h_{j} in $L_{\eta_{0}}$

As we have assumed that $\pi_{1}\left(\mathbb{P}^{2}-C^{(2)}\right)$ is abelian and the line at infinity L_{∞} is generic, $\pi_{1}\left(\mathbb{C}^{2}-C^{(2)}\right)$ is abelian and isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$ (see [8]). Thus we may assume that our generators satisfy the following relations:

$$
(A b) \quad g_{1}=\cdots=g_{d}, \quad h_{1}=\cdots=h_{d}, \quad\left[g_{1}, h_{1}\right]=e
$$

where $\left[g_{1}, h_{1}\right]=g_{1} h_{1} g_{1}^{-1} h_{1}^{-1}$. Let $\Sigma_{2}=\left\{\eta \mid L_{\eta}\right.$ singular $\}$ and put $\Sigma_{2}=$ $\left\{\alpha_{1}, \ldots, \alpha_{\nu}\right\}$. (We say that L_{η} is called a singular line if $\sharp\left(C^{(2)} \cap L_{\eta}\right)<$ $2 d$ ([3]).) We may assume, for simplicity, that the tangent cones of $C(0), C(1)$ at P_{i} are transversal to the vertical line passing through $P_{i}, i=1, \ldots, s$. Thus we can write $\Sigma_{2}=\Sigma_{c} \amalg \Sigma_{t}$ such that $\Sigma_{c}=$ $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$ and $\Sigma_{t}=\left\{\alpha_{s+1}, \ldots, \alpha_{\nu}\right\}$. The line $L_{\alpha_{j}}$ passes through P_{j} for $j=1, \ldots, s$. (So α_{i} is the x-coordinate of P_{i} for $1 \leq i \leq s$.) For $\alpha_{j} \in$ $\Sigma_{t}, L_{\alpha_{j}}$ is tangent to either $C(0)$ or $C(1)$. We take generators $\beta_{1}, \ldots, \beta_{\nu}$ of $\pi_{1}\left(\mathbb{C}-\Sigma_{2}, \eta_{0}\right)$. We assume that these generators are presented by disjoint lassos around $\alpha_{j}, 1 \leq j \leq \nu$. We recall how the monodromy action of $\pi_{1}\left(\mathbb{C}-\Sigma_{2}, \eta_{0}\right)$ on $\pi_{1}\left(L_{\eta_{0}}-C^{(2)}\right)$ is defined. Take a base point $b_{0}=\left(\eta_{0}, y_{0}\right) \in L_{\eta_{0}}-C^{(2)}$ for the fundamental group $\pi_{1}\left(\mathbb{C}^{2}-C^{(2)}\right)$. We assume that y_{0} is purely imaginary and the imaginary part of y_{0} is positive and sufficiently large so that b_{0} is near enough to the base point of the pencil $[0: 1: 0]$. We take y as the coordinate function of each pencil line L_{η}. Fix a cross section $\gamma: \mathbb{C} \rightarrow \mathbb{C}^{2}-C^{(2)}$ of the projection p : $\mathbb{C}^{2} \rightarrow \mathbb{C},(x, y) \mapsto x$, so that $\gamma\left(\eta_{0}\right)=b_{0}$. We assume that the generator β_{i} (considered as a lasso) is presented as $\beta_{i}=B_{i} \cdot S_{i} \cdot B_{i}^{-1}$, where S_{i} is an oriented circle of the radius $\delta>0$ centered at α_{i} and a simple path
B_{i} joins η_{0} and $\alpha_{i}^{\prime} \in S_{i}$. We assume that $B_{i} \cap B_{j}=\left\{\eta_{0}\right\}$ for $i \neq j$ and the circles S_{1}, \ldots, S_{ν} are disjoint. The loop β_{i} can be lifted to a loop $\hat{\beta}_{i}$ in $\mathbb{C}^{2}-C^{(2)}$ by $\hat{\beta}_{i}(t)=\gamma\left(\beta_{i}(t)\right)$ and we have a family of diffeomorphisms $\varphi_{i, t}:\left(L_{\eta_{0}}, C^{(2)} \cap L_{\eta_{0}}, b_{0}\right) \rightarrow\left(L_{\beta_{i}(t)}, C^{(2)} \cap L_{\beta_{i}(t)}, \gamma\left(\beta_{i}(t)\right)\right), 0 \leq t \leq 1$, by the local triviality of the projection $p:\left(\mathbb{C}^{2}, C^{(2)} \cup \gamma(\mathbb{C})\right) \rightarrow \mathbb{C}$ over $\mathbb{C}-\Sigma_{2}$. Then the actions $g_{j}^{\beta_{i}}, h_{j}^{\beta_{i}}$ of β_{i} on g_{j}, h_{j} are simply given by $\varphi_{i, 1} \circ g_{j}$ and $\varphi_{i, 1} \circ h_{j}$. The monodromy relations are given by

$$
g_{j}^{\beta_{i}}=g_{j}, h_{j}^{\beta_{i}}=h_{j}, j=1, \ldots, d
$$

which are the result of the homotopies

$$
\begin{aligned}
& g_{j} \underset{F}{\widetilde{F}}\left(\hat{\beta}_{i}\right)^{-1} \cdot g_{j} \cdot \hat{\beta}_{i} \underset{\widetilde{H}}{\simeq} \varphi_{i, 1} \circ g_{j}=g_{j}^{\beta_{i}} \\
& h_{j} \underset{F}{\widetilde{F}}\left(\hat{\beta}_{i}\right)^{-1} \cdot h_{j} \cdot \hat{\beta}_{i} \underset{H}{\widetilde{H}} \varphi_{i, 1} \circ h_{j}=h_{j}^{\beta_{i}} .
\end{aligned}
$$

(The multiplication of paths starts from the left side.) For the construction of the homotopy F, we only need to observe that $\hat{\beta}_{i} \simeq c_{b_{0}}$ on $\gamma(\mathbb{C})$ where $c_{b_{0}}$ is the constant loop. For the construction of H, we use the composite of g_{j} by $\varphi_{i, t}$ as follows. Put J_{s} be the path from $\hat{\beta}_{i}(s)$ to $\hat{\beta}_{i}(1)=b_{0}$ along the lift $\hat{\beta}_{i}$. Then the deformation of $\left(\hat{\beta}_{i}\right)^{-1} \cdot g_{j} \cdot \hat{\beta}_{i}$ at level $s\left(=\left.H\right|_{I \times\{s\}}\right)$ is given by $J_{s}^{-1} \cdot\left(\varphi_{i, s} \circ g_{j}\right) \cdot J_{s}$. Thus we observe that

Observation 10. The monodromy relations $g_{j}=g_{j}^{\beta_{i}}, h_{j}=h_{j}^{\beta_{i}}, 1 \leq$ $i \leq \nu, 1 \leq j \leq d$ are obtained on the subspace $p^{-1}\left(K_{i}\right) \cup \gamma(\mathbb{C})$ where $K_{i}=B_{i} \cup S_{i}$ and $p: \mathbb{C}^{2} \rightarrow \mathbb{C}$ is the projection $(x, y) \mapsto x$.

Now we consider the compact set $K=\bigcup_{i=1}^{\nu}\left(B_{i} \cup S_{i}\right) \subset \mathbb{C}-\Sigma_{2}$ and $T=\bigcup_{i=1}^{\nu} B_{i}$. We have observed that the monodromy relations $(A b)$ are obtained in the subspace $p^{-1}(K) \cup \gamma(\mathbb{C})$, using the pencil lines L_{η}, $\eta \in K$. Note that T is contractible.

For the sake of later arguments, we introduce the following notion. Put $C^{(2)} \cap L_{\eta}=\left\{\rho_{1}(\eta), \xi_{1}(\eta), \ldots, \rho_{d}(\eta), \xi_{d}(\eta)\right\}$ for $\eta \in T$. We can choose $\rho_{j}(\eta)$ and $\xi_{j}(\eta)$ to be continuous on T and $\rho_{j}\left(\eta_{0}\right)=\rho_{j}, \xi\left(\eta_{0}\right)=\xi_{j}$. Let $S_{j, 0}(\eta), S_{j, 1}(\eta)$ be the circle of the radius ε_{0} with the center $\rho_{j}(\eta), \xi_{j}(\eta)$ in L_{η} respectively. We can choose a sufficiently small number ε_{0} so that the circles $\left\{S_{j, 0}(\eta), S_{j, 1}(\eta) \mid j=1, \ldots, d\right\}$ are disjoint for any $\eta \in T$, as T is compact. Take a temporary base point $b_{j}^{\prime}(\eta), b_{j}(\eta)$ on $S_{j, 0}(\eta), S_{j, 1}(\eta)$ respectively. Choose simple paths $M_{j}^{\prime}\left(\eta_{0}\right), M_{j}\left(\eta_{0}\right)$ which connect b_{0} to $b_{j}^{\prime}\left(\eta_{0}\right)$ and b_{0} to $b_{j}\left(\eta_{0}\right)$ respectively. By the triviality of the projection $p:\left(\mathbb{C}^{2}, C^{(2)} \cup \gamma(\mathbb{C})\right) \rightarrow \mathbb{C}$ over T, we may choose a continuous family of $M_{j}^{\prime}(\eta), M_{j}(\eta)$ for any $\eta \in T$. Consider the lassos $M_{j}^{\prime}(\eta) \cdot S_{j, 0}(\eta) \cdot M_{j}^{\prime}(\eta)^{-1}$

Fig. 3. The compact subsets K and T
and $M_{j}(\eta) \cdot S_{j, 1}(\eta) \cdot M_{j}(\eta)^{-1}$. The temporary base point $\gamma(\eta)$ can be connected to the base point $b_{0}=\gamma\left(\eta_{0}\right)$ in the obvious way by the path $\hat{\beta}_{i}$ for $\eta \in K_{i}$. We call such lassos continuous families of lassos of the radius ε_{0} over T.

Now we are ready to consider $\pi_{1}\left(\mathbb{C}^{2}-C^{(r)}(\tau)\right)$ for $r \geq 3$.
4.1.1. Case $r=3$ We first consider the case $r=3$, as the argument for $r>3$ is exactly the same with the case $r=3$.

We may assume that $C(0), C(1)$ are near enough so that there exist small disjoint disks $D_{j}, j=1, \ldots, d$ of the radius ε_{1} in the line $L_{\eta_{0}}$ with $\rho_{j}, \xi_{j} \in D_{j}$. For this, we take $C(\varepsilon)$ with sufficiently small $\varepsilon>0$ and replace $C(1)$ by $C(\varepsilon)$. Recall that $S_{j, 0}\left(\eta_{0}\right), S_{j, 1}\left(\eta_{0}\right)$ are ε_{0} disks. Taking again new ε_{0} small enough if necessary, we may assume that $\operatorname{Int} D_{j} \supset S_{j, 0}\left(\eta_{0}\right) \cup S_{j, 1}\left(\eta_{0}\right)$ where $\operatorname{Int} D_{j}$ is the interior of D_{j}. Put $C(\tau) \cap L_{\eta_{0}}=\left\{\theta_{1}(\tau), \ldots, \theta_{d}(\tau)\right\}$ in a suitable order. We may assume that $\theta_{j}(\tau) \in \operatorname{Int} D_{j}$ for any $0 \leq \tau \leq 1$.

Now we consider the following path:

$$
\ell_{j}:[0,1] \rightarrow D_{j}, t \mapsto \theta_{j}(t)
$$

We identify ℓ_{j} with the image of ℓ_{j} in D_{j}. A key observation is:
Key Observation 11. ℓ_{j} is a simple path joining ρ_{j} and ξ_{j} in $\operatorname{Int} D_{j}$.
Proof. In fact, assume that there exists a multiple point Q_{j} of ℓ_{j}. This implies that there exist two different times $t=t_{1}, t_{2}$ with $0 \leq t_{1}<t_{2} \leq 1$ such that $Q_{j} \in C\left(t_{1}\right) \cap C\left(t_{2}\right)$. This gives an obvious contradiction by the Bézout theorem. In fact, as $C\left(t_{1}\right) \cdot C\left(t_{2}\right)$ contains
P_{i} with intersection multiplicity m_{i} for $i=1, \ldots, s$, we get the contradiction:

$$
\begin{array}{r}
d^{2}=I\left(C\left(t_{1}\right), C\left(t_{2}\right)\right) \geq I\left(C\left(t_{1}\right), C\left(t_{2}\right) ; Q_{j}\right)+\sum_{i=1}^{s} I\left(C\left(t_{1}\right), C\left(t_{2}\right) ; P_{i}\right) \\
=I\left(C\left(t_{1}\right), C\left(t_{2}\right) ; Q_{j}\right)+\sum_{i=1}^{s} m_{i}>d^{2}
\end{array}
$$

This proves the assertion.
Q.E.D.

Topological model. To simplify the figure, we take an oriented horizontal line $\hat{\ell}_{j}$ in each D_{j} as a topological model and let $\hat{L}_{\eta_{0}}$ be the generic fiber with this model in D_{j}. It is easy to see that there exists a diffeomorphism $\phi_{m o d}: L_{\eta_{0}} \rightarrow \hat{L}_{\eta_{0}}$ which satisfies the next conditions.

- There exists a positive number δ_{1} so that $\phi_{\text {mod }}$ is the identity map outside of δ_{1} neighborhood of $\cup_{j=1}^{d} D_{j}$.
- $\phi_{\text {mod }}\left(D_{j}\right)=D_{j}$ and $\phi_{\text {mod }}\left(\ell_{j}\right)=\hat{\ell}_{j}$ as oriented paths.

In the case that $L_{\eta_{0}}$ is as in Figure 4, (we may assume that) $\phi_{m o d}$ is the composite of "straightening" and a rotation of angle $3 \pi / 2$ in clockwise orientation inside D_{j}. We assume hereafter that the topological situation

Fig. 4. Model path $\hat{\ell}_{j}$
is as in $\hat{L}_{\eta_{0}}$, using this identification. Put $\Delta(q ; r)=\{(\eta, y)| | y-\xi \mid \leq r\}$ for $q=(\eta, \xi) \in L_{\eta}$ (the disk of the radius r with the center q in the line $\left.L_{\eta}\right)$.

For a fixed $\varepsilon_{0}>0$ as above, we can take $\delta_{K}>0$ small enough so that
(1) for any τ with $|\tau-1|<\delta_{K}, \theta_{j}(\tau) \in \Delta\left(\xi_{j} ; \varepsilon_{0} / 5\right)$ and
(2) for any τ with $|\tau|<\delta_{K}, \theta_{j}(\tau) \in \Delta\left(\rho_{j} ; \varepsilon_{0} / 5\right)$.

We fix such a δ_{K} hereafter.
Now we take lassos g_{1}, \ldots, g_{d} for $C(0) \cap L_{\eta_{0}}$, lassos h_{1}, \ldots, h_{d} for $C(1) \cap L_{\eta_{0}}$ and lassos $k_{1}(t), \ldots, k_{d}(t)$ for $C(t) \cap L_{\eta_{0}}$ as in the left side of Figure 5. We assume that the lassos $g_{j}, k_{j}(t), h_{j}$ are connected to the base point b_{0} by homotopically same paths outside of D_{j} in the left side figure. This means that the left side generators are homotopically the same as the right side generators in Figure 5. For the simplicity of drawing, we use hereafter the left side drawing style. (If ℓ_{j} is as is indicated in the left side of Figure 6 for example, the actual generators are the pull-back of $g_{j}, k_{j}(t), h_{j}$ by $\phi_{\text {mod }}$.) They satisfy the following continuity property.

$$
\text { (Continuity) } \quad \begin{cases}k_{j}(t) \rightarrow h_{j}, & t \rightarrow 1 \\ k_{j}(t) \rightarrow g_{j}, & t \rightarrow 0\end{cases}
$$

Fig. 5. $g_{j}, h_{j}, k_{j}(t)$

Fig. 6. $g_{j}, h_{j}, k_{j}(t)$-bis

Recall that a bullet denotes a lasso around the corresponding center which can be arbitrarily small. Consider two disjoint circles in $D_{j}: S_{j, 0}=\partial \Delta\left(\rho_{j} ; \varepsilon_{0}\right)$ and $S_{j, 1}=\partial \Delta\left(\xi_{j} ; \varepsilon_{0}\right)$ as above. They are oriented counterclockwise. For any $0<t<t^{\prime}<1$, there is an isotopy $\psi_{t, t^{\prime}, s}:\left(\mathbb{C}^{2}, C^{(3)}(t)\right) \rightarrow\left(\mathbb{C}^{2}, C^{(3)}(s)\right)$ for $t \leq s \leq t^{\prime}$ (we write $\psi_{s}=\psi_{t, t^{\prime}, s}$ for simplicity) such that $L_{\eta_{0}} \cup \gamma(\mathbb{C})$ is stable by ψ_{s} and $\psi_{t}=\mathrm{id}$, and ψ_{s} induces an isotopy $\left(L_{\eta_{0}}, L_{\eta_{0}} \cap C^{(3)}(t)\right) \rightarrow\left(L_{\eta_{0}}, L_{\eta_{0}} \cap C^{(3)}(s)\right)$ with $\psi_{s}\left(b_{0}\right)=$ b_{0}. So $\psi_{t^{\prime}}$ gives a diffeomorphism between $\left(L_{\eta_{0}}, L_{\eta_{0}} \cap C^{(3)}(t)\right)$ and $\left(L_{\eta_{0}}, L_{\eta_{0}} \cap C^{(3)}\left(t^{\prime}\right)\right)$. (Strictly speaking, ψ_{s} is only a C^{0}-homeomorphism near P_{1}, \ldots, P_{s}.)
(a) We first consider the extreme case: $s_{1},\left|1-s_{1}\right|<\delta_{K}$. Fix such an s_{1} and consider the elements

$$
\Omega_{j}\left(s_{1}\right):=k_{j}\left(s_{1}\right) h_{j}, j=1, \ldots, d
$$

See Figure 7. Note that the figures which follow hereafter are not on the exact scale, but they only show the topological situations. It is important to observe that Ω_{j} is presented by a lasso, $M_{j} \cdot S_{j, 1} \cdot M_{j}^{-1}$ where M_{j} is a simple path joining b_{0} and a point b_{j} on $S_{j, 1}$. Strictly speaking, Ω_{j}
is a lasso for $C(1)$ if we ignore $C\left(s_{1}\right)$. Note that $\theta_{j}\left(s_{1}\right) \in \operatorname{Int} S_{j, 1}$ where Int $S_{j, 1}$ is the interior of $S_{j, 1}$. We can consider that $k_{j}\left(s_{1}\right), h_{j}$ are lassos first starting at b_{j} and then b_{j} is connected to b_{0} by the same path M_{j}. See Figure 7.

Fig. 7. $g_{j}, h_{j}, k_{j}\left(s_{1}\right)$ for $\left|s_{1}-1\right|<\delta_{K}$

We consider the same deformation of the loops g_{j}, Ω_{j} along K for $C^{(3)}\left(s_{1}\right)$ as that of $C^{(2)}$ which we used to obtain $(A b)$. During this deformation, we assume that the radius of the circle $S_{j, 1}(\eta)$ is constant and equal to ε_{0} so that the two points $\theta_{j}\left(s_{1}\right), \xi_{j}$ behave like one point inside Int $S_{j, 1}$. Thus the lassos,

$$
\left\{g_{1}, \ldots, g_{d}, \Omega_{1}\left(s_{1}\right), \ldots, \Omega_{d}\left(s_{1}\right)\right\}
$$

satisfy the same relations as $(A b)$. The point $\theta_{j}\left(s_{1}\right)$ stays always inside $S_{j, 1}(\eta)$ and it does not come out of the circle $S_{j, 1}(\eta)$ during the deformation over K by the choice of δ_{K}. Namely we have the following relations from $(A b)$:

$$
\left(R_{1}\right) \quad g_{1}=\cdots=g_{d}, \quad \Omega_{1}\left(s_{1}\right)=\cdots=\Omega_{d}\left(s_{1}\right), \quad\left[g_{1}, \Omega_{1}\left(s_{1}\right)\right]=e
$$

Using the isomorphism $\psi_{t, s_{1}, s_{1} \sharp}: \pi_{1}\left(\mathbb{C}^{2}-C^{(3)}(t)\right) \rightarrow \pi_{1}\left(\mathbb{C}^{2}-C^{(3)}\left(s_{1}\right)\right)$, we obtain the following assertion.

Observation 12. The lasso element $k_{j}(t)$ for $C^{(3)}(t)$ in an arbitrary $t, 0<t<1$ in Figure 5 and the lasso element $k_{j}\left(s_{1}\right)$ for $C^{(3)}\left(s_{1}\right)$ in Figure 7 for $\left|1-s_{1}\right| \leq \delta_{K}$ are identical under a canonical isotopy $\psi_{t, s_{1}, s_{1}}$ by Observation 11.

Using this observation, $\left(R_{1}\right)$ can be translated in the following relations in $\pi_{1}\left(\mathbb{C}^{2}-C^{(3)}(t)\right)$:
$\left(R_{1}\right)^{\prime}\left\{\begin{array}{l}g_{1}=\cdots=g_{d}, \Omega_{1}(t)=\cdots=\Omega_{d}(t),\left[g_{1}, \Omega_{1}(t)\right]=e, 0<t<1 \\ \text { with } \Omega_{j}(t)=k_{j}(t) h_{j}, j=1, \ldots, d .\end{array}\right.$
(b) Similarly we consider the other extreme situation $t \rightarrow 0$. Fix an s_{1}^{\prime}, $0<s_{1}^{\prime} \leq \delta_{K}$. Recall that $\left|\theta_{j}\left(s_{1}^{\prime}\right)-\rho_{j}\right| \leq \varepsilon_{0} / 5$. Thus $\theta_{j}\left(s_{1}^{\prime}\right) \in S_{j, 0}$. In this case, we consider an element

$$
\Omega_{j}^{\prime}\left(s_{1}^{\prime}\right)=g_{j} k_{j}\left(s_{1}^{\prime}\right), \quad j=1, \ldots, d
$$

See Figure 8. Thus by the same argument as in the case (1), we get the relations:

$$
\left(R_{2}\right) \quad \Omega_{1}^{\prime}\left(s_{1}^{\prime}\right)=\cdots=\Omega_{d}^{\prime}\left(s_{1}^{\prime}\right), h_{1}=\cdots=h_{d},\left[\Omega_{1}^{\prime}\left(s_{1}^{\prime}\right), h_{1}\right]=e
$$

and this implies
$\left(R_{2}\right)^{\prime} \quad\left\{\begin{array}{l}\Omega_{1}^{\prime}(t)=\cdots=\Omega_{d}^{\prime}(t), h_{1}=\cdots=h_{d},\left[\Omega_{1}^{\prime}(t), h_{1}\right]=e, 0<t<1 \\ \text { with } \Omega_{j}(t)^{\prime}=g_{j} k_{j}(t), j=1, \ldots, d .\end{array}\right.$
The relations $\left(R_{1}\right)^{\prime},\left(R_{2}\right)^{\prime}$ imply also that $k_{1}(t)=\cdots=k_{d}(t)$. Thus using three generators $g=g_{1}, k=k_{1}(t)(t \neq 0,1), h=h_{1}$, we have shown that $\pi_{1}\left(\mathbb{C}^{2}-C^{(3)}(t)\right)$ has the following presentation.

$$
\pi_{1}\left(\mathbb{C}^{2}-C^{(3)}(t)\right)=\left\langle g, k, h \mid[g, k h]=[g k, h]=e, R_{1}, \ldots, R_{b}\right\rangle
$$

where R_{1}, \ldots, R_{b} are possible other relations to be added. We want to show that $b=0$. Namely we do not need any other relations. We prove this assertion simultaneously for the general case $r \geq 3$ in the next section.

Remark 13. The locus of the singular lines Σ_{3} for $C^{(3)}\left(s_{1}\right)$ with $\left|1-s_{1}\right| \leq \delta_{K}$ can be written as $\Sigma_{3}=\Sigma_{2} \cup \Sigma^{\prime}$ so that Σ_{2} is that of $C^{(2)}$ and $\alpha \in \Sigma^{\prime}$ corresponds to a line L_{α} which is tangent to $C\left(s_{1}\right)$. If $\left|1-s_{1}\right|$ is sufficiently small, α is very near to some $\alpha_{i} \in \Sigma_{t}$ and therefore α is bifurcated from α_{i} and $\alpha, \alpha_{i} \in \operatorname{Int} S_{i}$ as in Figure 9. Define $\beta_{i}^{\prime} \in \pi_{1}(\mathbb{C}-$

Fig. 8. $g_{j}, h_{j}, k_{j}\left(s_{1}^{\prime}\right)$ for $\left|s_{1}^{\prime}\right|<\delta_{K}$
Σ_{3}) by the product of two generators of $\pi_{1}\left(\mathbb{C}-\Sigma_{3}\right)$ corresponding to α_{i} and α. Thus the monodromy relation which we used for the generators $g_{1}, \Omega_{1}, \ldots, g_{d}, \Omega_{d}$ under the generator $\beta_{i} \in \pi_{1}\left(\mathbb{C}-\Sigma_{2}\right)$ is in fact the action of $\beta_{i}^{\prime} \in \pi_{1}\left(\mathbb{C}-\Sigma_{3}\right)$ on $g_{j}, \Omega_{j} \in \pi_{1}\left(L_{\eta_{0}}-C^{(3)}\left(s_{1}\right) \cap L_{\eta_{0}}\right)$. Namely β_{i}^{\prime} acts on g_{j}, Ω_{j} in the exact same way as the action of $\beta_{i} \in \pi_{1}\left(\mathbb{C}-\Sigma_{2}\right)$ on $g_{j}, h_{j} \in \pi_{1}\left(\mathbb{C}^{2}-C^{(2)}\right)$.

Fig. 9. Bifurcation of singular lines
4.1.2. General case $r \geq 3$ For the general case $C(\vec{\tau}), \vec{\tau}=\left(\tau_{1}, \ldots, \tau_{r}\right)$ with $\tau_{1}=0<\tau_{2}<\cdots<\tau_{r}=1$, we do the same discussion as
above. Take generators $k_{j}\left(\tau_{i}\right), 1 \leq i \leq r, 1 \leq j \leq d$. It is important to choose $\tau_{2}, \ldots, \tau_{r-1}$ on the open interval $(0,1)$ so that $\theta_{j}\left(\tau_{1}\right)=$ $\rho_{j}, \theta_{j}\left(\tau_{2}\right), \ldots, \theta_{j}\left(\tau_{r-1}\right), \theta_{j}\left(\tau_{r}\right)=\xi_{j}$ are on the path ℓ_{j} in this order. For simplicity, we write $k_{j, i}$ for $k_{j}\left(\tau_{i}\right)$ hereafter. Note that $k_{1, i}, \ldots, k_{d, i}$ are generators for $\pi_{1}\left(L_{\eta_{0}}-C\left(\tau_{i}\right) \cap L_{\eta_{0}}\right)$.

Fix an $i, 1 \leq i \leq r-1$. Choose $\tau_{2}, \ldots, \tau_{r-1}$ so that they satisfy

$$
\tau_{1}=0<\tau_{2}<\cdots<\tau_{i}<\delta_{K} \ll 1-\delta_{K}<\tau_{i+1}<\cdots<\tau_{r}=1
$$

Note that $\theta_{j}\left(\tau_{i}\right)$ is on the path ℓ_{j} for each $i=2, \ldots, r-1$ so that $\left\{\rho_{j}, \theta_{j}\left(\tau_{2}\right), \ldots, \theta_{j}\left(\tau_{i}\right)\right\} \subset \operatorname{Int} S_{j, 0},\left\{\theta_{j}\left(\tau_{i+1}\right), \ldots, \theta_{j}\left(\tau_{r-1}\right), \xi_{j}\right\} \subset \operatorname{Int} S_{j, 1}$.

See Figure 10. Two collections of the points $P=\left\{\rho_{j}, \theta_{j}\left(\tau_{2}\right), \ldots, \theta_{j}\left(\tau_{i}\right)\right\}$ and $Q=\left\{\theta_{j}\left(\tau_{i+1}\right), \ldots, \theta_{j}\left(\tau_{r-1}\right), \xi_{j}\right\}$ behave like two points $\left\{\rho_{j}, \xi_{j}\right\}$ under the monodromy actions of $\beta_{1}, \ldots, \beta_{\nu}$, using the loops $K_{j}, j=$ $1, \ldots, \nu$. Put

$$
\Xi_{j, i}=k_{j, 1} \cdots k_{j, i}, \quad \Omega_{j, i}=k_{j, i+1} \cdots k_{j, r}, \quad \text { where } k_{j, 1}=g_{j}, k_{j, r}=h_{j}
$$

Two elememts $\Xi_{j, i}, \Omega_{j, i}$ are presented by lassos with circle $S_{j, 0}, S_{j, 1}$ of the radius ε_{0} which contains $\left\{\rho_{j}, \theta_{j}\left(\tau_{2}\right), \ldots, \theta_{j}\left(\tau_{i}\right)\right\}$ and $\left\{\theta_{j}\left(\tau_{i+1}\right), \ldots\right.$, $\left.\theta_{j}\left(\tau_{r-1}\right), \xi_{j}\right\}$ respectively. Thus we see that the following relations are satisfied, which are derived from (Ab).

$$
\begin{align*}
\Omega_{1, i} \Xi_{1, i} & =\Xi_{1, i} \Omega_{1, i}, \Xi_{1, i}=\cdots=\Xi_{d, i}, \Omega_{1, i}=\cdots=\Omega_{d, i} \tag{i}\\
\text { where } \quad \Xi_{j, i} & =k_{j, 1} \cdots k_{j, i}, \Omega_{j, i}=k_{j, i+1} \cdots k_{j, r}, i=1, \ldots, r-1 .
\end{align*}
$$

Let $\vec{t}=\left(t_{1}, \ldots, t_{r}\right), t_{1}=1<t_{2}<\cdots<t_{r-1}<t_{r}=1$ be an arbitrarily chosen r-fold vector of parameters. Thus by the same discussion as in the case $r=3$, we have a homeomorphism

$$
\phi_{\vec{t}, \vec{\tau}}:\left(\mathbb{C}^{2}, C(\vec{t})\right) \rightarrow\left(\mathbb{C}^{2}, C(\vec{\tau})\right)
$$

which induces a diffeomorphism of $\left(L_{\eta_{0}}, C(\vec{t}) \cap L_{\eta_{0}}\right) \rightarrow\left(L_{\eta_{0}}, C(\vec{\tau}) \cap L_{\eta_{0}}\right)$ and $\phi_{\vec{t}, \vec{\tau}}(\gamma(\eta))=\gamma(\eta)$ for any η. Using this diffeomorphism, we can identify $k_{j}\left(\tau_{i}\right)$ and $k_{j}\left(t_{i}\right)$ for $i=1, \ldots, r$ as in the case $r=3$. Thus the relations R_{i} can be understood as the relations for $k_{j i}=k_{j}\left(t_{i}\right)$ for $j=1, \ldots, d, i=1, \ldots, r$. Therefore using $\left(R_{1}\right), \ldots,\left(R_{r-1}\right)$ inductively, we get the relations:

$$
k_{1, i}=\cdots=k_{d, i}, i=1, \ldots, r
$$

Put $a_{i}:=k_{1, i}, i=1, \ldots, r$. Thus we need only r generators $a_{i}, i=$

Fig. 10. Generators $k_{j, i}$ in $L_{\eta_{0}}$ and ε_{0}-disks $S_{j, 0}, S_{j, 1}$
$1, \ldots, r$. Note that a_{i} is a lasso for the component $C\left(\tau_{i}\right)$. Then the relations $\left(R_{1}\right) \sim\left(R_{r-1}\right)$ reduces to:

$$
\left(A b_{2}\right) \quad a_{1} a_{2} \cdots a_{r}=a_{2} \cdots a_{r} a_{1}=\cdots=a_{r} a_{1} a_{2} \cdots a_{r-1}
$$

Put $\Omega=a_{1} a_{2} \cdots a_{r}$. Now we replace the last generator a_{r} by Ω. Then $\left(A b_{2}\right)$ can be read as

$$
\left(A b_{3}\right) \quad \Omega a_{i}=a_{i} \Omega, \quad i=1,2, \ldots, r-1
$$

Thus Ω is in the center of the fundamental group $\pi_{1}\left(\mathbb{C}^{2}-C(\vec{\tau})\right)$ and we can present $\pi_{1}\left(\mathbb{C}^{2}-C(\vec{\tau})\right)$ as follows.

$$
\begin{equation*}
\pi_{1}\left(\mathbb{C}^{2}-C(\vec{\tau})\right)=\left\langle a_{1}, \ldots, a_{r-1}, \Omega \mid\left(A b_{3}\right), R_{1}, \ldots, R_{b}\right\rangle \tag{5}
\end{equation*}
$$

where R_{1}, \ldots, R_{b} are possible other relations to be added.
Proposition 14. The words of the relations R_{1}, \ldots, R_{b} do not contain Ω.

Proof. Observe that the images of $a_{1}, \ldots, a_{r-1}, \Omega$ are free generators of $H_{1}\left(\mathbb{C}^{2}-C(\vec{\tau})\right) \cong \mathbb{Z}^{r}$. Thus if R_{j} contains Ω, the total summation of the exponents of Ω is zero. As Ω commutes with other generators, we can eliminate Ω in R_{j}.
Q.E.D.

Thus we observe that $\pi_{1}\left(\mathbb{C}^{2}-C(\vec{\tau})\right) \cong \mathbb{Z} \times F^{\prime}$ where

$$
F^{\prime}:=\left\langle a_{1}, \ldots, a_{r-1} \mid R_{1}, \ldots, R_{b}\right\rangle, \quad \mathbb{Z}=\langle\Omega\rangle
$$

4.2. The proof of Main Theorem 7

Recall that

$$
C(\tau): \quad(1-\tau) f(x, y)+\tau g(x, y)=0, \tau \in \mathbb{C}
$$

We consider the d^{2}-fold branched covering map $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ defined by $\varphi(x, y)=(f(x, y), g(x, y))$. Let us consider the pencil of lines $L(\tau), \tau \in$ \mathbb{C}. Define a central line arrangement $L(\vec{\tau})$ by

$$
L(\vec{\tau})=L\left(\tau_{1}\right) \cup L\left(\tau_{2}\right) \cup \cdots \cup L\left(\tau_{r}\right), \vec{\tau}=\left(\tau_{1}, \ldots, \tau_{r}\right) .
$$

Now it is immediate from the definition that $\varphi^{-1}(L(\vec{\tau}))=C(\vec{\tau})$. Thus we get a homomorphism which is canonically surjective (see Appendix):

$$
\varphi_{\sharp}: \quad \pi_{1}\left(\mathbb{C}^{2}-C(\vec{\tau})\right) \rightarrow \pi_{1}\left(\mathbb{C}^{2}-L(\vec{\tau})\right) \cong G^{(r)} .
$$

Now we can prove that the other relations R_{1}, \ldots, R_{b} are empty. Consider an abstract group G :

$$
G:=\left\langle\hat{a}_{1}, \ldots, \hat{a}_{r-1}, \hat{\Omega} \mid \hat{a}_{i} \hat{\Omega}=\hat{\Omega} \hat{a}_{i}, i=1, \ldots, r-1\right\rangle .
$$

The relation (4) implies that we have a canonical surjective homomorphism $\psi: G \rightarrow \pi_{1}\left(\mathbb{C}^{2}-C(\vec{\tau})\right)$ which is defined by $\hat{a}_{i} \mapsto a_{i}$ and $\hat{\Omega} \mapsto \Omega$. Let $F \subset G$ be the free group of rank $r-1$ with generators $\hat{a}_{1}, \ldots, \hat{a}_{r-1}$. We consider the surjective homomorphism $\Psi: G \rightarrow F(r-1)$ which is the composite $p \circ \varphi_{\sharp} \circ \psi$ where $p: G^{(r)} \cong \mathbb{Z} \times F(r-1) \rightarrow F(r-1)$ is the canonical projection homomorphism. Let

$$
\Theta=\Psi \circ \iota_{1}: F \rightarrow G \rightarrow \pi_{1}\left(\mathbb{C}^{2}-L(\vec{\tau})\right) \rightarrow F(r-1)
$$

where ι_{1}, ι_{2} are the canonical inclusion homomorphisms.

Note that the image of the first factor $\mathbb{Z}=\langle\hat{\Omega}\rangle$ of G by $\varphi_{\sharp} \circ \psi$ is in the center of $\mathbb{Z} \times F(r-1)$, which is the first factor $\mathbb{Z}=\langle\omega\rangle$. This implies that $\langle\hat{\Omega}\rangle$ is in the kernel of Ψ and the surjectivity of the mapping Θ^{\prime} follows immediately where $\Theta^{\prime}: G / \operatorname{Ker} \Psi \rightarrow F(r-1)$. As $F=G /\langle\hat{\Omega}\rangle$ and $\operatorname{Ker} \Psi \supset\langle\hat{\Omega}\rangle$, the canonical homomorphism $F \rightarrow G / \operatorname{Ker} \Psi$ is surjective,
and therefore the surjectivity of Θ^{\prime} implies the surjectivity of Θ. By the definition of the relations R_{1}, \ldots, R_{b}, the kernel of Θ contains the normal subgroup generated by $N=\left\langle\hat{R}_{1}, \ldots, \hat{R}_{b}\right\rangle$ where \hat{R}_{j} is the word of $\hat{a}_{1}, \ldots, \hat{a}_{r-1}$ which is defined by replacing a_{i} by \hat{a}_{i} in R_{j}. However by the Hopfian property of free groups (Theorem 2.13, [7]), $\Theta: F \rightarrow F(r-1)$ is an isomorphism. Thus this implies R_{1}, \ldots, R_{b} are empty and φ_{\sharp} is an isomorphism.
Q.E.D.

4.3. Appendix: Surjectivity of φ_{\sharp}

Consider $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2},(x, y) \mapsto(u, v)=(f(x, y), g(x, y))$. The locus of the critical points of φ, denoted by $\operatorname{Cr}(\varphi)$, is a curve of degree $(d-1)^{2}$ defined by

$$
C r(\varphi)=\left\{\frac{\partial f}{\partial x} \frac{\partial g}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial g}{\partial x}=0\right\}
$$

and the critical value set (=bifurcating set) Σ_{φ} is a curve which is defined by the image of $C r(\varphi)$ by φ. Now $\Sigma_{\varphi} \cap L(\vec{\tau})$ consists of a finite number of points. Choose a generic line $M: a u+b v+c=0$ in the base space so that $M \cap L(\vec{\tau}) \cap \Sigma_{\varphi}=\emptyset$ and M is transverse to $L(\vec{\tau})$. Choose a base point $\bar{b}_{0} \in M-M \cap L(\vec{\tau})$ so that $\bar{b}_{0} \notin \Sigma_{\varphi}$. We may assume that $\varphi\left(b_{0}\right)=\bar{b}_{0}$. Now consider the inverse image

$$
F:=\varphi^{-1}(M)=\{a f(x, y)+b g(x, y)+c=0\}
$$

Note that F is an irreducible smooth curve of degree d, provided a, b, c are generic enough. Then the restriction $\varphi: F \rightarrow M$ is a branched covering of degree d^{2}, branched at $M \cap \Sigma_{\varphi}$. Now choose a set of lassos q_{1}, \ldots, q_{r} for $L(\vec{\tau})$ in M so that they are generators of $\pi_{1}(M-M \cap L(\vec{\tau}))$ and these lassos do not pass through $\Sigma_{\varphi} \cap M$ and the image of $\left[q_{j}\right]$ in $\pi_{1}\left(M-M \cap \Sigma_{\varphi}\right)$ is trivial for any $j=1, \ldots, r$. Now consider the lift \tilde{q}_{j} in F which starts from b_{0}. By the assumption, it is easy to see that \tilde{q}_{j} is closed, and thus it defines an element of $\pi_{1}(F-F \cap C(\vec{\tau}))$. This implies that the homomorphism

$$
\pi_{1}(F-F \cap C(\vec{\tau})) \rightarrow \pi_{1}(M-M \cap L(\vec{\tau}))
$$

is surjective. The surjectivity of φ_{\sharp} follows from the diagram of the canonical homomorphisms,

$$
\begin{array}{ccc}
\pi_{1}(F-F \cap C(\vec{\tau})) & \rightarrow & \pi_{1}(M-M \cap L(\vec{\tau})) \\
\pi_{1}\left(\mathbb{C}^{2}-C(\vec{\tau})\right) & & \xrightarrow{\varphi_{\sharp}}
\end{array} \quad \pi_{1}\left(\mathbb{C}^{2} \xrightarrow{-} L(\vec{\tau})\right), ~ \$
$$

as the right vertical homomorphism is surjective by van Kampen-Zariski principle.

I would like to thank the referee for clarifying the contents of this paper with his advices and comments.

References

[1] E. Artal-Bartolo, Sur les couples de Zariski, J. Algebraic Geom., 3 (1994), 223-247.
[2] R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Ginn and Co., Boston, MA, 1963.
[3] C. Eyral and M. Oka, On the fundamental groups of the complements of plane singular sextics, J. Math. Soc. Japan, 57 (2005), 37-54.
[4] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley Classics Library, John Wiley \& Sons Inc., New York, 1994, reprint of the 1978 original.
[5] D. T. Lê and C. P. Ramanujam, The invariance of Milnor number implies the invariance of the topological type, Amer. J. Math., 98 (1976), 67-78.
[6] F. Loeser and M. Vaquié, Le polynôme d'Alexander d'une courbe plane projective, Topology, 29 (1990), 163-173.
[7] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Interscience, New York, 1966.
[8] M. Oka, On the fundamental group of the complement of a reducible curve in \mathbf{P}^{2}, J. London Math. Soc. (2), 12 (1976), 239-252.
[9] M. Oka, Two transforms of plane curves and their fundamental groups, J. Math. Sci. Univ. Tokyo, 3 (1996), 399-443.
[10] M. Oka, Alexander polynomial of sextics, J. Knot Theory Ramifications, 12 (2003), 619-636.
[11] M. Oka, A survey on Alexander polynomials of plane curves, In: Singularités Franco-Japonaise, Sémin. Congr., 10, Soc. Math. France, Paris, 2005, pp. 209-232.
[12] M. Oka, Geometry of pencil of plane curves via Taylor expansions, to appear, Singularities II: Geometric and Topological Aspects, Comtemp. Math., 2008.
[13] R. Randell, Milnor fibers and Alexander polynomials of plane curves, In: Singularities, Part 2, Arcata, Calif., 1981, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983, pp. 415-419.
[14] I. Shimada, Fundamental groups of complements to singular plane curves, Amer. J. Math., 119 (1997), 127-157.
[15] E. van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math., 55 (1933), 255-260.

Department of Mathematics
Tokyo University of Science
26 Wakamiya-cho, Shinjuku-ku
Tokyo 162-8601
Japan

E-mail address: oka@rs.kagu.tus.ac.jp

