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Periodicity in the May's host parasitoid equation 

Walter Sizer 

Abstract. 

In this paper we consider the May's host parasitoid equation, 

(1) 
ax2 

Xn+l = (1 n) ,a> 1. + Xn Xn-1 

We show that with initial conditions x _1 == x 0 = 1 there are values 
of a giving periodic solutions of prime period n for all integers n 2 7. 
There are no non-equilibrium periodic solutions of periods 2, 3, 4, 5 or 
6. 

§1. Introduction 

May's host parasitoid equation (1) shows some rhythmic behavior, 
and some results about its long term behavior are given in (2]. In this 
paper we indicate that in the case x_ 1 = x 0 = 1, for different values of 
a there are periodic solutions of prime period n for all natural numbers 
n ~ 7. A key observation is that for appropriate values of a there are 
in this situation arbitrarily long decreasing sequences 

X 0 > x 1 > ... > xn. The techniques used are based on those of (3] 
and [4]. 

§2~ Getting periodic solutions 

With equation (1) and initial conditions x_ 1 = x 0 = 1, the value 
of xn will be a rational function of a. We will often write x" (a) to 
emphasize this dependence. Direct computation (with simplification of 
fractions) gives 

x1 (a)= ~' 
x2 (a) = 4~~a ' 
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We will later need the observation that the functions X; (a) are ra
tional functions in a with non-negative coefficients in both numerator 
and denominator, hence are continuous for a > 1. This can be formally 
established by induction on i. 
The existence of periodic solutions of given period will eventually follow 
from the following theorem. 

Theorem 1. With May's host parasitoid equation with x_ 1 = x 0 = 
1, and for k ~ 0, 

(2) 

(i) a gives a periodic solution of period 2k + 2 if and only if 
xk (a)= xk+l (a); 

(ii) a gives a periodic solution of period 2k + 3 if and only if 
xk ( o:) = xk+2 (a). 

Proof. We prove (i); the proof of (ii) is similar and is omitted. 
Equation (1) can be rewritten as 

Xn-1 = (1 + Xn)Xn+l. 

If: Assume that xk(o:) = xk+1 (a), k ~ 0. We can generate the 
sequence in both directions starting with xk = xk+l" The similarity 
of equations (1) and (2) gives us equations xk_ 1 = xk+2, xk_ 2 = xk+3, 

and in general xk-i = xk+i+l" This means we get X 0 = x 2k+l = 1 and 
X_ 1 = X 2k+2 = 1. So x_ 1 = X 2k+l1 X 0 = X 2k+2" Since (1) is a second 
order difference equation it follows that the seuence { xn} is periodic of 
period 2k + 2. 

Only if: Assume the sequence is periodic of period 2k + 2. Then 
X_ 1 = X 2k+l = 1, and X 0 = X 2k+2 = 1. Using (1) and (2) and working 
both ways, we get X 1 = X 2k, X 2 = X 2k_ 1 , ••• , xk = xk+l. Q.E.D. 

We can use theorem 1 to show the existence of some periodic solu
tions algebraically. For example, setting the expressions for x 3 (a) and 
x 4 (a) that we have above equal and simplifying we get the equation 
f(o:) = 8 + 8o: + 2o:2 + 2o:3- 3o:4- 2o:5 + 0:6 = 0. 
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Descartes' Rule of Signs says there are zero or two positive solutions. 
We know (and can check) that a = 2 is a solution (giving the equilib
rium xn = 1 for all n). Since !'(2) = -24 (in particular, /'(2) =f. 0), 
we know that a = 2 is not a repeated root. In fact, since f(a) has a 
positive leading coefficient we know the other root is greater than 2. (In 
fact, the value of a giving a period 8 solution is approximately 2.43). 
Similarly we could show that a periodic solution of period 7 comes when 
a is approximately 4.71, and a period 9 solution comes when a is ap
proximately 1.89. 

We can also show there is no non-equilibrium solution of period 6 in 
this manner. Setting X 2 (a) = X 3 (a) and simplifying gives the equation 
a 3 - 2a- 4 = 0. Descartes' Rule of Signs says there is one positive 
root. It is a = 2, giving the equilibrium solution. 

Computationally this algebraic approach to proving the existence of 
periodic solutions becomes unmanageable as k increases, and another, 
non-algebraic approach (still using theorem 1) is needed. 

§3. Long decreasing sequences 

Another observation which plays a key role in establishing period
icity is contained in the following theorem. 

Theorem 2. With the May's host parasitoid equation with initial 
conditions X_ 1 = X 0 = 1, for any positive integer N there is a value of 
a greater than 1, a= eN, with · 

x0(cN) > X 1(cN) > ... > xN(cN). 

Proof. We first show that if 1 ~ xk ~ 22l_ 1 for k = 0, 1, ... n- 1 

and a < 2, then xn ~ 22L 1 • This is done, of course, using induction 
on n: The fact is clearly true for n = 1, where 1 ~ X 1 = ~ ~ ~ = 22L 1 • 

So assume it is true for n - 1. Then 
ox2 x2 x2 x2 

X = n-1 > n-1 > n-1 > ...!!.=:1. > 
n (1+xn-1)xn-2 (l+xn-1)xn-2 - (l+xn-1) - 2 

( 1 ) 2 1 1 1 1 1 
22n-1_1 • 2 = 2(2n 1-1)2 • 2 = 22n-2+1 = 22n-1, 

as desired. 

Next we show that if a < 2 and if 1 + xk ~ a for 0 ::::; k ::::; n, then 

Xo > x1 > ... > xn. Again the proof uses induction. For n = 1, 
the conclusion says x 0 = 1 > x1 = ~'which is true as a< 2. Assume 
n > 1 and the claim is true for all k < n. Then xn = 1+: . :n-1 ·Xn-1. 

n-1 n-2 

Since 1 + xn_1 ~ a and, by induction, xn_2 > xn_1 , we get xn_ 1 > xn, as 
desired. 
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Now, take a: = eN = 22J _1 • By the first observation we get 1 +xk 2: 
a: for all k :s; N (assuming x k :s; 1 for k :s; N), and so by the second 
observation 

X0 > X 1 > ... > xN (and indeed xk :s; lfor k :s; N). Q.E.D. 

With values of a: decreasing towards 1 we get arbitrarily long de
creasing sequences x_ 1 = x 0 = 1 > x1 > X 2 > ... > xN. It is shown in 
(2] that none of these sequences have limit 0, in contrast to the situation 
where a: :s; 1 (treated in [2], and in the case a:= 1 also covered in [1]). 

§4. The existence of periodic solutions 

We are now in a position to prove the existence of periodic solutions 
to the May's host parasitoid equation. 

Theorem 3. For every positive integer n 2: 7, there exists a value 
of a: > 1 so that the May's host parasitoid equation (1} has a periodic 
solution of prime period n and with initial conditions x_ 1 = X 0 = 1. 

Proof. The cases of n = 7, 8, and 9 were dealt with previously. 
Continuing the notation introduced in theorem 2, let eN E (1, 2) 

satisfy the inequalities x 0 (cN) > X 1 (cN) > ... > xN(cN). Following 
Theorem 1 we want to find an a: so that (for odd periodicity) X 0 (a:) > 
X 1 (a:) > ... > xN+1 (a:)andxN(a:) = xN+ 2 (a), (N2: 4). Define a set 
AN by 
AN= {a:ia: 2: cN+2 and X 0 (c) > X 1 (c) > ... > xN+1 (c)and xN(c) 2: 

xN+ 2 (c) for all c in [cN+2 ,a:]}. 
The set AN is non-empty, as cN+2 E AN. Also, AN is bounded 

above by the value b of a: giving a period 9 solution, since x 0 (b) > 
X 1 (b) > X 2 (b) > X 3 (b) > X 4 (b)but X 3 (b) = x5 (b), sob rJ. AN (N 2: 4). 
Denote by aN the least upper bound of AN. 

We claim that 
X0 (aN) > X1 (aN) > ... > xN+1 (aN)and thatxN(aN) = xN+2 (aN). 
Because of the continuity of the functions x k (a:), we get 
(*) X0 (aN) 2:x1 (aN) 2: ... 2:xN+1 (aN)andxN(aN) 2:xN+2 (aN). 
If X0 (aN) = X 1 (aN), then X 1 (aN) = 1 and we have the equilibrium solu
tion, This means aN = 2, but this can't happen since AN has an upper 
bound b < 2 and aN is supposed to be the least upper bound of AN. If 
xk (aN) = xk+ 1 (aN) for any k = 1, 2, ... , N -1, take k to be minimal with 
this property. The as before, using equations (1) and (2), we get xk+ 2 = 
xk_ 1 • This contradicts xk_ 1 (aN) > xk (aN) 2: xk+ 1 (aN) 2: xk+ 2 (aN), so 
we can't have xk (aN) = xk+ 1 (aN). Thus inequalities are strict through 
xN_ 1 > xN" If xN = xN+u then (again using equations (1) and (2)) we 
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get xN+ 2 = xN_ 1 > xN, contradicting(*). Finally, if xN > xN+2' again 
using continuity we can find a 8 > 0 so that aN + 8 E AN, contradicting 
the fact that aN is an upper bound for AN. Then by theorem 1, aN 
gives a periodic solution of period 2N + 3. 

Similar arguments using the sets 
EN= {a/a? cN+2and X 0 (c) > X 1 (c) > ... > xN_ 1 (c)? xN(c)for all c 

in [cN+2 , a]} 
give even period periodic solutions of period greater than or equal to 10. 

The constructions involving the sets AN and EN guarantee that the 
indicated period of the solution is its prime period, and in fact the period 
is made up of just one cycle of the sequence. Q.E.D. 

Note in the proof of theorem 3 that it was essential to have an upper 
bound b of the sets AN and EN which was less than 2 to rule out the 
possibility that aN = 2 and we got the equilibrium solution. The rest 
of the argument would work for A1 , except that in this case a 1 is 2 and 
our period 5 solution is the equilibrium solution. 

Problems: 
1. Is there only one value of a for which equation (1) has a one 

cycle period n solution (n? 7)? 
2. Show multicycle period n solutions exist (for some values of n). 
3. Give periodicity results for arbitrary x _1 and x 0 • 

4. Show that in general solutions are bounded. 
5. Give an invariant for equation (1). 

References 

[ 1] G. Bastien and M. Rogalski, On some algebraic difference equations 
un+2 un = 1/!( un+ 1 ) in m;;t, related to families of conics or cubics: gen
eralization of the Lyness' sequences, J. Math. Anal. Appl., 300 (2004), 
303-333. 

[ 2] G. Ladas, A. Tovbis and G. Tzanetopoulos, On May's host parasitoid 
model, J. Differ. Equations Appl., 2 (1996), 195-204. 

[ 3] W. S. Sizer, Some periodic solutions of the Lyness equation, In: New Trends 
in Difference Equations, Proceedings of the Fifth International Confer
ence on Difference Equations, (eds. S. Elaydi et al.), Taylor & Francis, 
New York, 2002, pp. 267-272. 

[ 4] W. S. Sizer, Periodicity in the Lyness equation, Math. Sci. Res. J., 7 (2003), 
366-372. 

Minnesota State University Moorhead 

E-mail address: sizer@mnstate. edu 


