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Subgroups generated by two pseudo-Anosov 
elements in a mapping class group. I. 

Uniform exponential growth 

Koji Fujiwara 

Abstract. 

Suppose G acts acylindrically by isometries on a o-hyperbolic graph 
r. We discuss subgroups generated by two hyperbolic elements in G 
and give sufficient conditions for them to be free of rank two. 

We apply our results to the mapping class group Mod(S) of a 
compact orientable surface S and its action on the curve graph such 
that S is non-sporadic. There exists a constant Q, depending only on 
S, with the following property. If a, b E Mod(S) are pseudo-Anosovs 
such that (a, b) is not virtually cyclic, then there exists !vi > 0, which 
depends on a, b, such that either (an, brn) is free of rank two for all 
n ;=:: Q,m ;=:: M, or (arn,bn) is free of rank two for all n ;=:: Q,m ;=:: M 
(Theorem 3.1). 

At the end we ask a question in connection to the uniformly expo
nential growth of subgroups in a mapping class group (Question 3.4). 

§1. o-hyperbolic geometry and the Nielsen condition 

In the paper, we expect that the readers are familiar too-hyperbolic 
geometry. We give definitions and references, and describe the idea of 
the argument without all details for standard facts and techniques. We 
recommend [Br Ha, III, HJ as a good reference book. 

1.1. Nielsen condition for free generators 

A geodesic space is called o-hyperbolic for o ;;::: 0 if for any geodesics 
o:, (3, '/ which form a triangle, 0: is contained in the o-neighborhood of 
(3 u ry ([Gr]). Let r be a o-hyperbolic graph. Let a be an isometry 
of f. If there exist a point X E f and a constant C > 0 such that 
d(x, an(x)) ;;::: Cn for any n > 0, then a is called hyperbolic. 
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Suppose a is a hyperbolic isometry. If there exists a hi-infinite geo
desic a such that a( a) is contained in the C-neighborhood of a for some 
C 2:: 0, a is called a quasi-axis of a. By 8-hyperbolicity of r, it then 
follows that a(a) is in the 28-neighborhood of a (use [BrHa, III.H.3.3 
Lemma]). If a and (3 are quasi-axes of a (they are geodesics by defini
tion), then they are contained in the 28-neighborhood of each other. If 
C = 0 we say a is an axis of a. 

For two points x, y E f, we may denote a (non-unique) geodesic 
joining them by [x, y]. We may write the distance between the two 
points as lx- Yl· For an isometry a, we define its translation length, (or 
stable length), tr(a), by 

IX- an(x)l 
tr(a) = lim 2:: 0 

n~oo n 

for a point x. It is easy to see tr(a) does not depend on the choice of x. 
Also, tr(an) = lnltr(a). The isometry a is hyperbolic iff tr(a) > 0. 

For any point z E r, we have lz- a(z)l 2:: tr(a) by the triangle 
inequality. If a has an axis a, then lz- a(z)l = tr(a) for any point 
z Ea. If a is a quasi-axis of a, then lz- a(z)l :::; tr(a) + 108 (otherwise, 
use that an(a) is in the 28-neighborhood of a for any n > 0 and show 
lz- an(z)l 2:: n(tr(a) + 8), which gives a contradiction if 8 > 0). This 
last inequality will be used, sometimes implicitly since we do not always 
spell out all details, in the rest of the paper. We recommend interested 
readers who want to know all details, in particular estimates regarding 
8, first to imagine 8 = 0 and/or quasi-axes are axes, then try to modify 
the estimates and the arguments. 

Let C 2:: 0 be a constant. For geodesics a and (3, we define the 
C-overlap, denoted by a nc (3, by 

a nc (3 =(an Nc(/3)) u (/3 n Nc(a)), 

where Nc(a) is the C-neighborhood of a. Let Ia nc /31 denote the 
diameter of this set. 

In the following argument, we often take C = 108. By 8-hyperbol
icity, if Ia n10., /31 is finite, then the longest segment of a, the longest 
segment of (3 and the longest geodesics which are contained in a n10., (3 
all have length between Ia n10., /31 - 208 and Ia n10.5 /31 + 208, and those 
segments are in the 208-neighborhood of each other. 

The following result is fundamental and classical. It has its origin 
in combinatorial group theory and was generalized in [Gr] to the setting 
of 8-hyperbolic geometry. It was used in [De] and [Ko] as an essential 
tool. For a proof, see [Ko, Lemma 2.4] or [Fu], where the convexity (see 
[FaMo]) of (an, bm) is also discussed. 
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Proposition 1.1 (Nielsen condition). Suppose a, b act as hyperbolic 
isometries on a 6-hyperbolic graph r with quasi-axes a, {3, respectively. 
Suppose Ia n10o /31 < oo. If 1 :::; n, mE Z are such that 

then an and brn freely generate a rank-two free subgroup in Isom(f). 

1.2. Quasi-geodesic axis 

The existence of quasi-axes, which are geodesics by our definition, 
is not strictly necessary for Proposition 1.1 or for some other results in 
this paper. Indeed, we can use certain quasi-geodesics as discussed in 
section 2.2. As we do not use this for our main application to mapping 
class groups, uninterested readers may skip this section. First, a path a, 
parametrized by arclength, is called a (K, E)-quasi-geodesic for 0 < K:::; 
1 and 0 :::; E iffor all t, s we have Klt-si-E :::; d(a(t), a(s) ). (A standard 
definition of quasi-geodesics also requires d(a(t),a(s)):::; It- si/K + E 
but this is trivially satisfied since a is parametrized by arclength.) 

If a is a hyperbolic isometry of a 6-hyperbolic graph r, there exists 
a (K, c)-quasi-geodesic a for some K, E such that 

(1) an(a) and a are in the 306-neighborhood of each other for any 
n. (Namely, a is almost invariant by a.) 

(2) Let p, q E a. Then the subpath of a between p, q and any 
geodesic [p, q] are in the lOtS-neighborhood of each other. 

We call such a path a a quasi-geodesic axis of a in this paper. To be 
precise, we should use the term quasi-geodesic quasi-axis, but we make 
it shorter. One can easily show from (1) and (2) that any two quasi
geodesic axes of a are in the 306-neighborhood of each other. Note that 
(2) concerns only the path and not the element a. Also, the quasi
geodesic constants of a are not important for our purpose. What is 
useful for us is (2). 

We briefly review how to find a quasi-geodesic axis for a. Fix a point 
x E f. Choose I > 0 such that tr(ai) 2 10006. Set y = ai (x). Then, 
lx- Yl 2 10006. Choose N > 0 such that iaN(x)- xl2 lOOiai(x)- xi. 
Let m be the mid point of a geodesic [x,aN(x)]. Define a path, which 
is invariant by a I, by 

Since a is hyperbolic, a is a quasi-geodesic. Observe that a trivially 
satisfies (1) for the element ai (not for the element a yet). We claim that 
a also satisfies (2). Firstly, by the way we chose I and N, most parts 
of the geodesics, except for a small portion near each end, [x, aN (x)] 



286 K. Fujiwara 

and [y, aN (y)] = ai ([x, aN (x)]) are in the 28-neighborhood of each other. 
This is because lx-aN(x)l is much larger than lx-yl. (Draw a geodesic 
rectangle joining x, aN ( x), aN (y) and y in this order. Then the rectangle 
is narrow.) Also, lm- ai (m)l ;:::: tr(ai) ;:::: 10008. Those two estimates 
imply (2) for a by 8-hyperbolic geometry. Note that lm- a I ( m) I is much 
smaller than lx- ml = lm- aN(x)l. (See Figure 1.) 

Fig. 1. Two geodesics [x,aN(x)] and [y,aN(y)] stay 28- close 
for the most part. The geodesic [m, ai (m)] is "pinched" be
tween those two geodesics. 

Now we claim that a satisfies (1) for the element a, namely, it is 
a quasi-geodesic axis for a. Let L > 0 be a large integer, which we 
decide later. By (2), the geodesic [m, aLI (m)] and the subpath a' of 
a between the two points m and aLI(m) are in the 108-neighborhood 
of each other. Therefore, the geodesic a((m, aLI (m)]) and a( a') are 
also in the 108-neighborhood of each other. On the other hand, by 8-
hyperbolic geometry, most parts of [m, aLI (m)] and a((m, aLI (m)]) are 
in the 28-neighborhood of each other if lm- aLI(m)l is much larger 
than lm- a(m)l. (This follows from the same argument using a narrow 
geodesic rectangle as before.) We choose L this way. As a consequence, 
most parts of a' and a( a'), except for a small segment at each end, are 
in the 308-neighborhood of each other. Replacing L by a larger integer, 
we find that a and a(a) are in the 308-neighborhood of each other. A 
similar argument works for an(a) for all n. This proves that a satisfies 
(1) for a. 

§2. Acylindricity and free subgroups 

2.1. Free subgroups 

Suppose G acts on r. Bowditch [Bo] defined that the action of G is 
acylindrical if for any R > 0, there exist K(R), L(R) ;:::: 1 such that for 
any vertices x, y E r with d(x, y) ;:::: L, the following set has at most K 
elements. 

{g E Gld(x,g(x)) :S R,d(y,g(y)):::; R}. 

We show one lemma (see Lemma 2.5). 
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Lemma 2.1. Suppose G acts on a 6-hyperbolic graph f. If the 
action is acylindrical, then there exists an integer P .2: 1 such that 
tr(aP) .2: 1 for any element a E G which acts hyperbolically on r with a 
quasi-axis. 

Proof. If 6 = 0, then r is a tree. Therefore tr(a) .2: 1. Set P = 1. 
Suppose 6 > 0. Fix a constant R .2: 1006. Let a be a (geodesic) quasi
axis of a. Take a point x Ea. Let yEa be a point with lx-yl .2: L(2R). 
If lai(x)- xl ::::; R for some i, then lai(y)- Yl ::::; 2R. This is because ai(a) 
is in the 26-neighborhood of a. Therefore, by the acylindricity, there is 
some I, with 1 ::::; I::::; K(2R), such that la1 (x)- xl > R. Since x lies 
on a quasi-axis of a, it then follows that la1n(x)- xl > n(R- 106) for 
any n .2: 1. To verify this estimate, imagine first that the geodesic a is 
exactly invariant by a, namely, an axis. Then, clearly, la1n(x)-xl > nR. 
Now, try to estimate the error terms using that a is only a quasi-axis. 
We leave the details to readers. 

This implies that 

( ) R - 106 R - 106 
tr a > > . 

- I - K(2R) 

Take P such that P .2: ~~21~l- Q.E.D. 
The following lemma is a generalization of a result by Kouhi ([Ko, 

Lemma 5.4]). He discusses the case such that the action of G is (uni
formly) proper and tr(a) = tr(b). The commutator of two elements is 
defined by 

Lemma 2.2. Let r be a 6-hyperbolic graph and G a group acting 
acylindrically on r with constants K(R), L(R). Suppose a, b E G act 
hyperbolically with quasi-axes a, f3 c r' respectively. 

(1) If anb =I ban for all n =I 0 or bna =I abn for all n =I 0, then 

Ia nw8 f31 < 4P K(206)L(206) max(tr(a), tr(b)) + 1006, 

where P is the constant from Lemma 2.1. 
(2) If tr(a) = tr(b) and for all n =I 0, an =I b*n, then we have the 

same inequality as above. 

Proof. 1. To argue by contradiction, assume that the inequality is 
false. It suffices to show that anb = ban for some n =I 0 and also bna = 
abn for some n =I 0. Set K = K(206), L = L(206). For concreteness, 
suppose tr(b) ::::; tr(a). By our assumption, since lan100 f3l is much larger 
than 26, the set a n 108 f3 looks like a narrow tube. 
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Let C C a be the longest segment which is contained in a n 100 (3. 
Then, by our assumption, ICI 2 4P K Ltr( a) + 800. Take a point p E C 
such that the following points are in N 20 (C): 

p, a(p), a2(p), ... , a4PKL(p). 

(See Figure 2. For simplicity, we put those points on C in the figure.) 
To see that we can take such a point p, as usual, first imagine that a is 
invariant by a. Then most parts of C and a(C) coincide, therefore, one 
can take p such that all the above points are on C. Now, in general, 
most parts of C and a(C) are in the 25-neighborhood of each other by 
o-hyperbolic geometry, hence a required point p exists. 

Set 
X= aPKL(p), y = a2PKL(p). 

Since y = aPKL(x), it follows from Lemma 2.1 that d(x, y) 2 PKLtr(a) 
2 KL 2 L. 

X= 0PKL(p) y = 02PKL(p) . . 

Fig. 2. Apply the acylindricity to the pair :r, y. 

Claim. For each i, (1 :s; i :s; P K L ), 

d(x, [b, ai](x)) :s; 200, d(y, [b, ai](y)) :s; 200. 

a 

We first consider the special case that o = 0, namely, r is a tree. Then, 
a n10o (3 coincides the segment an (3, and also the segment C, therefore, 
all above points an(p), 1 :s; n :s; 4PKL, are in an (3. We want to show 
x = [b,ai](x), but this is obvious since when we apply ai,b,a-i, then 
b- 1 to x, the point moves within C. Thus, [b, ai](x) = x. If o > 0, we can 
show that the point moves in the 100-neighborhood of C when we apply 
ai,b,a-i followed by b- 1 to x. Therefore, we get d(x,[b,ai](x)) :s; 200 
by estimating the error terms from the tree case using triangle inequal
ity. We leave the details to readers. (See Figure 3.) We can show 
d(y, [b, ai](y)) :s; 205 in the same way. This proves the claim. 
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X a'(x) 

• 
b 1a 'ba'(x) --•-

• a-'ba'(x) ba'(x) 
(3 

Fig. 3. How commutators act near a n106 (3. 

Since Jx - yJ ~ L = £(20<5), by the acylindricity of the action, it 
follows from the claim that there are at most K distinct elements in the 
set [b, ai], (1 ~ i ~ P K L). By the pigeon-hole principle, [b, ai] = [b, a1] 
for some i-=/= j, (1 ~ i,j ~ PKL). It follows that aib- 1a-i = a1b- 1a-1, 
therefore, ai-j b- 1 = b-1ai-j. We get [b, an] = 1 for some n -=/= 0. 
The same argument applies to the elements [a, bi] since tr(b) ~ tr(a), 
therefore we also get [a, bn] = 1 for some n-=/= 0 as well. 

2. This is similar to 1. Assume that the inequality is false. Take a 
segment £ c a as before. Then, as we said, the set a n100 (3 looks like 
a narrow tube. Therefore, it makes sense to talk about the direction of 
the action by a and b along this tube, and furthermore, the direction of 
a coincides with the direction of one of b or b- 1 . We did not need this 
consideration in 1 since we used commutators. Now, take points p, x, y E 

£ as before and apply the same argument to the set of elements {bnan : 
1 ~ n ~ P K L} (if the action of a, b along £ have the opposite direction) 
or {b-nan : 1 ~ n ~ PKL} (if the actions have the same direction). 
Then we conclude that there must be n -=/= m with bnan = bmam, or 
b-nan = b-mam, respectively. This is a contradiction. Q.E.D. 

As a consequence, a generalization of [Ko, Proposition 5.5] follows. 

Proposition 2.3. Let r be a <5-hyperbolic graph, and G a group 
acting acylindrically by isometries on r. Then there exists a constant 
N > 0, which depends on t5 and the set of the acylindricity constants 
K(R), L(R), with the following property. 

(1) Suppose a, bEG act by hyperbolic isometries with quasi-axes such 
that anb -=/= ban for all n -=/= 0, or bna -=/= abn for all n -=/= 0. Then 

there exists a constant A1 > 0, which depends on a, b, such that 
either (an,bm) is free of rank two for all n ~ N,m ~ M, or 
(am, bn) is a free group of rank two for all n ~ N, m ~ M. 

(2) Suppose a E G acts by a hyperbolic isometry with a quasi-axis. 
Let c E G be such that for any n > 0, cancl -=/= a±n. Then the 
subgroup (an,camc-1 ) is free of rank two for all n,m ~ N. 
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Proof. Let K = K(208), L = L(208) be the acylindricity constants 
evaluated at 208. Let P be the constant from Lemma 2.L Set 

N = 4PKL + 200P(8 + 1). 

1. Let o:, {3 be quasi-axes of a, b, respectively. Suppose tr(b) ::; tr( a). Set 

M = N~~i~j. We will show that an, bm generate a free group of rank 
two ifn 2: N,m 2: M. 

By Lemma 2.2 (1), we have 

lo: n10a !31 < 4P K Ltr( a) + 1008. 

It follows that if n 2: N, m 2: M then 

by the way we choseN, M, P. Note that the first inequality follows from 
our assumption and 

tr(an) 2: Ntr(a) 4PKLtr(a) + 200P(8 + 1)tr(a) 

> 4PKLtr(a) + 200(8 + 1). 

The second inequality also holds by the way we chose M. Now we can 
apply Proposition 1.1 to an, bm. If tr(b) 2: tr(a), then set M = N!;~!~ 
and argue in the same way switching the roles of a and b. 
2. Let o: be a quasi-axis of a. Put b = cac-1 . Then {3 = co: is a quasi
axis of band tr(a) = tr(b). By the hypothesis, for all n =I- 0, an =I- b±n. 
By Lemma 2.2 (2), we have 

lo: n10a !31 < 4PKLtr(a) + 1008. 

We then argue in the same way as the previous case. Since tr(a) = tr(b), 
M = N in the previous argument, therefore, the subgroup generated by 
an, bm is free of rank two for all n, m 2: N. Q.E.D. 

It is more difficult to analyze a subgroup normally generated by two, 
or even one, elements. See an interesting paper by T. Delzant [De] which 
contains positive results and a warning example. 

2.2. Hyperbolic isometries without quasi-axes 
Although we have been assuming that hyperbolic isometries have 

quasi-axes, this assumption is not necessary for our purpose if we only 
assume the acylindricity of the action. In this section, we state results 
without assuming quasi-axes for potential application in the future since 
the existence of quasi-axes is a strong assumption. Uninterested readers 
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may skip this section as it is unnecessary for our application to mapping 
class groups. 

Our main goal is to drop the assumption on quasi-axes from Propo
sition 2.3 as follows. 

Proposition 2.4. Suppose that G acts acylindrically by isometrics 
on a r5 -hyperbolic graph r. Then there exists a constant N > 0, which 
depends on r5 and the set of the acylindricity constants K(R), L(R), such 
that the conclusion of Proposition 2.3 (1), (2) holds without the assump
tion that a, b have quasi-axes. (This constant N is maybe larger than 
the one which is obtained in Proposition 2.3). 

Proof. A hyperbolic isometry always has a quasi-geodesic axis (see 
Section 1.2). Basically, we use quasi-geodesic axes instead of quasi-axes 
for hyperbolic isometries. We then adapt the original argument to the 
new setting. We may first need to modify the statements since some 
of the original ones concern quasi-axes. Namely, we restate and prove 
Proposition 1.1, prove Lemma 2.1, restate and prove Lemma 2.2, and 
finally modify the proof of Proposition 2.3. 

We only outline the arguments. As for Proposition 1.1, replace 
quasi-axes a, (3 by quasi-geodesic axes a, (3 and also an10.s (3 by an10oob (3 
in all places in the statement. We did not give a proof of Proposition 
1.1 and only referred to [Ko] and [Fu]. The arguments there work with 
minor modification using the properties (1) and (2) of the quasi-geodesic 
axes. 

We reprove Lemma 2.1 without using quasi-axes. This result says 
that the existence of such P is a consequence of the acylindricity. 

Lemma 2.5. Suppose G acts by isometrics on a IS-hyperbolic graph 
r. If the action is acylindrical, then there exists an integer P 2: 1 such 
that for any element a E G which acts hyperbolically on r, we have 
tr(aP) 2: 1. 

The proof is essentially same as for Lemma 2.1. We use a quasi
geodesic axis a instead of a quasi-axis. The key property is (2), which 
says that a sub-path of a is at most lOb-close to a geodesic with the 
common end points with the sub-path. 

Proof. We may assume r5 > 0. Let a be a quasi-geodesic axis for 
a. Set R = 10006. Take a point x E a, and let y E a be a point with 
lx- Yl 2: L(1500r5). Since a is a quasi-geodesic axis, it follows that if 
lai(x) - xl :S R, then lai(y)- Yl :S R + 5006 = 15006. Therefore, by 
acylindricity (look at the set of elements ai, 1 ::; i ::; K(1500r5), and a 
pair of points x, y), there exists some I, with 1 :S I :S K(1500r5), such 
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that la1 (x) - xi > 10008 = R. From this, since again o: is a quasi
geodesic axis, for any n 2: 1, la1n(x) -xi > 5008n. Now, as before, we 
get 

5008 
tr(a) 2: K(15008) 

Take P 2: K~;gt5). Q.E.D. 
Next, we modify Lemma 2.2. Namely, we replace quasi-axes o:, (3 

for a, b by quasi-geodesic axes in the assumption. The inequality in the 
conclusion should be replaced, for example, by 

Ia: n10oo6 !31 < 4PK(208)L(208) max(tr(a), tr(b)) + 100008, 

where P is the constant from Lemma 2.5. The proof is same after an 
appropriate modification regarding constants. 

Having done all this, the argument for the proposition is same as 
for Proposition 2.3 with minor modifications. For example, replace all 
o:n106fJ by o:n10oo6fJ and define the constant N = 4PKL+20000P(8+1), 
where, P is the constant from Lemma 2.5. We omit details. Q.E.D. 

§3. Application to mapping class groups 

3.1. Two pseudo-Anosov maps 

Let S be a compact orientable surface. Following [MM], we call S 
sporadic when S is a sphere with p ::; 4 punctures or a torus with p ::; 1 
puncture. Mapping class groups Mod(S) are already well-understood in 
this case. Namely (see [Iv, 9.2]), Mod(S) is isomorphic to SL(2, Z) if S 
is a torus with ::; 1 puncture; Mod(S) is commensurable with PSL(2, Z) 
when Sis a sphere with 4 punctures; and Mod(S) is finite when Sis a 
sphere with ::; 3 punctures. 

The following result is well-known (for example, see [Iv1]) except for 
a uniform bound on one of the exponents by Q. 

Theorem 3.1. 1 

LetS be a compact orientable surface and Mod( B) its mapping class 
group such that S is non-sporadic. Then there exists a constant Q(S) 
with the following property. 

(1) Suppose a, bE Mod(S) are pseudo-Anosovs such that for all n, m =1-
0, anbm =1- bman. Then the subgroup (an, bm) is free of rank two 

1In [Fu], this result will be improved such that in (1), (an,bm) is free of 
rank two for all n, m 2: Q(S), where we may need to take a larger constant for 
Q(S) than in Theorem 3.1. 
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for all sufficiently large m > 0 and all n 2: Q, or (am, bn) is free 
of rank two for all sufficiently large m > 0 and all n 2: Q. 

(2) Suppose a E Mod(S) is pseudo-Anosov and c E Mod(S) is such 
that for any n > 0, canc- 1 =f. a±n. Then the subgroup (an, camel) 
is free of rank two for all n, m 2: Q. 

Regarding the assumption on two pseudo-Anosov elements a, b in 
(1), it is equivalent to requiring that the subgroup generated by a, b is 
not virtually cyclic, namely, it does not contain a cyclic subgroup of 
finite index (see, for example, [Iv, Theorem 7.4.1]). 

Proof. Let C(S) be the curve graph of S (see [Iv]). Mod(S) acts 
on C(S) by isometries. It is known that C(S) is 6-hyperbolic, and an 
element a E Mod(S) acts as a hyperbolic isometry if and only if it is 
pseudo-Anosov [MM, Theorem 1.1 and Proposition 4.6]. The action of 
Mod(S) is acylindrical, and there is a quasi-axis for a pseudo-Anosov 
element [Bo, Theorem 1.3 and 1.4]. 

Apply Proposition 2.3 to the action of Mod(S) on C(S) and let N 
be the constant from the proposition. Set Q(S) = N. 
1. We apply Proposition 2.3 (1) to a, band obtain M. Then the claim 
holds for all m 2: M and n 2: Q. 
2. Apply Proposition 2.3 (2) to a and c. The claim holds for all n, m 2: 
Q. Q.E.D. 

We remark that the existence of P in Lemma 2.1 for this setting 
was already known in [MM] before [Bo]. 

3.2. Exponential growth rate 

Definition 3.2 (Growth rate (see [Har])). Let G be a finitely gen
erated group. For a finite generating set A, and for an integer n 2: 0, let 
b(G, A; n) be the number of elements in G whose word length in terms 
of A are at most n. 

The exponential growth rate of (G, A), w(G, A), is defined as 

w(G,A) = limsup(b(G,A;n))c!::. 
n->= 

The group G is said to be of exponential growth if w(G, A) > 1 for 
some (and consequently all) A. 

The minimal growth rate of a finitely generated group G of expo
nential growth is defined to be 

w( G) = inf w( G, A), 

where the infimum is taken over all finite generating sets A. G is said 
to be of uniformly exponential growth if w( G) > 1. 
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Let Fk be a free group of rank k > 1. By computation, w(Fk? Ak) = 
2k- 1 for a free generating set Ak. It is a non-trivial fact ([Har, Propo
sition 13]) that 

w(Fk) = 2k- 1. 

If G is a non-elementary word-hyperbolic group, then G contains a 
free group of rank two as a subgroup, therefore clearly G has exponential 
growth. Moreover, Koubi [Ko] showed that G has uniformly exponential 
growth. The key result in his argument is Proposition 5.5 [Ko], which 
we generalized in Proposition 2.3. In his case, r is a Cayley graph of G, 
therefore the action is proper, in particular, acylindrical. 

Corollary 3.3. LetS be a compact orientable surface and Mod(S) 
its mapping class group such that Sis non-sporadic. Let Q(S) > 0 be the 
constant from Theorem 3.1. Suppose G < Mod( S) is a finitely generated 
subgroup which is not virtually cyclic. 

Let 2: be a finite generating set of G. If 2: contains a pseudo
Anosov element a, then there is an element c E 2: such that the subgroup 
(an, camel) is free of rank two for all n, m 2: Q. In particular, 

1 

w(G,l:) 2: 3Q+2. 

Proof. There must be an element c E 2: such that cancl # a±n 
for all n > 0, since otherwise, 2: would generate a virtually cyclic group. 
Apply Theorem 3.1 (2) to a and c. Then, (aQ,caQc 1 ) is free of rank 
two. The word length of the two elements aQ, caQ c-1 in terms of 2: is at 
most Q+2. Thus, the inequality on w(G, 2:) follows from w(F2 , A2 ) = 3, 
where A2 is a free generating set. Q.E.D. 

It is not clear if every finitely generated, non-virtually-abelian sub
group G < Mod(S) has uniformly exponential growth. 2 We ask the 
following question. 

Question 3.4 (Short pseudo-Anosov elements). Let G < Mod(S) 
be a finitely generated, non-virtually-cyclic subgroup which contains a 
pseudo-Anosov element. Does there exist a constant U which depends 
only on G, or even just on the surface S, such that if 2: is a finite 
generating set of G, then there is a pseudo-Anosov element a E G whose 
word length in terms of 2: is at most U ? 

1 

A positive answer to this question would imply w (G) 2: 3 UQ+ 2 by 
Corollary 3.3. It seems the answer is not known even for G = Mod(S), 

2After this paper, an affirmative answer is announced by J. Mangahas in 
December 2007, using Theorem 3.1(2) combined with her result concerning non 
pseudo-Anosov generators. The question 3.4 seems to be still open. 
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although Mod(S) has uniformly exponential growth if Mod(S) is not 
virtually abelian [AAS]. This is because Mod(S) has a surjective ho
momorphism to Aut(H1 (1r1 (S)),Z)), which has uniformly exponential 
growth as it is linear and not virtually nilpotent [EMO]. The kernel of 
this homomorphism is called the Torelli group. We do not know if this 
subgroup has uniformly exponential growth (see the footnote 2). 
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