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Cannibalism in a discrete predator-prey model with 
an age structure in the prey 

Sophia R. Jang 

Abstract. 

A discrete-time predator-prey model with an age structure in the 
prey population in which both the predator and the adult prey can 
consume juvenile prey population is proposed. The fecundity of the 
adult prey population is assumed to be a constant and the juvenile 
survival probability is density dependent on its own population size. 
It is shown that both populations go to extinction if the inherent net 
reproductive number of the prey is less than 1. Both populations can 
survive if the prey's inherent net reproductive number is larger than 
one and the predator's reproductive number is greater than 1 when the 
prey population is stabilized in the steady state fashion. 

§1. Model derivation and analysis 

Cannibalism has been observed in a variety of species, including 
some fish species such as adult Atlantic cod which eat large numbers 
of their young [1]. On the other hand, the adult cod is also preyed 
upon by some fish species such as killer whales and sharks. It has been 
demonstrated mathematically that cannibalism can have some effects 
on population dynamics [2, 3, 5, 11, 12]. Kohlmeier and Ebenhoh [10] 
illustrated that cannibalism in the prey can increase equilibrium popu­
lation sizes for a predator-prey system modeled by ordinary differential 
equations. See also [8, 9] and references cited therein for continuous-time 
predator-prey models with cannibalism. 

In this manuscript we propose a simple discrete-time predator-prey 
model, where each prey individual is classified as either juvenile or adult, 
and the adults may prey on its own juveniles. Let x1(t), x2(t) and p(t) 
denote the juvenile prey, adult prey, and predator population sizes at 
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time t, respectively. The probability that a juvenile will escape from 
being cannibalized is e-cx2 when the adult prey population is of size x2, 
where c > 0 may be interpreted as the cannibalism rate. It is assumed 
that only the adult prey population can reproduce with a constant birth 
rate b > 0. The transition probability from juvenile to adult is density 
dependent on the juvenile prey population and is modeled by a Bervton­
Holt type equation. 

In addition, the predator also preys on the juvenile prey but not on 
the adult prey population. Let (3 be the average number of offspring that 
a predator can reproduce from a consumed juvenile prey, and the prob­
ability that an individual juvenile prey will escape from the predator 
when the predator population is of size p is e-ap, where the search­
ing efficiency a is a constant. Under the above biological assumptions, 
our model of predator-prey interaction can be written in terms of the 
following system of difference equations: 

(1) 

X1(t + 1) = bx2(t)e-cx2 (t) 

X2(t + 1) = QXI(t) e-ap(t) 
I+mx1(t) 

p(t + 1) = fJx1(t)(1- e-ap(t)) 
Xl(O), X2(0),p(O) ~ 0, 

where b, a, c, m, (3 > 0 and 0 < a < 1. 
The following result shows that the model is biologically sound and 

there exists a threshold below which populations become extinct. The 
proof is straightforward and is therefore omitted. 

Lemma 1.1. Solutions of (1} remain nonnegative and are bounded. 
Moreover, solutions (x1(t),x2(t),p(t)) of (1} satisfy lim (x1(t),x2(t), 

t-><X> 

p(t)) = (0, 0, 0) if ab < 1. 

The threshold ab can be interpreted as the inherent net reproductive 
number of the prey population. It is the average number of offspring that 
a juvenile prey individual can reproduce during its lifetime when the 
prey population is very small. Denote n = ab. Then both populations 
go extinct if n < 1 by the above lemma. 

A simple calculation shows that an x2-component of a nontrivial 
steady state ( x1, X2, 0) with the absence of the predator must satisfy the 
following equation: 

(2) 
ne-cx 

------1 
1 + m!!xe-cx - · 

a 
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Since the left hand side of (2) as a function of x is decreasing with 
value n at x = 0, (2) has a positive solution x2 if and only if n > 1. 
In which case the positive solution is unique. Consequently, (1) has a 
unique biologically feasible steady state E1 = (x1, X2, 0) if n > 1, where 
x2 satisfies (2) and x1 = bx2e-cx2 • The linearization of system (1) yields 
the following Jacobian matrix: 

(3) 
a 

J- ( 
0 

- (1 + ~x1)2 
0 

0 
) 

The local stability of E1 then depends on the eigenvalues of J evaluated 
at E 1 [4], J(Et), which consists of a(3x1 and the eigenvalues of the 
submatrix 

(4) 

evaluated at (x 1 ,th). Notice J is the Jacobian matrix of the x1x2-

subsystem of (1): 

(5) 

where (x1 , x2 ) is the interior steady state of (5). In the following we 
show that steady state (x1 ,x2 ) is locally asymptotically stable for (5) 
when n > 1 but sufficiently close to 1. We shall use the Liapunov­
Schmidt expansion method as given in [2]. Let E = n -1 be positive and 
every small. Since (xl, X2) -+ (0, 0) as E -+ o+' we have the following 
expansion 

x1(E) xuE + X12E2 + O(t:3 ) 

X2(E) X21E + X22E2 + O(t:3 ) 

n(t:) 1 + n1E + n2E2 + O(t:3 ) 

for E > 0 sufficiently small. Substituting these expressions into the 
equilibrium equations and equating similar terms with respect to E we 
arrive at 

1 
xu = -x21 and x21 = axu 

a 
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and hence xu = 1 and x21 = a, up to scalar multiplications. Similarly, 
equating like terms of E2, we have 

x12 = ( -bx~1 + X22 + x21n1)/a and X22 = ax12- mxux21· 

Therefore n 1 = m + ca and thus 

(6) 

= E+ 0(€2 ) 

a€ + 0(€2) 

1 + (m + ca)E + 0(E2) 

forE> 0 small. Notice (6) corresponds to the x1, x2-components of an 
interior steady state for system (5) when E > 0 is sufficiently small, i.e., 
when n > 1 is sufficiently close to 1. The Jacobian matrix of system (5) 
evaluated at ( x1, x2) can be rewritten in terms of n and can be expressed 
as 1(xb x2) = 11 + 12E + 0(E2). Since 

n - bn - 1 m - ac 2 3 
-e-cx2- -e-cx2 = - + E- c(2m + ac)E + O(E ) 
a a a a 

and 
a 2 2 ( 3) 

(1 )2 = a - 2maE + 3m aE + 0 E 
+mx1 

for E > 0 sufficiently small, we have 

(7) 
A 0 - A 

( 1 ) ( J1 = a g and h = 
0 

-2ma 

m-ac) 
a . 
0 

Let Ai =Ail +Ai2E+0(E2) and Vi= vi1 +vi2E+0(E2) be the corresponding 
eigenvalue and eigenvector of 11 +12E+0(E2) respectively, i = 1, 2. Then 

(8) 11 Vil = Ail Vil 
11 Vi2 + 12Vil = Ail Vi2 + Ai2Vil 

fori= 1, 2. It follows that Ail is an eigenvalue of 11 with corresponding 
eigenvector Vil, i = 1, 2. Consequently, we have Au = 1 with eigenvector 
vu = (1 a)T and A21 = -1 with eigenvector v21 = (-1 a)T, where T 
denotes transpose. 

Furthermore, the second equation of (8) can be rewritten as 

(11- Ai1I)vi2 = (Ai2I- 12)vil, 

i = 1, 2. It follows from the Fredholm alternative that the right hand 
side of the above equation must be orthogonal to the solutions y of the 
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homogeneous equation ( J[ - )..ilJ)y = 0 in order for the above equation 
t h 1 t• Th. . r ).. m + ac d ).. m + ac o ave a so u wn. 1s 1mp 1es 12 = - 2 , an 22 = 2 
Consequently for E > 0 sufficiently small, we have 

m+~ 2 m+~ 2 
)..1=1- 2 E+0(E)and)..2=-1+ 2 E+O(E). 

Therefore if E > 0 is sufficiently small, i.e., if n > 1 is sufficiently close 
to 1, then the interior steady state (x~, x2) is locally asymptotically 
stable for system (5). Furthermore, since the left hand side of (2) as 
a function of n is increasing, x2 is an increasing function of n. On the 
other hand, since x1 = ~x2e-cx2 and limn-+l+ x2(n) = 0, we see that 
x1 is an increasing function of n when n > 1 is sufficiently close to 1. 
Therefore, we can conclude that when n > 1 is small enough so that 
{3ax 1 < 1, then E1 = (x~, x2, 0) is locally asymptotically stable for the 
original system (1). 

Lemma 1.2. System (5) has a unique interior steady state (x1,x2) 
when n > 1. The interior steady state is locally asymptotically stable 
for system (5) when n > 1 is sufficiently close to 1. Similarly, system 
( 1) has a nontrivial boundary steady state E1 = ( x1, x2, 0) if n > 1. 
The steady state E 1 is locally asymptotically stable for ( 1) if n > 1 is 
sufficiently close to 1. 

We next prove that both populations can survive when n > 1 and 
{3ax1 > 1, where {3ax1 > 1 can be interpreted as the reproductive num­
ber of the predator when the prey population is stabilized at the steady 
state. The predator population can survive if this reproductive number 
is larger than 1. 

Theorem 1.3. System (1} is uniformly persistent if n > 1 and 
{3ax 1 > 1, i.e., there exists M > 0 such that liminf x1(t) 2: M, 

t-+oo 
liminf x2(t) 2: M, and liminf p(t) 2: M for all solutions (x1 (t), x2(t),p(t)) 

t-+oo t-+oo · 

of (1} with Xl (0) > 0, x2(0) > 0 and p(O) > 0. 

Proof. The proof of uniform persistence is standard. Indeed, it is 
clear that system (1) has a global attractor X. Let Y be the union 
of nonnegative coordinate planes. Then R~ \Y is forward invariant for 
(1). The only invariant set in Y is {Eo, E1}, where {Eo} and {E1} are 
isolated in X. It remains to prove that the stable sets of Eo and E1 lie 
in Y. 

Suppose there exists a solution (x1(t),x2(t),p(t)) of (1) with x1(0) 
> 0, x2(0) > O,p(O) > 0 such that lim (x1 (t), x2(t),p(t)) =Eo. Then for 

t-+oo 
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any E > 0 there exists to > 0 such that x1 (t) < E, x2(t) < E, and p(t) < E 

for t 2: t0 . Since n > 1, we can choose E > 0 such that ne-c€e-a€ > 1. 
Note 

(9) 

for t 2: t0 • Consider the following system of difference equations 

(10) 

ae-a£x . . . 
Since bxe-c€ and are mcreasmg functiOns of x, we see that 

1+mx 
x1(t +to) 2: YI(t) and x2(t +to) 2: Y2(t) fort 2: 0. Furthermore, since 
ne-c€e-a€ > 1, system (10) has a unique interior steady state (YI, fh) 
where Y1 > 0 satisfies 

(11) 
ne-a£e-c£ 

1=----
1+my 

On the other hand, (10) is equivalent to the following second order 
difference equation 

(12) 

Since the map induced by (12) is increasing, using a result of [6, The­
orem 1.10], one can show that solutions of (12) with y1(0),y1(1) > 0 
converge to f}I. As a result, we have liminfx1(t) 2: Y1 > 0. We obtain 

t-->oo 

a contradiction and conclude that the stable set of Eo lies on Y. Using 
{3ax1 > 1, a similar argument can be applied to show that the stable 
set of E1 lies on Y. Therefore, system (1) is uniformly persistent with 
respect toY by [7, Theorem 4.1]. Q.E.D. 

Using the same argument as in Theorem 1.3, one can show that 
system (5), the stage-structured prey population model, is uniformly 
persistent if n > 1. Notice the inherent net reproductive number of 
the prey, n, does not depend on the cannibalism rate c. However, it 
follows from equation (2) that x2 is a decreasing function of c. Therefore 
increasing cannibalism of the adult prey population can diminish its own 
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population density at the steady state. In particular, lim x2(c) = 0 and 
c-->oo 

cannibalism can have severe deleterious effect to the prey population at 
the population level. On the other hand, if n > 1 and c is large so 
that f3bx 1 < 1, then the full system may not be uniformly persistent. 
Consequently, cannibalism of the prey may drive the predator population 
to extinction. 

Finally we use an example to study system (5). We choose a= 0.7, 
m = 0.5, a = 0.6, /3 = 20 and b = 100. The bifurcation parameter is 
the cannibalism rate c, where c ranges from 0.01 to 13. Figure 1 al­
though not shown here plots the bifurcation diagram for the juvenile 
prey population. From this numerical simulation it seems that the in­
terior steady state is globally asymptotically stable when c is small and 
period-doubling bifurcations occur when c is large. 

We acknowledge that our model is derived under very simple bi­
ological assumptions. Different models may reach different biological 
conclusions than stated here. We shall continue to study systems (1) 
and (5) in more details and to investigate a parallel model when the 
predator is stage-structured and the adult predator population can con­
sume its own juveniles. 
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