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§1. Introduction 

Let G be a connected, simply-connected, simple algebraic group 
over C. We fix a Borel subgroup B of G and a maximal torus T c B. 
We denote their Lie algebras by g, b, ~ respectively. Let P+ c ~* be 
the set of dominant integral weights. For any A E P+, let V(A) be 
the finite dimensional irreducible g-module with highest weight A. We 
fix a positive integer £ and let Re(g) be the free Z-module with basis 
{V(A) :A E Pe}, where 

Pe :={A E P+: A(Ov) :S: £}, 

0 is the highest root of g and ev is the associated coroot. There is 
a product structure on Re (g), called the fusion product ( cf. Section 
3), making it a commutative associative (unital) ring. In this paper, 
we consider its complexification R.~(g), called the fusion algebra, which 
is a finite dimensional (commutative and associative) algebra without 
nilpotents. 

Let R.(g) be the Grothendieck ring of finite dimensional representa
tions of g and let nc(g) be its complexification. As given in 3.6, there is 
a surjective ring homomorphism (3 : R.(g) ---> Re(g). Let (Jc : R.c(g) ---> 

R.~(g) be its complexification and let Ie(g) denote the kernel of (Jc. Since 
R.~(g) is an algebra without nilpotents, Ie(g) is a radical ideal. 

The main aim of this note is to conjecturally describe this ideal Ie(g). 
Before we describe our result and conjecture, we briefly describe the 
known results in this direction. Identify the complexified representation 
ring R.c(g) with the polynomial ring C[x1, ... , Xr], where r is the rank 
of g and Xi denotes the character of V(wi), the ith fundamental repre
sentation of g. It is generally believed (initiated by the physicists) that 
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there exists an explicit potential function F = Ft (g) (depending upon 
g and £) in Z[x1 , ... , Xr J, coming from representation theory of g, with 
the property that the ideal generated over the integers by the gradient 
ofF, i.e., (8F/fJx1 , ... , 8F/8xr), is precisely the kernel of (3. This, in 
particular, would imply that the spec of Rt (g) is a complete intersection 
over Z inside the spec of the representation ring Z[Xl, ... , Xr]. It may be 
remarked that, since It(g) is a radical ideal ofC[x1 , ... ,xr] with finite 
dimensional quotient, there exists an abstract potential function F such 
that the ideal generated by the gradient of F over the complex numbers 
coincides with It(g). However, an explicit construction of such an F 
attuned to representation theory is only known in the case of g = slr+l 
and SP2r· 

We recall the following result ( cf. [9], [10], [3] and [4]) obtained 
by first constructing explicitly a potential function. Let X-A denote the 
character of the irreducible representation V(>.) of g. 

1.1. Theorem. (a) For g = slr+l, 

Ie(slr+l) = (X(Hl)w 1 ' X(H2)wl' · · · 'X(Hr)wJ· 

{b) For g = SP2r, 

Ie(sp2r) = (X£w 1 +w,; 1 :S i :S r). 

In particular, the ideals on the right side of both of (a) and (b) are 
radical. 

For the remaining simple Lie algebras, we have the following theorem 
and the conjecture. 

For any ideal I in a ring R, we denote its radical ideal by .,fl. In the 
following theorem, for any g, we take any fundamental weight Wd with 
minimum Dynkin index. (Recall from Section 2.2 that Wd is unique up 
to a diagram automorphism except for g of type B 3 .) The list of such 
wd's as well as the dual Coxeter number h(g) of any g is given in Table 
1 (Section 2). 

1.2. Theorem. (a) For g of type Br(r;::: 3), Dr(r;::: 4), E6 or E7, 

Ie(g) :2 (X(Hl)wd' X(H2)wd' · · ·, X(Hii(g)-l)w)· 

(For g of type B3, we must take Wd = w1 .) 

(b) For g of type G2, 

if e is odd, 

if e is even. 
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(c) For g of type F4, 

lt_(F4) 2 V (X(Hl)w4, X(£+2)w4, · · ·, X(£+6)w4) · 

(d) For g of type Es, 

It_(Es) 2 { V(X(£+2)ws• X(£+3)ws• · · · 'X(£+29)w8 ), 

(X(£+2)ws' X(£+3)ws• · · · 'X(£+29)ws• X(~ )ws)' 
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if£ is even, 

if£ is odd. 

1.3. Conjecture. All the inclusions in (a)-(b) of the above theorem 
are, in fact, equalities for g of type Br(r 2:: 3), Dr(r 2:: 4) and G2 • 

In addition, we conjecture the following. 
(a) For g of type Br(r 2:: 3), 

(X(Hl)wl' X(£+2)wl' · · · 'X(Hh(g)-l)wl) = 

(X(Hl)wp X(£+2)wl' · · · 'X(Hh(g)-l)w1, Xtw1 +wJ · 

(b) For g of type Dr(r 2:: 4), 

(X(Hl)wd, X(£+2)wd' · · · 'X(Hh(g)-l)w) = 

(X(l+l)wd' X(£+2)wd' · · · 'X(i+h(g)-l)wd' Xiw1 +wr-1' Xiw1 +wr). 

It is not clear to us (even conjecturally) how to explicitly construct 
potential functions in these cases. 
Acknowledgement. The second author was supported by an NSF 
grant. We thank Peter Bouwknegt for some helpful correspondences. 

§2. Preliminaries and Notation 

This section is devoted to setting up the notation and recalling some 
basic facts about affine Kac-Moody Lie algebras. 

Let G be a connected, simply-connected, simple algebraic group over 
C. We fix a Borel subgroup B of G and a maximal torus T C B. Let 
~,b and g denote the Lie algebras ofT, Band G respectively. 

Let R = R(~, g) C ~* be the root system; there is the root space 
decomposition g = ~ EB ( EBaER 9a), 9a being the root space corresponding 
to the root a. The choice of b determines a set of simple roots .6. = 
{ a 1 , ... , ar} of R, where r is the rank of G. For each root a, denote 
by av the unique element of [ga, 9-a] such that a(av) = 2; it is called 
the coroot associated to the root a. Let ~IR denote the real span of the 
elements { ar, ai E .6.}. 
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Let {wih<i<r be the set of fundamental weights, defined as the ba
sis of~* dual to-{ a(h:S:i:S:r· We define the weight lattice P = {,\ E ~* : 
>.(a{) E Z Vai E ~}, and denote the set of dominant integral weights 
by P+, i.e., P+ := {,\ E ~* : .A(a{) E Z+ Vai E ~},where Z+ is the set 
of nonnegative integers. The latter set parametrizes the set of isomor
phism classes of all the finite dimensional irreducible representations of 
g. For>. E P+, let V(>.) be the associated finite dimensional irreducible 
representations of g with highest weight .>.. Let p denote the sum of fun
damental weights, and h = h(g) := 1 + p(()v) the dual Coxeter number, 
where () is the highest root of g. 

Let ( I ) denote the Killing form on g normalized such that (ev 1ev) = 
2. We will use the same notation for the restricted form on ~' and the 
induced form on~*. Let W := Nc(T)/T be the Weyl group of G, where 
Nc(T) is the normalizer ofT in G. Let W 0 denote the longest element 
in the Weyl group. For any >. E P, the dual of .>., denoted by >. *, is 
defined to be -W0 A. For >. E P+, ),* is again in P+ and, moreover, 
V(.A)* ~ V(.A*). 

2.1. Dynkin index. We recall the following definition from [6], §2. 

2.2. Definition. Let g1 and g2 be two (finite dimensional) simple 
Lie algebras and rp : g1 ----+ g2 be a Lie algebra homomorphism. There 
exists a unique number m'P E C, called the Dynkin index of the homo
morphism rp, satisfying 

(rp(x)lrp(y)) = m'P(xly), for all x,y E g1, 

where ( I ) is the normalized Killing form on g1 (and g2 ) as defined 
above. Then, as proved by Dynkin [6], Theorem 2.2, the Dynkin index 
is always a nonnegative integer. 

For a Lie algebra g1 as above and a finite dimensional representation 
V of g1 , by the Dynkin index mv of V, we mean the Dynkin index of 
the Lie algebra homomorphism Pv : g1 ----+ sl(V), where sl(V) is the Lie 
algebra of traceless endomorphisms of V. 

For any simple Lie algebra g, there is a fundamental weight wd such 
that mv(wd) divides mv for every finite dimensional representation V. 
Moreover, such a wd is unique up to diagram automorphisms (except for 
g of type B3 ). The following table gives the list of all such wd's together 
with their indices mv(wd) and also the dual Coxeter number h(g). The 
list of Wd and mv(wd) can be obtained from [6], Table 5 (see also [5], 
Proposition 2.3). We follow the indexing convention as in [1]. 
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Type of G Wd mv(wd) h(g) 
Ar (r ~ 1) W!,Wr 1 r+1 
Cr (r ~ 2) W1 1 r+1 
Br (r ~ 3) W1 2 2r -1 
Dr (r ~ 4) W1 2 2r- 2 

G2 W1 2 4 
F4 W4 6 9 
E6 W!,W6 6 12 
E1 W7 12 18 
Es ws 60 30. 

Table 1. 

We remark that for B3, w3 also satisfies mv(w3) = 2; for D4, W3 and W4 

both have mv(w3) = mv(w4) = 2. 

2.3. Affine Kac-Moody Lie algebras. Let g := g®C((z))EBCK 
denote the (untwisted) affine Lie algebra associated tog (where C((z)) 
denotes the field of Laurent series in one variable z ), with the Lie bracket 

[x ® J, y ® g] = [x, y] ® fg + (x\y)Resz=o(gdf) · K and [g, K] = 0, 

for x, y E g and J,g E C((z)). 
The Lie algebra g sits as a Lie subalgebra of g as g ® z 0 . The Lie 

algebra g admits a distinguished 'parabolic' subalgebra 

p := g ® C[[z]] E9 CK. 

We also define its 'nil-radical' ii (which is an ideal of p) by 

ii := g ® zC[[z]], 

and its 'Levi component' (which is a Lie subalgebra of p) 

Po := g ® ZO E9 CK. 

Clearly (as a vector space) 

2.4. Irreducible representations of g. Fix an irreducible (finite 
dimensional) representation V = V(>.) of g and a positive integer£. We 
define the associated generalized Verma module for g as 

M(V, £) = U(g) ®u(p) Yi(V), 
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where the i)-module Y£(V) has the underlying vector space same as Von 
which ii acts trivially, the central element K acts via the scalar£ and the 
action of g = g ® z0 is via the g-module structure on V. Then, M(V, £) 
has a unique irreducible quotient denoted L(V, £). Observe that K acts 
by the constant£ on M(V, £) and hence also on L(V, £). The constant 
by which K acts on the representation is called the central charge of the 
representation. Thus, L(V, £) has central charge£. 

2.5. Definition. Consider the Lie subalgebra t:0 of g spanned by 
{X-o ® z, K- ov ® 1, Xo ® z-1 }, where X_o (resp. Xo) is a non-zero 
root vector of g corresponding to the root -(} (resp. 0). Then, the Lie 
algebra t:0 is isomorphic with sl(2). 

A g-module L is said to be integrable if every vector v E L is con
tained in a finite dimensional g-submodule of L a.nd also v is contained 
in a finite dimensional t:0 -submodule of L. 

Then, it follows easily from the sl(2)-theory that the irreducible 
module L(V(A),£) is integrable if and only if A E Pt := {A E P+ : 
A(Ov) :::; £}. 

§3. An Introduction to the Fusion Ring 

Let R(g) denote the Grothendieck ring of finite dimensional repre
sentations of g. It is a free Z-module with basis {V(A) : A E P+}, with 
the product structure induced from the tensor product of representations 
as follows: 

V(A) ® V(tL) = L m~,,_. V(v), 
vEP+ 

with m~,,_. = dimHom9 (V(A) ® V(tL) ® V(v*), q. 
The following is the most standard definition of the fusion ring. 

3.1. First definition of the fusion ring. Fix a positive integer 
£. The fusion ring Rt(g) (associated tog and the positive integer£) is a 
free Z-module with basis {V(A) :A E PR.}. The product structure, called 
the fusion product, is defined as follows: 

V(A) ®F V(tL) := ffi n~,,_.(f)V(v), 
vEPt 

where n~,,_.(£) is the dimension of the space VJ1 (A,/L,v*) of conformal 
blocks on JP>1 with three distinct marked points {xo,x1,x2} and the 
weights A, /L, v* attached to them with central charge £. Recall that 

VJl (A, /L, v*) := Homg®O[U] (L(V(A),£) ® L(V(tL),£) ® L(V(v*), £),C), 
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where U := lP'1 \ {x0,x1,x2} and O[U] denotes the ring of ((>valued 
regular functions on the affine curve U. The action of g ® O[U] on 
L(V(A), e)® L(V(JL), e)® L(V(v*), £) is given by 

(x®f)(vl ®v2®v3) := ((x®(f)x0 )vl)®v2®v3+vl ®((x®(f)xJv2)®v3 

+ V1 ® V2 ® ((x ® (f)x 2 )v3), 

for x E g and f E O[U], where (f)x, E C((z)) denotes the Laurent 
series expansion of f at Xi. The numbers n~,p, (e) are given by the cel
ebrated Verlinde formula [17] (for a justification, see [8] together with 
[11], (13.8.9)). 

It is clear from its definition that the product ®F is commutative. 
It is also associative as a result of the 'factorization rules' of [15]. 

We also remark that the canonical map 

p: VJ1 (A, JL, v*) --. Hom9 (V(A) ® V(JL) ® V(v*), C) 

induced from the natural inclusion V(A) ® V(JL) ® V(v*) '---+ L(V(A), £) ® 
L(V(JL), e)®L(V(v*), e) is an injection [16], Theorem 4.40. In particular, 
the inequality n~,p, (e) :::; m~,p, holds. 

3.2. Second definition. Let Q be the affine Kac-Moody group as
sociated to the Lie algebra g and P its parabolic subgroup (correspond
ing to the Lie subalgebra p) (cf. [13], Chapter 13). Then, X = QjP 
is a projective ind-variety. Now, given a finite dimensional algebraic 
representation V of P, we can consider the associated homogeneous vec
tor bundle V on X and the corresponding Euler-Poincare characteristic 
(which is a virtual Q-module) 

Recall that Hi(X, V) is determined in [13], Chapter 8. 
For any positive integer£ and A, J-l E Pc, define 

[L(V(A), e) ®• L(V(JL), e)]* ~ X(X, V), 

as virtual Q-modules, where the P-module V := (Yc(V(A) ® V(JL)))* (cf. 
§2.4 for the notation Yf). Writing 

X(X, V) ~ EBvEPe d~,p, L(V(v), I!)*, 

we get another definition of the fusion product as follows: 

V(A) ®• V(JL) := E9 d~,p, V(v). 
vEPe 
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By a result of Faltings [7], Appendix (see also Kumar [12], Theorem 
4.2), the two products ®F and ®• coincide for G of type Ar, Bn Cr, Dr 
and G2 . In fact, these products coincide for any Gas proved by Teleman 
(cf. [14], Theorem 0 together with [12], Lemma 4.1). 

3.3. Third definition. Consider the Lie subalgebra s of g spanned 
by Xe, X_ 0 and ev, where X±e are the root vectors corresponding to 
the roots ±B respectively, choosen so that (XeiX-e) = 1. Then, s is 
isomorphic with sh under the isomorphism ¢; : sl2 --> s taking X f-+ 

Xe, Y f-+ X_e, H f-+ ev, where X, Y, His the standard basis of sl2 . For 
any finite dimensional s-module V and nonnegative integer d, let V(d) 
denote the isotypical component of the s-module V corresponding to 
the highest weight d (where we follow the convention that the highest 
weight of an irreducible sl2 -module is one less than its dimension). 

The following proposition can be found in [2], Proposition 7.2. 

3.4. Proposition. For any >., J.L E Pt, the fusion product V(>.) ®F 
V(J.L) is the isomorphism class of the (g-module) quotient ofV(>.)®V(J.L) 
by the g-submodule generated by the s-module 

EB (V(>.)(P) ® V(J.L)(q))(d). 
p+q+d>2£ 

3.5. The homomorphism f3: R(g) --> Rt(g). We first introduce 
the affine Weyl group Wt. As in Section 2, let W be the (finite) Weyl 
group of G which acts naturally on P and hence also on PJR := P ®z R 
Let Wt be the group of affine transformations of PJR generated by W and 
the translation>. f-+ >. + (C + h)B. Then, Wt is the semi-direct product 
of W by the lattice (£ + h)Qlong, where Qlong is the sublattice of P 
generated by the long roots. For any root a E R and n E Z, define the 
affine wall 

Ha,n = {>. E JlR : (>.Ia) = n(C +h)}. 

The closures of the connected components of PIR \ (uaER,nEZ Ha,n) are 
called the alcoves. Then, any alcove is a fundamental domain for the 
action of Wt. The fundamental alcove is by definition 

A 0 = {>. E PIR: >.(an?: OVa; E ~' and>.(Bv):::; £+ h}. 

3.6. Definition. Define the Z-linear map f3 : R(g) --> Rt(g) as 
follows. Let >. E P+. If>.+ plies on an affine wall, then f3(V(>.)) = 0. 
Otherwise, there is a unique J.L E Pt and w E Wt such that >. + p = 
w(J.L + p). In this case, define f3(V(>.)) = E(w)V(J.L), where c(w) is the 
sign of the affine Weyl group element w. 
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The following theorem follows from the equivalence of the first two 
definitions of the fusion product given above together with [12], Lemma 
3.3 and the Kac-Moody analogue of the Borel-Weil-Bott theorem (cf. 
[13], Corollary 8.3.12). 

3.7. Theorem. The Z-linear map j3 defined above is, in fact, an 
algebra homomorphism with respect to the fusion product on Rt(G). 

§4. A Conjectural Presentation of the Fusion Algebra 

We consider the complexification nc(g) of n(g), and similarly con
sider the complexification n~(g) of ne(g). We will denote the character 
of the ith fundamental representation of g by Xi (instead of XwJ· As 
is well known, n(g) is identified with the polynomial ring Z[XI, ... ,xr]· 
Moreover, the «:::-algebra nc(g) is identified with the affine coordinate 
ring C[T/W] of the quotient T/W. This identification is obtained by 
taking the character of any virtual representation in n(g). Similarly, the 
finite dimensional algebra n~(g) is identified with the affine coordinate 
ring qr;eg /W] of the reduced subscheme r;eg /W of T /W by taking 
the character values on the finite set r;eg/W (cf. [2], §9), where 

Te := {t E T: e"'(t) = 1 Va E (£ + h)Qlong}, 

and T%eg is the subset of regular elements of Tt. Moreover, the homo
morphism j3c : nc(g) -t n~(g) obtained from the complexification of j3 
defined in Definition 3.6 (under the above identifications) corresponds 
to the inclusion of T%eg/W <-t TjW. Let It(g) denote the kernel of 
~. Since T%eg /W is reduced, Ie(g) is a radical ideal. Identifying nc(g) 
with C[xl,···,Xr] as above, we can think of Ie(g) as an ideal inside 
C[x1. ... , Xr]· Thus, 

We begin by recalling the following result on the presentation of 
fusion algebras. The (a)-part of the result is due to Gepner [9] and for 
the (b)-part, see [10] and [3]. In fact, both the parts are obtained by 
first constructing explicitly a potential function. Moreover, the following 
presentations are valid even over Z (cf. [4]). 

4.1. Theorem. (a) For g = slr+l, 

(Recall that for slr+l, h = r + 1.) 
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{b) For g = SP2r, 

In particular, the ideals on the right side of both of (a) and (b) are 
radical. 

For any ideal I in a ring R, we denote its radical ideal by Vi. 
Recall that the complete list of the fundamental weights Wd such that the 
Dynkin index mv(wd) is minimum (as well as the dual Coxeter numbers 
h of any g) is given in Table 1. In the following theorem, for any g, we 
take any one Wd with minimum Dynkin index. (Recall from Section 2.2 
that Wd is unique up to a diagram automorphism except for g of type 
Ba.) 

4.2. Theorem. Let£ be any positive integer. 
(a) For g of type Br(r ~ 3), Dr(r ~ 4), E6 or E7, 

(For g of type Ba, we must take wd = w1.) 
(b) For g of type G2, 

It.(G2) :J y 2 { 
· J (X(Hl)wp X(£+2)wp X( til )w)' 

- V (X(Hl)wl' X(£+2)w1' Xw 1 +!w2), 

if e is odd, 

if e is even. 

(c) For g of type F4, 

{d) For g of type Es, 

It.(Es) ::2 { V (X(£+2)ws' X(£+3)ws' · · · 'X(£+29)ws), 

(X(£+2)ws' X(£+3)ws• · · · 'X(£+29)ws• X(~ )w8 ), 

if e is even, 

if e is odd. 

Proof. Using the tables in Bourbaki [1], in the cases (a), it is easy 
to verify that for >. = ( f + m )wd, 1 :::; m :::; h(g) - 1, there exists an affine 
wall H,..,n determined by a positive root J.l of g such that >. + p lies on 
it. Then, by the definition of /3, f3(V(>.)) is trivial. 

We give below some of the details. 
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Br: In this case, we have wd = WI and h = 2r- 1. Observe that 
((C + m)wi + PIJL) = C + 2r- 1, where 

if 1 ::; m ::; r- 1, 

if r ::; m ::; 2r - 2. 

Thus, (C + m)wi +plies on the affine wall determined by JL as above. 
Similarly, Cwi + Wr + p lies on the wall determined by the highest 

root e of Br (see the next conjecture, part (a)). 

Dr: In this case, we take Wd =WI and we have h = 2r- 2. Observe 
that((£+ m)wi + PIJL) = C + 2r- 2, where 

{
JL= I: ak+( I: 2ak)+ar-I+ar, 

I:'::k:'::m m+I:'::k<r-I 
JL = I: Dk, if 

I:'::k<2r-I-m 

if 1 ::; m ::; r - 2, 

r - 1 ::; m ::; 2r - 3. 

Since any wd is obtained from WI by a diagram automorphism in this 
case, the result holds for any wd. 

A similar calculation shows that both Cwi +wr-I + p and Cwi +wr + p 
lie on the affine wall determined by the highest root e of Dr (see the 
next conjecture, part (b)). 

G2 : In this case, we have Wd = WI and h = 4. Observe that (C + 
1)wi+ p (resp. (C + 2)wi + p) lies on the affine wall determined by 
e = 3ai + 2a2 (resp. 3ai + a2). Moreover, R!Iw2 + p (for odd C) and 
WI+ ~W2 + p (for even C) lie on the affine wall determined by the root e. 

F4 : In this case, we have wd = w4 and h = 9. Observe that (C + 
1)w4 + p, ... , (C + 6)w4 + p lie on the affine wall determined by the roots 
() = 2ai + 3a2 + 4a3 + 2a4, e- DI' ()- DI - a2, e- DI - a2- 2a3, e
DI - 2a2- 2a3, e- 2ai- 2a2- 2a3 respectively. 

The corresponding calculation for the E series is more involved and 
is left to the reader. This proves the theorem. Q.E.D. 

We would like to make the following conjecture. 

4.3. Conjecture. All the inclusions in (a)-(b) of the above theorem 
are, in fact, equalities for g of type Br(r 2 3), Dr(r 2 4) and G2. 

In addition, we conjecture the following: 
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(a) For g of type Br(r ~ 3), 

(X(Hl)wl' X(H2)wl' · · · 'X(Hii(g)-l)w1) = 

(X(Hl)wl, X(H2)wl' · · · 'X(Hii(g)-l)w1' Xtw1 +wJ · 

(b) For g of type Dr(r ~ 4): 

(X(l+l)wd, X(H2)wd' · · · 'X(Hii(g)-l)w) = 

(X(l+l)wd' X(l+2)wd' • · · 'X(t+ii(g)-l)wd' Xtw1 +wr-1' Xlw1 +wr ). 

4.4. Question. One may ask if the inclusions in the above theorem 4.2 
for g of types F4 , E6 , E 7 and Es are equalities as well. 
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