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Johnson's homomorphisms and the rational 
cohomology of subgroups of the mapping class group 

Takuya Sakasai 

Abstract. 

The Torelli group and the Johnson kernel are important subgroups 
of the mapping class group of a surface. Using Johnson's homomor
phisms as their free abelian quotients together with the representation 
theory of the symplectic groups, we will give some descriptions of cup 
products of rational cohomology classes of degree one obtained from 
the dual of Johnson's homomorphisms. 

§1. Introduction 

Let :Eg be a closed oriented surface of genus g ~ 2 and let Diff+:Eg 
be the topological group of orientation preserving diffeomorphisms of L:g 
with the 0 00-topology. The mapping class group Mg is defined as the 
group of all connected components of Diff+:Eg. By a result of Earle-Eells 
[7], we have BDiff+:Eg = K(Mg, 1), so that cohomology classes of Mg 
give characteristic classes of oriented :Eg-bundles and we can study the 
theory of oriented :Eg-bundles from the algebraic point of view. We refer 
[20] for generalities of characteristic classes of oriented :Eg-bundles. 

To understand the structure of Mg, we consider the following two 
subgroups. The first one is the Torelli group Ig consisting of all ele
ments which act trivially on the first homology group H := H 1 (L:g; Z) 
of L:g, namely it is the kernel of the classical representation Po : Mg -t 

Sp(2g, Z), where Sp(2g, Z) denotes the integral symplectic group. The 
second one is the group Kg generated by Dehn twists along bounding 
simple closed curves. Johnson [14] showed that Kg coincides with the 
kernel of what is now called the first Johnson homomorphism Tg(1) : 
Ig -t (A3H)/H of Ig (see [11]). For this reason, Kg is often called the 
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Johnson kernel. Summarizing, we have the exact sequences 

1 --+ Ig --+ Mg ~ Sp(2g, Z) --+ 1, 

Tg(l) 3 
1 --+ Kg --+ Ig -------+ ( 1\ H) I H --+ 1. 

Generally, the structures of Ig and Kg are more difficult to under
stand than the structure of Mg. In fact, it is known that Mg is finitely 
presentable. On the other hand, it is not known whether Ig is finitely 
presentable or not, while Johnson [13] showed that it is finitely generated 
for g 2 3. As for Kg, Biss-Farb [5] showed that it is not even finitely 
generated for g 2 2. However, we can use Johnson's homomorphisms 
Tg(1) and Tg(2), defined by Johnson [11, 12] and Morita [22, 27], to ob
tain non-trivial finitely generated free abelian quotients of Ig and Kg. 
They will play important roles as primary approximations of Ig and Kg, 
from which we can extract several pieces of information. This situation 
should be compared with the fact that Mg is perfect for g 2 3, namely 
it has no abelian quotients except the trivial one. 

Now we are particularly interested in the rational cohomology of Ig 
and Kg, which give characteristic classes of oriented ~g-bundles with 
restricted holonomies. By passing to the dual over Q of Tg(k) (k = 1, 2), 
we can regard the rational images Im T~ ( k) of Tg ( k) as subspaces of 
H 1 (Ig; Q) and H 1 (Kg; Q). Next we consider cup products of them. In 
[10], Hain determined the kernel of the cup product map 

U : /\2 (Im r~(l)) --+ H 2 (Ig; Q), 

which is stable under the natural action of the rational symplectic group 
Sp(2g,Q) on /\2 (Imr~(1)), in terms of the representation theory of 
Sp(2g, Q). Continuing his result, in Sections 3 and 4, we will summarize 
two previous results of the author: 

• ([30]) the kernel of the cup product map 

u: /\2 (Im r~(2)) --+ H 2 (Kg; Q), 

• ([29]) the kernel (modulo one irreducible summand) of the 
triple cup product map 

u3 : /\3 (Im r~(l)) --+ H 3 (Ig; Q). 

Note that the collections of the cup product maps /\* (Im T~ ( 1)) --. 
H*(Ig;Q) and /\*(Imr~(2))--. H*(Kg;Q) are far from surjective, since 
Akita [1] showed that H*(Ig; Q) and H*(Kg; Q) are infinitely generated 
vector space (while Ig and Kg have finite cohomological dimensions). It 
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is an interesting (and difficult) problem to find cohomology classes of Ig 
and Kg not obtained from Johnson's homomorphisms. 

We also mention some similar research. Brendle-Farb [6] studied the 
second cohomology of Ig and Kg by using the Birman-Craggs-Johnson 
homomorphism, and Pettet [28] studied the second cohomology of the 
(outer- )automorphism group of a free group by using its first Johnson 
homomorphism. 

§2. Preliminaries 

2.1. Surfaces and their mapping class groups 

Let H 1 ('L-g) be the first integral homology group of a closed ori
ented surface 'L-g of genus g. H 1 ('L-g) has a natural intersection form 
JL : H 1 ('L-g) 0 H 1 ('L-g) ----+ Z which is non-degenerate and skew symmetric. 
We fix a symplectic basis (a1 , ... , ag, b1 , ... , bg) of HI('L-g) with respect 
to JL as in Figure 1. 

Fig. 1. A symplectic basis of Hl(L. 9 ) 

Then we have 

Poincare duality gives a canonical isomorphism between H 1 ('L-g) and its 
dual Hom(H1('L-g), Z) = H 1('L-g), the first integral cohomology group 
of 'L-g. In this isomorphism, ai (resp. bi) E H 1('L-g) corresponds to -bi 
(resp. ai) E H 1('L-g) where (ai, ... ,a;,br, ... ,b;) is the dual basis of 
H 1 ('L-g). We use the same symbol H for these canonically isomorphic 
abelian groups. 

We also use a compact oriented surface 'L-g,l of genus g with a con
nected boundary. H 1('L-g,l) and H 1('L-g,l) can be naturally identified 
with H. The fundamental group n1'L-g,l of 'L-g, 1, where we take a base 
point of 'L-g, 1 on o'L-g,l, is known to be a free group of rank 2g. We write 
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( E 1r1E9 ,1 for the boundary loop of E9 ,1. Then the fundamental group 
1r1E9 of E9 is given by 1r1E9,I/ (() where (() is the normal closure of the 
subgroup generated by (. 

Let M 9 , M 9 ,*, M 9 ,1 be the mapping class group ofE9 , ofE9 relative 
to the base point, of E9 ,1, respectively. They are related by the exact 
sequences 

(1) 

(2) 

0 ----. Z ----. M 9 ,1 ----. M 9 ,* ----. 1, 

1 ----> 1r1E9 ----> M 9 ,* ----> M 9 ----> 1, 

where Z corresponds to the Dehn twist along a loop which is parallel to 
8E9 ,1, and 1r1E9 is embedded in M 9 ,* as spin-maps (see Theorem 4.3 in 
[4]). The former sequence is a central extension. 

The natural action of M 9 on H gives the classical representation 

Po : M 9 ----> Sp(2g, Z), 

and we also have similar ones for M 9 ,* and M 9 ,1 . The kernels of these 
representations are denoted by I 9 , I 9 ,* and I 9 ,1 , respectively and called 
the Torelli group for each case. Note that among I 9 , I 9 ,* and I 9 ,1, we 
have exact sequences similar to (1) and (2). Indeed the Dehn twist along 
8E9 ,1 and spin-maps act on H trivially. 

Let JC9 (resp. JC9 ,1) be the subgroup of M 9 (resp. M 9 ,1 ) generated by 
Dehn twists along bounding simple closed curves on E 9 (resp. E9 ,1). We 
define JC9 ,* C M 9 ,* to be the image of IC9 ,1 by the map M 9 ,1 ---. M 9 ,*. 
Then we have the exact sequences 

0 ----> z ----> JC g, 1 ----> lCg, * ----> 1 ' 

1 ----. [1r1E9 , 1r1E9 ] ----> IC9 ,* ----> JC9 ----> 1, 

where the former sequence is the pull-back of the central extension of 
M 9 ,*, and the latter one follows from a result of Asada-Kaneko [2]. 

2.2. Johnson's homomorphisms 
Here, we recall what we call Johnson's homomorphisms defined by 

Johnson [11, 12] and Morita [22, 24, 27]. 

(3) 

(4) 

(5) 

By results of Dehn, Nielsen and many people, we have 

M 9 ~ Out+ 1r1E9 , 

M 9 ,* ~ Aut+ 1r1E9 , 

M 9 ,1 ~ { <p E Aut 1r1Eg,1 I <p( () = (}, 

where Out+1r1E9 := Ker(Out1r1E9 ---. AutH2 (1r1E9 )), and Aut+1r1E9 

is similar. 
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For a group G, let {fkGh>I be the lower central series of G induc
tively defined by f 1G = G and fiG = [ri-1G, G] for i 2': 2. The col
lection {(fkG)/(fk+1G)}k;:::1 forms a graded Lie algebra whose bracket 
map is induced from taking commutators. It is well known that the 
Lie algebra {(fk7f1 ~9 , 1 )/(fk+ 1 7f 1 ~9 , 1 )}k;::: 1 is isomorphic to the free Lie 
algebra .C9 ,1 = {.C9 ,1(k)}k2:l generated by H. Furthermore, by a result 
of Labute [17], the Lie algebra {(fk7f1 ~9 )/(fk+l7r1 ~9 )}k2:l is given by 
.C9 := .C9 ,I/ I where I is the ideal of .C9 ,1 generated by wo := I:f=1 [a;, bi]. 

The isomorphisms (3), (4) and (5) induce the homomorphisms 

ak : M 9 ---> Out(7rl~9 /(fk7f1 ~9 )), 

ak,*: M 9 ,*---> Aut(7rl~9 /(fk7f1 ~9 )), 

ak,l: M 9 ,1---> Aut(7rl~g.I/(fk7f1 ~9 ,I)) 

for each k 2': 2, and we define filtrations of M 9 , M 9 ,*, M 9 ,1 by 

M 9 [1] :=M9 , 

M 9 ,*[1] :=M9 ,*, 

M 9 ,1[1] :=M9 ,I, 

M 9 [k] := Ker ak (k 2': 2), 

M 9 ,*[k] := Kerak,* (k 2': 2), 

M 9 ,1[k] := Kerak,l (k 2': 2). 

For each cp E M 9 ,1 [k + 1] and r E 7ri~g,l, we have cp(r)r-1 E 

fk+1 Jr1 ~9 , 1 . This induces a map 

r9 ,1(k): M 9 ,1[k + 1]--+ Hom(HI~g,l, (fk+ 1 7fi~g,I)/(fk+2 7fi~g,I)) 

= Hom(H, .C9 ,1 (k + 1)), 

and it is in fact a homomorphism. 
In [23, 24], Morita showed the following. By taking commutators, we 

can endow {M 9 ,1 [k + 1]/M9 ,1[k + 2]}k2:1 = {Imr9 ,1(k)}k;:::1 =: Imr9 ,1 
with a Lie algebra structure. We can also endow Hom(H, .C9 ,I) := 
{Hom(H,.C9 ,1(k+1))}k;:::l with a Lie algebra structure, so that 
r 9 ,1 := { r 9 ,1 (k)}k2:l becomes a Lie algebra inclusion of Im Tg,l into 
Hom(H, .C9 ,I). Moreover, he showed that Im r 9 ,1 is contained in the 
Lie subalgebra ~ 9 , 1 = {~ 9 , 1 (k)}k2:1 defined by 

( ~ [· ·] ) 
1) 9 , 1 (k) := Ker Horn(H, .C9 ,1 (k + 1)) -=-+ H 0 .C9 ,1 (k + 1) --'----> .C9 ,1 (k + 2) , 

where the maps in the right hand side are given by Poincare duality 
and the bracket operation. 

A similar argument gives a homomorphism r9 ,*(k): M 9 ,*[k + 1]--+ 
~g,*(k) C Hom(H, .C9 (k + 1)), where 

( "" [· ·] ) 
() 9 ,*(k) :=Ker Horn(H,.C9 (k+1)) -=+H&;.C9 (k+1) -'--->.C9 (k+2) , 
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and the corresponding Lie algebra inclusion. Moreover, Asada-Kaneko 
[2] showed that 7r1EgnMg,*[k+1] = rk1r1Eg· Hence we have an inclusion 

Wk: (rk7riEg)j(rk+17riEg) ~ .Cg(k) <-+ ~g,*(k). 

If we set ~g(k) := ~g,*(k)/ .Cg(k), we obtain a homomorphism Tg(k) 
Mg[k + 1] ---> ~g(k) and the corresponding Lie algebra inclusion. We 
call the homomorphisms Tg(k), Tg,*(k), Tg,l(k) the k-th Johnson homo
morphism for each case. Note that Tg(k) is Mg-equivariant, where Mg 
acts on Mg[k + 1] by conjugation and acts on the target through the 
classical representation p0 : Mg ---> Sp(2g, Z). Similar results hold for 
Tg,*(k) and Tg, 1(k). 

We have Mg,I[2] = Ig, 1 , Mg,*[2] = Ig,* and Mg[2] = Ig by def
inition. Johnson [14] showed that Mg,I[3] = Kg,l and Mg[3] = Kg· 
Combining the fact that the first Johnson homomorphisms for Ig,l and 
Ig,* have the same target A3 H, we can see that Mg,*[3] =Kg,*· 

2.3. The representation theory of Sp(2g, Q) 

Here we summarize the notation and general facts concerning the 
representation theory of Sp(2g, Q) from [8], [10] and [27]. First we con
sider the Lie group Sp(2g, C) and its Lie algebra sp(2g, C). It is known 
that finite dimensional representations of Sp(2g, C) coincide with those 
of sp(2g, C), and their common irreducible representations (up to iso
morphisms) are parameterized by Young diagrams whose numbers of 
rows are less than or equal to g. These representations are all defined 
over Q so that we can consider them as irreducible representations of 
Sp(2g, Q) and sp(2g, Q). We follow the notation in [27] to describe 
Young diagrams as in Figure 2. 

[431] 

Fig. 2. Notation for Young diagrams 

For example, the trivial representation Q is denoted by [OJ and the fun
damental representation HQ := H 0 Q is denoted by [1]. We fix a 



Johnson's homomorphisms and the cohomology of subgroups of M 9 99 

symplectic basis (a1, ... , a9 , b1, ... , b9 ) of HQ with respect to the non
degenerate skew symmetric bilinear form, denoted by f..L again, on HQ in
duced from the intersection form f..l on H. In general, the Young diagram 
[n1n2 · · · nz], where ni are integers satisfying n1 ~ n2 ~ · · · ~ nz ~ 1 
and l ::; g, corresponds to the Sp(2g, Q)-vector space V given as fol
lows. Let [m1 m2 · · · mk] be the Young diagram obtained by transposing 
[n1n2 · · · nz]. Then Vis explicitly defined to be the irreducible Sp(2g, Q)
subspace of 

containing the vector 

which is called the highest weight vector of [n1 n2 · · · nz]. 

2.4. Johnson's homomorphisms from the view point of the 
representation theory of Sp(2g, Q) 

Let 7~(k) denote the Johnson homomorphism 7 9 (k) tensored by Q, 
namely 

As mentioned in Section 2.2, 7~(k) is M 9 -equivariant, so that Im 7~(k) 
is an Sp(2g, Z)-vector space. Moreover, Im 7~(k) turns out to be an 
Sp(2g, Q)-vector space by Lemma 2.2.8 of Asada-Nakamura [3]. In par
ticular, Im 7~(k) and ~~(k) can be written in terms of the representation 
theory of Sp(2g, Q). Similar results hold for 7~*(k) := 7 9 ,*(k) ® Q and 

7~1 (k) := 79 ,1(k) ® Q. By results of Johnson [11] fork= 1, Hain [10] 
and Morita [22] for k = 2, Hain [10] and Asada-Nakamura [3] for k = 3, 
we have the following. 

Im7~1 (1) = Im7~*(1) = ~~, 1 (1) = ~~,*(1) = (13] + (1] = /\ 3 HQ, 

Im7~(1) = ~~(1) = (1 3] = (A3 HQ)/HQ, 

Im 7~1 (2) = ~~, 1 (2) = [22] + [12] + [OJ, 

Im7~*(2) = ~~,*(2) = (22] + (12], 

Im 7~(2) = ~~(2) = [22], 

Im 7~1 (3) = Im 7~* (3) = (312] + (21] 

c ~~,1(3) = ~~,*(3) = [312] + [21] + [3], 

Im 7~(3) = [312] C ~~(3) = [312] + [3] 
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for g :2:: 3, where we write+ for the direct sum. Moreover, in [27], Morita 
announced that 

in 

lm r~1 (4) = lm r~*(4) = [42] + [313 ] + 2[31] + [23 ] + [212] +.2[2], 

Imr~(4) = [42] + [31 3] + [31] + [23 ] + [2] 

~~.1(4) = [42] + [31 3] + 2[31] + [23 ] + 2[212] + 3[2], 

~~.*(4) = [42] + [313 ] + 2[31] + [23 ] + 2[212] + 2[2], 

~~(4) = [42] + [313 ] + [31] + [23 ] + [212] + [2] 

for g :2:: 4. 

Remark 2.1. Rain showed in [10] that as Lie algebras, Imr~1 , 
Im r~*' Im r~ are generated by their degree one part for g :2:: 3, and 

that Im r~1 ( k) ~ Im T~* (k) for k :2:: 3. The proof, on which Rain kindly 
informed the author, uses Lemmas and Propositions 4.5-4.8 in [10] with 
some general facts about mixed Hodge structures. 

The bracket operation of ~9 , 1 is explicitly given in [23, 24]. However, 
here we use an alternative description given by Garoufalidis-Levine [9], 
Levine [18, 19], which will be easier to handle. We recall the following Lie 
algebra of labeled unitrivalent trees. Let At(H) be the abelian group 
generated by unitrivalent trees with k + 2 univalent vertices labeled 
by elements of H and a cyclic order of each trivalent vertex modulo 
relations of AS and IHX together with linearity of labels. We can endow 
At(H) := {At(H)}k:;::1 with a bracket operation 

[·, ·]: At(H) 0 Af(H)----> At+t(H) 

given below, and At(H) becomes a quasi Lie algebra. For labeled trees 
T1, T2 E At(H), we define 

[Tb T2] := L JL( Ci, dj )Tl *i,j T2 
i,j 

where JL is the intersection form on H and the sum is taken over all pairs 
of a univalent vertex of T1, labeled by Ci, and one of T2 , labeled by dj, 

and T1 *i,j T2 is the tree given by welding T1 and T2 at the pair. We 
define a map 'T/k: At(H)--+ H 0 .C9 ,1(k + 1) by 

'T/k(T) := L Cv 0 Tv, 
v 
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where the sum is over all univalent vertices of T, and for each uni
valent vertex v, Cv denotes the label of v and Tv denotes the rooted 
labeled planar binary tree obtained from T by removing the label Cv 

and considering v to be an unlabeled root, which can be regarded as 
an element of C9 ,1(k + 1) by a standard method. It is shown that 
"1 := {"lkh~1 : At(H) ---. H ® £ 9 ,1 is a quasi Lie algebra homomor
phism and Imry C ~g,1· Moreover "1 ® Q: At(H) ® Q---. ~~, 1 becomes 
an isomorphism of Lie algebras. In what follows, we identify At(H) ® Q 
with ~~, 1 by "1 ® Q. 

Using At(H) ® Q, we now give a graphical description of the map 

which was mentioned in Section 2.2 and is explicitly given by 

g 

C~(k) 3 X f-+ L (ai ® [bi, X]- bi ® [ai, X]) E H ® C~(k + 1). 
i=1 

For each rooted labeled planar binary tree T as an element of £~, 1 ( k), 

we can construct an element of At( H) ® Q 9:! ~ ~ 1 ( k) by gluing T to the 

rooted labeled planar binary tree Two E £~, 1 (2) 9:! 1\2 HQ corresponding 
to wo = L:f=1 ai 1\ bi at their roots as depicted in Figure 3. 

T=~, 
~· 

g T~~t ~ -~~ = 
i=l'~ 

~k(T) = L 
~b; 

i=l~ 

Fig. 3. The map <I>k: .C~, 1 (k)--> ~~, 1 (k) 

We can easily check that this construction gives an Sp(2g, Q)-equivariant 
homomorphism <I>k : c~,1(k) ___. ~~,1(k), and it induces the desired map 
'lllk: C~(k) <--> ~~*(k) by using Labute's result [17]. 

§3. The second cohomology of the Torelli group and the John
son kernel 

We start our investigation of cup products of cohomology classes of 
degree one obtained from Johnson's homomorphisms. 
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By passing to the dual over Q of T9 (1) : I 9 --+ [1 3], we obtain an 
injection 

and more generally, we have the cup product map 

for each n ~ 2. In [15], Johnson showed that T..?(l) is an isomorphism, 
so that studying the map un is equivalent to determining the subring of 
H*(I9 ; Q) generated by its degree one part. 

The map un is Mg-equivariant, since Tg (1) is so. Hence Ker un is an 
M 9 -submodule (in fact, an Sp(2g, Z)-submodule) of /\n[13 ]. Moreover, 
by Asada-Nakamura's argument [3] mentioned before, it is stable under 
the natural action of Sp(2g, Q) extending that of Sp(2g, Z). 

The kernel of the cup product map U : !\ 2 [1 3 ] --+ H 2 (I9 ; Q) was 
determined by Rain as follows. (We only mention the case in the stable 
range g ~ 6.) 

Lemma 3.1 (Rain [10]). For g ~ 6, the irreducible decomposition 
of !\ 2 [1 3 ] is given by 

/\2[13] = [2212] + [22] + [16] + [14] + [12] + [0]. 

Theorem 3.2 (Rain [10]). For g ~ 6, the kernel of the cup product 
map U: /\ 2 [1 3]--+ H 2 (I9 ;Q) is [22] +[OJ. 

This theorem is obtained as a corollary of his argument about the finite 
presentation of Torelli Lie algebra and it is not mentioned directly in 
[10]. Here we sketch the proof of the theorem, which is divided into the 
following two steps. Note that the idea of this proof will be applicable 
to general cases. 

Step 1. (Lower bound of KerU) Since /\2 [1 3] = H 2 ([1 3];Q), the map 
u : /\2 [1 3 ] --+ H 2(I9 ; Q) coincides with the homomorphism 

Hence, by passing to the dual, our task is equivalent to observing the 
cokernel of the map 

By applying Stallings' exact sequence [31] to the group extension 

1 ---+ f 2I 9 ---+ I 9 ---+ H 1 (I9 ) ---+ 1 
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and observing the homomorphisms, we obtain the exact sequence 

where the first map is the coproduct on the rational homology and the 
second one is the Lie bracket 

By observing the image of this map, we obtain [22] C Ker U. 
We can see [0] C Ker U from the fact that the first Morita-Miller

Mumford class vanishes on H 2 (Ig; Q) (see [26] for details). 

Step 2. (Upper bound of Ker U) We can obtain summands in /\2 [1 3 ] 

which survive in H 2 (Ig; Q) when we take Kronecker products with el
ements in H 2 (Ig; Q) and the results are non-trivial. We can construct 
an element of H 2 (Ig; Q) by constructing a homomorphism 'J'}---+ Ig and 
considering the image of 1 E Z:. ~ H 2 (Z2 ) in H 2 (Ig)· Such classes are 
called abelian cycles. Note that what we need to construct a homomor
phism Z:.2 ---+ Ig is only a choice of a pair of commuting elements in Ig. 
By an explicit computation, we can see that [22 12 ] + [1 6 ] + [14 ] + [1 2] is 
not in KerU. 

Since the upper bound and the lower one coincides, Theorem 3.2 is 
proved. 0 

Remark 3.3. While some additional arguments are needed, the 
cases of Ig,* and Ig,l will be settled similarly. See Section 6 of [26] for 
details.) 

Next we consider the case of Kg· By passing to the dual of Tg(2) : 
Kg ---+ [22 ], we obtain an injection 

and the cup product map 

for each n;::: 2. We now observe the map U : /\2 [22] ---+ H 2 (Kg; Q). In 
this case, the stability range is given by g ;::: 4. 

Lemma 3.4 ([30]). For g ;::: 4, the irreducible decomposition of 
/\ 2 [22 ] is given by 
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Theorem 3.5 ([30]). For g 2: 4, the kernel of the cup product map 
U : A2 [2 2] --t H 2 (K9 ; Q) is 

which is, as an Sp(2g, Q)-vector space, isomorphic to the rational image 
of the fourth Johnson homomorphism 7 9 (4). 

(Sketch of Proof) The proof goes parallel to that of Theorem 3.2. The 
point is the relationship to the fourth Johnson homomorphism. 

Step 1. (Lower bound of Ker u) A lower bound of Ker U is obtained by 
observing the map 

To see the image of this map, we can use the diagram 

t\2Tg (2) 1 
A2 (Im 7 9 (2)) 

[·,·] 
---+ 

""1Tg(4) 

Im T9 (4), 

whose commutativity follows from the fact that the collection { Tg ( k)} k?.l 

forms a Lie algebra homomorphism. By direct computations, we can 
show that [42] + [31 3] + [31] + [23 ] + [2] c Ker U. 

Step 2. (Upper bound of Ker U) By computations using abelian cycles 
in H 2 (K9 ), we can see that [431] + [3221] + [321] + [21 2] is not in KerU. 

Since the upper bound and the lower one coincides, Theorem 3.5 is 
proved. D 

Remark 3.6. From Theorems 3.2 and 3.5, we can give lower bounds 
of the ranks of H 2 (I9 ) and H 2 (K9 ), which may be infinite, by using 
Weyl's character formula (see Section 24.2 of [8]). For example, the 
summand [322 1] C A2 [22] survives in H 2 (K9 ; Q), so that the rational 
dimension 

1 
36 (g- 3)(g- 2)(g- 1)(g + 2)(2g- 1)(2g + 1) 2 (2g + 3) 

of this summand gives a lower bound of the rank of H 2 (K9 ). 
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§4. The third cohomology of the Torelli group 

Finally, we consider triple cup products of [1 3 ] = H 1(I9 ; Q). In this 
case the stability range is given by g 2: 9. 

Lemma 4.1 ([29]). For g 2: 9, the irreducible decomposition of 
/\3 [13 ] is given by 

/\ 3 [1 3] = [32 13 ] + [32 1] + [323 ] + [3212 ] + [32] 

+ [23 13 ] + [23 1] + [22 15 ] + 2[22 13 ] + 2[22 1] + [215 ] + 2[213 ] + [21] 

+ [19 ] + [17 ] + 2[1 5 ] + 3[13 ] + [1]. 

Theorem 4.2 ([29]). For g 2: 9, the kernel of the cup product map 
u3 : 1\3 [13] --+ H 3 (I9 ; Q) contains the direct sum 

[32 1] + [3212] + [32] + [22 13] + [22 1] + [21 3] + [21} + 2[13 ] 

which is equal to Im(U : [13 ] ® ([22] + [0]) --+ 1\3 [13]). Moreover, one of 
the following two possibilities holds: 

a) Ker U3 coincides with the above. 
b) Ker U3 coincides with the direct sum of the above summands 

and one more summand [1]. 

(Sketch of Proof) Recall that Ker(U : /\2 [13 ] --+ H 2 (I9 ; Q)) = [22] + [0]. 
Hence a lower bound of Ker U3 is given by observing the image of the 
cup product map U: [13 ] ® ([22] + [0])--+ /\3 [1 3]. On the other hand, an 
upper bound of Ker U3 is given by computations using abelian cycles in 
H3(I9 ). By these computations, we can give the bounds which coincide 
modulo the summand [1]. D 

As for the summand [1], we can relate it with the Euler class e E 

H 2 (M 9 ,*; Q) and the pull-back of the second Morita-Miller-Mumford 
class e2 E H 4 (M 9 ; Q) to M 9 ,* (see [20] for the definitions). We have 
the following. 

Theorem 4.3 ([29]). For g 2: 5, 

[1] C KerU3 -¢=> e2 - (2- 2g)e2 = 0 E H 4 (I9 ,*;Q). 

(Sketch of Proof) First we can see that [1] c Ker U3 if and only if 
the pull-back p o T 9 (1) : H3 (I9 ) --+ [1] of the unique (up to scalar) 
Sp(2g,Q)-equivariant projection p : /\3 [13 ] --+ [1] to H3(I9 ) is trivial. 
The map p o T 9 (1) belongs to Hom(H3 (I9 ), [1]) ~ H 3 (I9 ; [1]), which 
can be embedded in H 4 (I9 ,*; Q) by using a canonical inclusion given by 
Kawazumi-Morita [16]. On the other hand, using the natural embedding 

Hom(/\3 [1 3], [1]) ~ /\3 [13 ] ® [1] <-+ /\4 (/\3 [1]) 
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and the first Johnson homomorphism r9 ,* : I 9 ,* -t A3 [1] = [13 ] + [1] for 
I 9 ,*, we obtain a commutative diagram 

Hom(A3 [13], [1]) ~ H 3 (I9 ; [1]) 

A4 J[l]) ,,,.(')" H4 (I},;Q), 
Therefore we see that [1] c KerU3 ifandonlyifr9 ,*(1)*(p) E H 4 (I9 ,*;Q) 
is trivial. 

Since p : A3 [1 3] -t [1] is Sp(2g,Q)-equivariant, as an element of 
A 4 (A 3 [1]), it belongs to the Sp(2g, (;.)-invariant part (A 4 (A 3 [1 ]))Sp. In 
[26], Morita constructed a commutative diagram 

(A4 (A3 [1]))Sp ~ H 4 (M 9 ,*; Q) 

A4J[l]) ,,,.(>)" H4(I},; Q), 

where the upper horizontal map is induced from the extended Johnson 
homomorphism p1 : M 9 ,* -t A3 [13 ] ><1 Sp(2g,Z) (see [25]). Finally, using 
an explicit description of Pi given by Kawazumi-Morita [16], we can 
compute that r9 ,*(1)*(p) = e2 - (2- 2g)e2 up to scalar. Theorem 4.3 
follows from this. 0 

At present, it is not known whether powers of the Euler class ei 

(i ~ 2) and even Morita-Miller-Mumford classes e2i (i ~ 1) are trivial 
or not when they are restricted to the Torelli group, and we have little 
information about it. (As for odd Morita-Miller-Mumford classes e2i-l 
( i ~ 1), it is known that they are trivial in H* (I9 , Q). See [20] for 
details.) Theorem 4.3 can be read that there is a method to attack 
the non-triviality problem for e2, e2 E H 4 (I9 ,*; Q) from the theory of 
three-dimensional manifolds. That is, by the well-known fact about the 
realization of a homology class of degree three, it follows that ifU3 ([1]) is 
non-trivial, it must be evaluated non-trivially by the fundamental class 
of an oriented closed three-dimensional manifold. However this approach 
has the following difficulty. The condition in Theorem 4.3 is compatible 
with the pull-back of the universal E9 -bundle. Therefore comparing the 
result of Morita in [21] that the pull-back of e2 E H 4 (M 9 ,*; Q) to an 
amenable group always vanishes, we obtain the following. 
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Corollary 4.4 ([29]). For every amenable group G and every group 
homomorphism f : G ----+ Ig, 

Since abelian groups are amenable, this corollary implies that we cannot 
evaluate u3 ([1]) by using abelian cycles even if U3 ([1]) is non-trivial in 
H 3 (Ig; Q). Therefore the first step to determine whether U3 ([1]) is trivial 
or not is to study the following problem. 

Problem 4.5. Construct a non-trivial homomorphism G ----+ Ig 
where G is not amenable and is given as the fundamental group of an 
oriented closed three-dimensional manifold. 
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