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Ends of metric measure spaces with nonnegative 
Ricci curvature 

~asayoshi VVatanabe 

Abstract. 

We prove that metric measure spaces with nonnegative Ricci cur
vature have at most two ends. 

§1. Introduction 

We show a result of our previous paper [19], which states that mea
sured length spaces with nonnegative Ricci curvature have at most two 
ends. 

Lott-Villani [10], [11], [18] and Sturm [15], [16] introduced the con
cept of lower Ricci curvature bounds for measured length spaces. We 
use the definition in [18]: the weak curvature-dimension CD(K, N) con
dition (K E JR., N E [1, oo]). Ohta [12] and Sturm [16] also gave a defini
tion of lower Ricci curvature bounds: the measure contraction property 
MCP(K, N) (K E JR., N E [1, oo)). 

The parameters K and N play roles of lower Ricci curvature bound 
and dimension respectively. In fact, given a complete Riemannian mani
fold (M,g) with Riemannian distance d9 and measure v9 , the measured 
length space (M, d9 , v9 ) satisfies the weak CD(K, N) condition if and 
only if RicM ~ K and dim(M) ~ N. The property MCP(K, dim(M)) 
implies RicM ~ K; however, MCP(K, N) does not imply RicM ~ K for 
N > dim(M). 

If a measured length space X satisfies the weak CD(K, N) condition 
and if all geodesics in X do not branch, then X satisfies MCP(K, N); see 
[16]. Both the weak CD(K, N) condition and MCP(K, N) are preserved 
under measured Gromov-Hausdorff limits. 
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This paper is concerned with the case that K = 0 and N < oo (i.e. 
the weak CD(O, N) condition or MCP(O, N)). Our main theorem is as 
follows: 

Theorem 1.1. Let (X, d) be a complete, locally compact, separable 
length space equipped with a nonnegative Radon measure v. Given N E 

[1, oo), we assume one of the following (i) and (ii}: 

(i) The measured length space (X, d, v) satisfies the weak CD(O, N) 
condition. 

(ii) The measured length space (X, d, v) satisfies MCP(O, N). 

Then X has at most two ends. 

In the case of Riemannian manifolds with nonnegative Ricci curva
ture, the Cheeger-Gromoll splitting theorem [5] implies Theorem 1.1. 
The splitting theorem states that if a complete Riemannian manifold M 
of nonnegative Ricci curvature contains a straight line, then M is isomet
ric to the product ffi. x N for some Riemannian manifold N. Cheeger and 
Golding [2] extended this to the Gromov-Hausdorff limits of a sequence 
of Riemannian manifolds Mi with RicM; 2 -Ji, where Ji ---+ 0. Unfor
tunately, the splitting theorem does not hold under the assumption of 
Theorem 1.1. In fact, any finite-dimensional, say n-dimensional, normed 
linear space with Lebesgue measure satisfies the weak CD(O, n) condi
tion and MCP(O, n) [18]. Theorem 1.1 is proved without the splitting 
theorem. 

For many recent results on this area, see [8], [9], [13], and [14]. 

This paper is organized as follows: In Section 2, we recall basic 
definitions: length spaces, the (pointed, measured) Gromov-Hausdorff 
convergence and the Wasserstein distance. In Section 3, we give the 
definition of the weak CD(O, N) condition and then summarize some 
basic properties. We prove Theorem 1.1 in Section 4. 

Acknowledgements. The author thanks Professor Takashi Shioya 
for his constant encouragement and helpful discussions. 

§2. Preliminaries 

Length spaces. Let (X, d) be a metric space. Given x E X and 
r > 0, we denote by Br(x) and Br(x) the open and closed ball of radius 
r and centered at x, respectively. The sphere of radius r and centered 
at xis denoted by Sr(x). 

A path "( : [0, l] ---+ X is called a geodesic if it is locally minimizing 
and has a constant speed. We say that (X, d) is a length space if d(x, y) = 
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inf--y Length("Y) for all x, y EX, where the infimum is taken over all paths 
joining x andy. If X is a complete, locally compact length space, then 
all two points in X are joined by a minimal geodesic. 

Gromov-Hausdorff convergence. Let (X, dx), (Y, dy) be met
ric spaces. We say that, for E > 0, a map cp : X ____, Y is an E
approximation if 

(i) ldx(x,y)- dy(cp(x),cp(y))l < E holds for all x,y EX, and 
(ii) the E-neighborhood of cp(X) coincides withY. 

Let (Xi, xi) for i = 1, 2, ... and (X, x) be pointed metric spaces. We 
say that {(Xi, Xi)} pointed Gromov-Hausdorff converges to (X,x) iffor 
each R > 0 there exist Ri "\, R, Ei "\, 0, and Ei-approximations 'Pi : 
BR;(xi) ____, BR(x) with 'Pi(xi) = x. The Gromov-Hausdorff limits of 
a sequence of length spaces are also length spaces. See [1] and [7] for 
further information. 

Measured Gromov-Hausdorff convergence. A metric mea
sure space is a triple (X, d, v) where (X, d) is a metric space and v is a 
nonnegative Radon measure on X. Let (Xi, Xi, vi) fori = 1, 2, ... and 
(X, x, v) be pointed metric measure spaces. We say that {(Xi, Xi, vi)} 
pointed measured Gromov-Hausdorff converges to (X, x, v) if there ex
ist Ei "\, 0, Ri ____, oo, and Borel measurable Ei-approximations 'Pi : 
B R; (Xi) ____, B R, ( x) such that the sequence of push-forward measures 
{(cpi)*vi} converges vaguely to v, that is, limi_,= fx; focpi dvi = fx f dv 
holds for all continuous functions f : X ____,JR. with compact support. We 
refer to [6] for details. 

Wasserstein distance. Let (X, d, x) be a complete, locally com
pact, separable, pointed length space. We denote by P(X) the set of 
Borel probability measures on X. Let P2 (X) be the set of Borel prob
ability measures on X with finite second moment: 

which is independent of the choice of x. Given JLo, /Ll E P2(X), a prob
ability measure 7f E P(X x X) is called a transference plan between 
JLo and /Ll if n(A x X) = JLo(A) and n(X x A) = JL 1 (A) hold for all 
measurable sets A c X. For example, the product measure JLo x /Ll 
is a transference plan between JLo and /Ll· We define the Wasserstein 
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distance w2 of order 2 between {to and /kl by 

where the infimum (in fact, minimum) is taken over all transference plans 
1r between {to and /kl· Then W2 defines a metric on P2(X); moreover, 
(P2(X), W2) is a complete, separable length space. We refer to the book 
[17] of Villani for details. 

§3. Weak curvature-dimension condition 

In this section we first define a suitable set of "entropy" functions 
in order to give the definition of the weak CD(O, N) condition. We then 
give some basic properties of measured length spaces with the weak 
CD(O, N) condition. 

Results in this section come from [10], [11], [15], [16], or [18]. 

Let (X, d) be a complete, locally compact, separable length space 
equipped with a nonnegative Radon measure v. 

3.1. Definition of the weak CD(O, N) condition 

Let U : [0, oo) -+ lR be a continuous, convex function with U(O) = 0. 
Given a compactly supported Borel measure f-L on X, the relative entropy 
function Uv is defined by 

Uv(f..L) = L U(p(x))dv(x) + U'(oo)f..ts(X), 

where f-L = pv + f..Ls is the Lebesgue decomposition of f-L with respect to 
v, and U'(oo) := limr-.oo(U(r)/r) E IRU{oo}. For N E [1,oo), we define 
the displacement convexity class VC N of order N by 

VC N = { U : [0, oo) -+ lR I U is a continuous, convex function 

with U(O) = 0 such that (0, oo) 3 A. f4 A.NU(A.-N) is convex}. 

If N' ::=: N, then VCN' C VCN. Put 

{
Nr(1- r-l/N) if 1 < N < oo, 

UN(r) = 
r ifN=l. 

Then UN E VCN. 
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Definition 3.1. Let N E [1,oo). We say that (X,d,v) satisfies 
the weak CD(O, N) condition if for any compactly supported probability 
measures f-lo and /-ll with supp(J-lo), supp(J-l1) C supp(v) there exists a 
geodesic {1-lthE[O,l] in (P2(X), W2) from f-lo to /-ll such that 

Uv(f-lt) ~ (1 - t) Uv(J-lo) + t Uv(J-ll) 

holds for all U E VCN and all t E [0, 1]. 

If (X, d, v) satisfies the weak CD(O, N) condition for some N E 

[1,oo), then it satisfies the weak CD(O,N') condition for N' ~ N. 

3.2. Basic properties 

A subset A in X is said to be totally convex if for any two points 
x, yEA, all minimal geodesics between x andy are contained in A. 

Proposition 3.2. Assume that (X, d, v) satisfies the weak CD(O, N) 
condition for some N E [1, oo). 

(1) Let A be a totally convex, closed subset of X. Then (A, d, viA) 
also satisfies the weak CD(O, N) condition. 

(2) Given E, (j > 0, the measured length space (X, Ed, bv) also sat
isfies the weak CD(O, N) condition. 

(3) The measure v either is a delta function or is non-atomic. 

For a point x EX, a subset A C X, and t E [0, 1], we put 

[x, A]t = {Jr(t) I"(: [0, 1] ____,X is a minimal geodesic 

with "f(O) = x and "!(1) E A} 

(that is, [x, A]t is the set of all t-barycenters of x and each point in 
A). The proof of Theorem 30.11 in [18] (Theorem 5.31 in [10]) gives a 
directionally restricted version of the Bishop~Gromov inequality: 

Proposition 3.3. Assume that (X, d, v) satisfies the weak CD(O, N) 
condition for some N E [1, oo). Then for any x E supp(v) and any Borel 
setAe X, 

(3.1) tN v(A) ~ v([x, A]t) 

holds for all t E [0, 1]. 

Theorem 3.4. Let {(Xi, Xi, vi)}~1 be a sequence of pointed mea
sured length spaces satisfying the weak CD(O, N) condition for some 
N E [1, oo) with supph) =Xi and vi(B1(xi)) = 1. 

Then there exists a subsequence {j} C { i} such that { (Xj, Xj, v1)} 
pointed measured Gromov~Hausdorff converges to some pointed mea
sured length space (Xoo, X00 , V00 ). Moreover, the limit space (X00 , v00 ) 

satisfies the weak CD(O, N) condition. 
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Remark 3.5 (On the measure contraction property). Given N E 

[1, oo ), Proposition 3.2, Proposition 3.3, and Theorem 3.4 hold for mea
sured length spaces with MCP(O, N). See [12] and [16, Section 5] for 
details. 

§4. Proof of Theorem 1.1 

We start with the definition of ends. Let X be a complete length 
space. A path ry : [0, oo) ___, X is a ray if each finite geodesic segment 
is minimal. Let ry1 , ry2 : [0, oo) ___, X be rays from the base point x. 
Two rays ry1 and ry2 are said to be cofinal if ry1(t) and "(2(t) lie in the 
same connected component of X\ Br(x) for all t, r > 0 with t;:,: r. An 
equivalence class of co final rays is called an end of X. 

Example 4.1. Let II · II be any norm on Rn. Consider the set 
A:= R x [0, 1]n~1, which is totally convex in (Rn, 11·11). The length space 
(A, 11·11) has two ends. Since (Rn, II·II,.Cn) satisfies the weak CD(O,n) 
condition and MCP(O, n) as mentioned in the introduction, it follows 
from Proposition 3.2(1) that the measured length space (A, II · II, .CniA) 
also satisfies the properties. 

To prove Theorem 1.1, we first study the local structure of measured 
length spaces with the weak CD(O, N) condition or with MCP(O, N). 

Definition 4.2 ([7, 3.32]). We say that a point x E X is a local 
cut point if V \ { x} is disconnected for some connected neighborhood V 
of x. The degree of x, denoted by deg(x), is defined as the supremum 
of the number of connected components of V \ { x} for all connected 
neighborhoods V of x. 

If x is a local cut point, then V \ { x} is disconnected for every 
sufficiently small neighborhood V of x. We have deg(x) ;::: 2 for each 
local cut point x. The end points in a graph (one-dimensional space) 
are not local cut points. 

An interior point in a graph is not always a local cut point; con
sider the length space {(x,O)IO::; x::; 1}U{(O,y)IO::; y::; 1}U ( u:o{ (x, -x + 2~i) I 0 ::; X ::; 2~i)}) c R2 . The origin is not a local 
cut point. 

On the basis of an idea in the proof of Theorem 5.1 in [4], we have 

Lemma 4.3. Let (X, d) be a complete, locally compact, separable 
length space equipped with a nonnegative Radon measure v. Given N E 

[1, oo), we assume one of the following (i) and (ii): 
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(i) The measured length space (X, d, v) satisfies the weak CD(O, N) 
condition. 

(ii) The measured length space (X, d, v) satisfies MCP(O, N). 
If there exists a local cut point x EX, then deg(x) = 2. 

Proof. Assume the condition (i). The proof is by contradiction: 
suppose that deg(x) 2: 3. We may assume that supp(v) = X; see 
[18, Theorem 30.2]. For a sufficiently small r > 0, we can take three 
connected components Ot, 02, 03 of Br ( x) \ { x} such that Oi n Sr ( x) 
is nonempty for all i = 1, 2, 3. Fix 0 < l ~ r /2. For each i = 1, 2, 3, we 
choose a point Xi E oi with d(x, Xi) = l. See Figure 1. 

We put A = Be ( x) n 01 for 0 < E < l. Then every minimal geodesic 
between any point in A and Xi fori= 2, 3 passes through the local cut 
point x. 

We now use Proposition 3.3, the Bishop-Gromov inequality (3.1), 
for Xi (i = 2, 3), A, and t = lj(l +E): 

(4.1) (z ~E) N v(A) ~ v([xi, A]lj(l+e))· 

Put Ai =[xi, A]lj(l+e) fori= 2, 3 and A'= Be(x)n(02U03). We remark 
that A2,A3 C A' and A2nA3 = 0; hence, v(A2)+v(A3) ~ v(A'). From 
(4.1) fori= 2, 3, we have 

(4.2) ( l )N v(A2) + v(A3) v(A') 
2 -- < <--. 

l + E - v(A) - v(A) 

Next, we use the inequality (3.1) for x1, A', and t = lj(l +E): 

(4.3) (z ~ J N v(A') ~ v([x1, A']lj(l+e))· 

Since [x1, A']lj(l+e) C A, it follows from (4.2) and (4.3) that 

Taking E--+ 0, we get a contradiction. 
The proof in the case (ii) is the same as above. Q.E.D. 

Remark 4.4. The assumption K = 0 is not essential in Lemma 4.3: 
given K E JR. and N < oo, Lemma 4.3 (that is, deg(x) = 2) holds 
for measured length spaces with the weak CD(K, N) condition or with 
MCP(K, N); see [19]. 
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Fig. 1. Proof of Lemma 4.3 

Proof of Theorem 1.1. Assume the condition (i). The proof is by 
contradiction: suppose that X has at least three ends. We assume that 
supp(v) =X as in Lemma 4.3. Given any sequence Ei ~ 0 and any point 
x EX, we put (Xi, di, xi) = (X, Eid, x). Let vi be the push-forward of 
the measure v(B1;,i (x))- 1v by the identity map from X to Xi. It fol
lows from Proposition 3.2(2) that the measured length space (Xi, di, vi) 
satisfies the weak CD(O, N) condition. From Theorem 3.4 (or [3, Chap
ter 1]), there exists a subsequence {j} C {i} such that {(Xj,dj,Xj,Vj)} 
pointed measured Gromov-Hausdorff converges to some pointed mea
sured length space (X00 ,d00 ,x00 ,v00 ); then, (X00 ,d00 ,v00 ) alsosatisfies 
the weak CD(O, N) condition. Since X has at least three ends, the point 
X 00 is a local cut point. Then deg(xoo) is equal to the number of ends 
of X. This contradicts Lemma 4.3. 

The proof in the case (ii) is the same as above. Q.E.D. 
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