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§1. Introduction 

Minimal surfaces and surfaces with constant mean curvature (CMC) 
have fascinated differential geometers for over two centuries. Indeed 
these surfaces are solutions to variational problems whose formulation is 
elegant, modelling physical situations involving soap films and bubbles; 
however their richness has not been exhausted yet. Advances in the 
understanding of these surfaces draw on complex analysis, theory of 
Riemann surfaces, topology, nonlinear elliptic PDE theory and geometric 
measure theory. Furthermore, one of the most spectacular developments 
in the past twenty years has been the discovery that many problems in 
differential geometry~ including those of minimal and CMC surfaces~ 
are actually integrable systems. 

The theory of integrable systems developed in the 1960's, beginning 
essentially with the study of a now famous example: the Korteweg-de 
Vries equation, Ut + 6uux + Uxxx = 0, modelling waves in a shallow fiat 
channel1. In the 1960's mathematicians noticed the exceptional proper
ties of the KdV equation: existence of solitary waves that "superpose" 
almost linearly, and an infinite number of conserved quantities. From 
these observations, C. Gardner, J. Greene, M. Kruskal, and R. Miura 
[12] showed in 1967 that this equation could be solved completely by 
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53C42. 
1Earlier already, in 1955, Fermi, Pasta and Ulam had unexpectedly dis

covered the soliton phenomenon (to their great surprise) while simulating a 
one-dimensional model in statistical mechanics on the Los Alamos computer. 
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reducing it to a linear one, thanks to a rather sophisticated nonlinear 
transformation called inverse scattering. In 1968, P. Lax [23] gave an 
interpretation of their method by noticing that the KdV equation can 
be rewritten as the evolutionary equation for an operator L (in fact 

L = - a~2 + u), namely Lt = [A, L]. In particular the spectrum of L 
is time independent, explaining the infinite number of conserved quan
tities. That was the starting point for a series of increasingly deeper 
observations on KdV, formulated notably by the Japanese and Russian 
schools, aiming at interpreting its miraculous properties: Hamiltonian 
structure, explicit formulation of some of its solutions (called finite gap 
solutions) through techniques from algebraic geometry, relation with dy
namical systems on Lie algebras, and so on. . . For all these properties 
the KdV equation deserves the name of completely integrable system. 
Later on other equations coming from physics were identified as com
pletely integrable systems: the one dimensional nonlinear Schrodinger, 
Toda field equation, and so on. . . Today however differential geometry 
seems to be the field where most of the completely integrable systems are 
discovered (see [33] for instance). We will see in the following some ex
amples stemming from problems in Riemannian geometry. Other very 
interesting examples are linked to geometrical problems (but inspired 
by physics) in four dimensions: self-dual Yang-Mills connections, and 
self-dual Einstein metrics (the starting point being Penrose's theory of 
twistors). 

The intrusion of integrable systems in differential geometry may 
seem a recent discovery, however it is not so, since a "prehistory" of 
completely integrable systems in geometry occurred one century ago. 
A number of clues had been spotted by nineteenth century geometers: 
conjugate families of CMC surfaces discussed by 0. Bonnet in 1853 [5], 
the Enneper-Weierstrass representation for minimal surfaces (see below), 
construction of constant mean or constant Gaussian curvature surfaces 
by A. Enneper and his students in 1868 and 1880 [10, 8, 22, 24], con
struction of soliton-like solutions through iteration of Backlund trans
formations [3, 25]. A synthesis can be found in the book of G. Darboux 
[7]. Of course the geometers of that period did not have the point of 
view we have today, which is based on concepts from Lie algebra theory. 

In this survey we wish to present this theory in an accessible way, 
through the examples of minimal surfaces, CMC surfaces and harmonic 
maps or Willmore surfaces. We will then present a more recent example, 
discovered by both authors [17, 18, 19]. 
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§2. Minimal surfaces and CMC surfaces 

Let m be a point of an oriented surface ~ C JR3 . We define the 
principal curvatures at mas follows. Consider the one-parameter family 
of affine planes P through m, perpendicular to the tangent plane to ~ 
at m, Tm~· Any such plane P cuts~ along a (planar) curve and we let 
k(P) be the (oriented) curvature of that curve at m, obviously dependent 
on P. As P revolves around the normal line at m, k(P) oscillates; its 
minimal and maximal values are called principal curvatures and denoted 
by k1 :S: k2 . If k(P) is independent of P, i.e. k1 = k2 , the point m is 
called umbilic. The quantity H := ~(k1 + k2 ) is the mean curvature of 
~ at m and the product K = k1 k2 is the Gaussian curvature. 

A minimal surface satisfies by definition H = 0 at all points. The 
reason behind the name is that such surfaces are stationary with respect 
to the area functional A(~) = J~ da (not necessarily minimizing2). A 
very simple experimental procedure for producing minimal surfaces con
sists of dipping a closed metal wire in soap and water: when taken out of 
the liquid, the wire bounds a soap film, materializing a minimal surface. 

Constant mean curvature surfaces are by convention those surfaces 
with constant non-zero mean curvature H, as opposed to minimal sur
faces. 

Using conformal coordinates turns out to be a very convenient way 
of studying the properties of these surfaces. Indeed, for any simply 
connected immersed surface ~ there exists a conformal parametrization 
X : 0 ----+ JR3 , where 0 is an open subset of C, i.e. 

and X(O) = ~- Let u map z = x + iy E 0 to the oriented unit normal 
vector at X(z): 

OxX X OyX 
u(z) := IBxX x ByXI ' 

where x denotes the cross product in JR3 . The map u is called the 
Gauss map. Then the conformality assumption implies that the first 
and second fundamental forms take the following form: 

(1) ~ ) 
2However stationary surfaces will always be minimizing for small perturba

tions in a small enough compact subset. 
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and 

(2) 

with w, H, a, bare real-valued functions. His exactly the mean curva
ture. In particular 

~X = 2H8xX X OyX. 

Thus all minimal surfaces (respectively, CMC surfaces) are locally de
scribed by the conformal immersions X such that ~X= 0 (respectively, 
~X = 2Ho8xX x 8yX with H 0 a non-zero constant). As we will see, 
this way of stating the geometric problem is quite productive. 

2.1. Minimal surfaces 

The set of equations 

may be solved locally by introducing a complex-valued function 

then ( 3) becomes 

! 2 = 0 and ozf = 0 ' 

since 82 82 = ~~. (P denotes the dot product (Jl)2 + (j2)2 + (!3 ) 2 .) 

The solution to these two equations is given by 

(4) ( 

i(w2- 1) ) 

f = ; ( w2 + 1) h , 

iw 

where w (respectively, h) is some meromorphic (respectively, holomor
phic) function from n to C. Thus 

(5) X(z) = C + Re [1: f(()d(] , 

with c a constant in ~3 and Zo a fixed base point in n. This is the 
Enneper-Weierstrass representation formula. 
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The reader may observe the following fact: locally, any minimal 
surface is part of (continuous) one-parameter family of minimal surfaces 
given by 

(6) X.x.(z) = C + Re [A- 2 1: f(()d(], A E 5 1 c C*. 

This family is called the conjugate family3 of the surface ~-

2.2. Constant mean curvature surfaces 

Even before Enneper and Weierstrass discovered their representa
tion formula, 0. Bonnet [5] found that minimal surfaces and CMC sur
faces could be deformed, giving birth to conjugate families. This relies 
on the fact that the immersion X can be reconstructed with the mere 
knowledge of the first and second fundamental forms of X. More specifi
cally, given four real-valued functions w, H, a, b, there exists a conformal 
immersion X whose first and second fundamental forms are given by 
(1) and (2), under the condition that w, H, a, b satisfy some compatibil
ity relations: the Gauss-Codazzi equations4• The crucial observation is 
that (w, H, a, b) satisfies the Gauss-Codazzi equations if and only if the 
deformed data (w, H, ax_, b>-.) does, where 

a>-.- ib>-. := A- 2 (a- ib) for all A E C*. 

Hence starting with a conformal immersion X with constant or zero 
mean curvature, and deforming the first and second fundamental forms 
I and II by substituting (w, H, a>-., b>-.) for (w, H, a, b), one gets tensors 
I>-. and II>-. on 0 that are the first and second fundamental forms of a 
new conformal immersion X>-. of constant or zero mean curvature. One 
constructs that way the conjugate family of X, which coincides with the 
Enneper-Weierstrass formula (6) in the case of minimal surfaces. 

2.3. Changing viewpoint: the moving frame 

We revisit here the construction of the conjugate family of a constant 
or zero mean curvature surface. Before doing this, let us make a detour 
into the theory of moving frames. Consider the projection p from the 

3It depends only on the surface, not on the choice of the parametrization 
X. 

4If H = constant, the Gauss-Codazzi equations are: !/z ( e2w (a - ib)) = 0 
and ~w + e2w(H2 - a2 - b2 ) = 0. 
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group of affine isometries of JR3, 80(3) ~ JR3, to JR3, defined by (R, t) t---t to 
Recall that 80(3) ~ JR3 can be identified with the group of four by four 

real matrices of type ( ~ ~ ) with R E 80(3) and t E IR3 
0 We say 

that F lifts X if p o F = X: 

80(3) ~ IR3 

F 
/ !p 

n ~ JR3 

If n is a simply connected domain in C we can always lift X 0 A moving 
frame (or Darboux frame) is a lift F: n----+ 80(3) ~ JR3 of the following 
form: 

( e1 (z) e2 (z) u(z) X(z) ) 
F(z) := 0 0 0 1 

where, for z E 0, (e1(z),e2(z)) is any positively oriented orthonormal 
basis of Tu(z)82 ~ Tx(z)~, smoothly varying with zo The simplest 
(but not the only) way to define (e1(z), e2(z)) is through coordinates: 
e1 = e-waxX, e2 = e-wayX, where e2w := l8xXI2 = l8yXI20 Notice 
that the triple (e1 , e2 , u) is a positively oriented orthonormal basis of JR3 

and as such can be identified with an element of 80(3)0 

As seen above, X is tied to its conjugate family, hence u is tied to 
the family of Gauss maps u.x of X.xo We set 

obtaining thus a deformation F.x of F defined by 
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Since F>- is group-valued, we may compute its Maurer-Cartan form 
A>- := F>: 1dF>- and find 

( 0 

0 (azu, e1) (azX, e1) 

) d, AA >.-1 0 0 (azu, e2) (azX, e2) 
- (az;, e1) -(OzU, e2) 0 0 

0 0 0 

H~u 
-1 0 n 0 0 
0 0 
0 0 

+A ( 

0 0 ((}oz_u, e1) (D,X,e,) ) 
0 0 Wzu, e2) ((}oz_X, e2) d-

-(a;;u, e1) -(a;;u, e2) 0 0 z. 

0 0 0 0 

Remarkably enough, A>- splits into three pieces ,\- 1 A~+ A0 + >.A7 which 
can be easily read off from the original Maurer-Cartan form A= F- 1dF 
of F. Indeed 

(du, e1) 

(du, e2) 
0 
0 

We deduce a more direct way of constructing the conjugate family of X, 
namely start by lifting X to F : n ---+ S0(3) ~ JR.3 , split its Maurer
Cartan form A into two pieces 

-1 0 0) 
0 0 0 
0 0 0 
0 0 0 

and A1 := A-Ao, then split again A1 =A~ +A7 where A~:= A1(%z)dz 
and A7 = A~ := A1(%z)dz. Then the Maurer-Cartan form ofF>- is 
just A>- = >.- 1 A~+ A0 + >.A7. Now given such an A>-, one may ask 
whether a corresponding map F>- : n ---+ S0(3) ~ JR.3 exists, such that 
A>-= F>: 1dF>-. The answer for a simply connected domain n is positive 
if and only if 

(7) 
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However this equation turns out to be exactly equivalent to these two 
conditions: A = p- 1dF and X is a constant or zero mean curvature 
immersion. 

2.4. Another point of view using the Gauss map 

We have previously defined the Gauss map u : n ---+ S2 of an im
mersion X, allowing us later on to characterize the second fundamental 
form and the lift F. There is more to this than one might expect, thanks 
to the following result. 

Theorem 1 (Ruh-Vilms). Let X be a conformal immersion. Then 
X has constant or zero mean curvature if and only if its Gauss map u is 
a harmonic map into the unit sphere, i.e. u is a solution of the equation 

(8) 

Among harmonic maps into the sphere, one should single out two 
particular subclasses, namely the holomorphic and antiholomorphic maps 
(solutions to i8zU = u X azu and i8zu = -u X azu, respectively). In the 
case where u is holomorphic, X is proportional to u, and its image E is 
a piece of a sphere. If u is antiholomorphic, then X is minimal. In the 
remaining cases- the most interesting ones for us- X is a CMC surface 
whose image does not lie in a sphere. In that latter case, the Ruh-Vilms 
theorem can be improved on, in the sense that X can be reconstructed 
from its Gauss map u (up to translations of course). This is achieved 
through various formulae (Kenmotsu [20], Sym-Bobenko), or using the 
procedure below. Rewrite equation (8) as a "closure" condition 

This implies the existence of a map B : n ---+ JR3 such that 

Then X =B+u. 

Therefore, in order to build conformal CMC immersions, it suffices 
to construct harmonic maps (which are neither holomorphic nor anti
holomorphic), and this turns out to be easier. 

We may analyze harmonic maps into the 2-sphere in an analogous 
way to that in the previous section. Indeed let ¢ : n ...:...___. S0(3) lift 
u in the following sense: ¢(z) = (e1(z),e2(z),u(z)) where (e1(z),e2(z)) 



Hamiltonian stationary Lagrangian surfaces 171 

is any oriented orthonormal basis of Tu(z)S2 . Its Maurer-Cartan form 
a := ¢-1d¢ splits into two pieces a = a 0 + a 1 where 

-1 
0 
0 

Further, we decompose as above a 1 in its (1,0) and (0,1) parts a~ +a7, 
and set a.\ = .X - 1 a~ + ao + .Xa1 for any .X E C*. Then u is harmonic if 
and only if 

(9) 

Reciprocally, the condition (9) on a simply connected domain 0 ensures 
the existence for any .X E C* of a map ¢>- : 0 ---+ S0(3) such that 
d¢>- = ¢>-a>,, and consequently of a map U>,. 

This characterization of harmonic maps was obtained by K. Pohlmeyer 
[29], V. E. Zhakarov, A. B. Shabat [37] and K. Uhlenbeck [35], following 
a different approach, inspired by the theory of integrable systems. 

§3. Harmonic maps: a completely integrable system 

3.1. Introducing loop groups 

The most efficient way to deal with harmonic maps u : 0 ---+ S2 

is to work with the family of maps ¢>- constructed above. For the sake 
of simplicity let us assume (without loss of generality) that 0 E 0 and 
¢(0) = 1. From now on .X will be a non-zero complex number, unless 
specified otherwise. Recall from equation (9) the existence of a unique 
map ¢>- : 0 ---+ S0(3) (for fixed .X) such that 

(10) 

Setting 

( 
1 0 

p := ~ ~ ~ ) ' 
-1 

we define a Lie algebra involution by T : ~ f--t P~P- 1 , and observe that 
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Hence5 

(11) 

To verify this we set ¢;.. := 7(c/J-;..). Then ¢-;_ 1d¢;.. = 7(c/J=ldc/J->.) 
7(c:c;..) =a;..; we conclude the proof by a uniqueness argument. 

For this reason we consider the loop group 

LS0(3) := {81 3 >. f---' g;.. E 80(3)}, 

with group law being pointwise multiplication, and its twisted subgroup 

LS0(3)T := {S1 3 >. f---' g;.. E S0(3) I 7(g;..) = g_;..}. 

The family of maps ( cp;.. hE 5 2 may therefore be considered as a single 
map rP>. : n ----* LS0(3)T. The construction of harmonic maps from n 
to S2 amounts to finding maps rP>.: n----* LS0(3)T such that cp>_ 1dc/J;.. = 

>. - 1 a~ + ao +>.a~. 

Remark. The involution 7 gives us a clear explanation for the splitting 
a = a 0 + a 1. Indeed 7 is a Lie algebra automorphism (7([~, 7]]) = 
[7(~), 7(7])]), which squares to the identity. We may hence decompose 
the Lie algebra so(3) as the sum of two eigenspaces so(3)0 E8 so(3)I 
associated respectively to the eigenvalues (-1)0 and (-1) 1 . Thus an is 
just the projection of a on the so(3)n term. 

3.2. Weierstrass-type representation ala Dorfmeister, 
Pedit and Wu 

As an application of the formalism introduced above, we describe 
here an algebraic algorithm for constructing all harmonic maps n ----* S2 

(where n is simply connected) starting with holomorphic data. This 
construction is due to Dorfmeister, Pedit and Wu [9]. 

Step 1: choosing a potential. Let a, b : 0 ----* C be holomorphic 
maps, and define a matrix-valued (actually loop algebra-valued) holo
morphic 1-form 

JL>. = >. - 1 ( ~ ~ ~ ) dz 
-a -b 0 

which we call the potential. 

5We use the same letter T to denote a group automorphism and its differ
ential at the identity, acting on the Lie algebra. 
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Step 2: integrating J.l>.. The potential trivially satisfies dJ.L>. + J.L>. A 
J.l>. = 0, which is the necessary and sufficient condition for the existence 
of 9>. : n -----. L80(3)~ such that6 d9>. = 9>.J.l>.· 

Step 3: splitting. We write 9>. as a product ¢>.b>., with ¢>. : n --+ 

L80(3)-r and b>. : n -----. L + 80(3)~, where L + 80(3)~ is the subgroup 
consisting of loops b>. E £80(3)~ that are the restriction of holomorphic 
maps (in A) from the closed unit disk to 80(3)c. 

The map¢>. produced in this way is a lift (in the sense of the previous 
section) of a harmonic map into the sphere. 

A few comments are necessary. 

a) The least obvious and most complex operation in the algorithm is 
the decomposition 9>. = ¢>.b>.. It rests upon a difficult theorem from A. 
Pressley and G. Segal [30], stating more precisely that any loop 9>. E 
L80(3)c can be written uniquely as the product of ¢>. E £80(3) and 
b>. E L + 80(3)c (hence the decomposition of maps is done pointwise in 
z). J. Dorfmeister, F. Pedit and H.-Y. Wu call this decomposition the 
Iwasawa decomposition, for it is an infinite dimensional analog of the 
classical Iwasawa decomposition (whose prototype is the Gram-Schmidt 
theorem: any real matrix is the product of an orthogonal matrix by an 
upper triangular one). 

b) This algorithm accounts for the construction of almost all harmonic 
maps. Actually J. Dorfmeister, F. Pedit and H.-Y. Wu show how to 
associate to any harmonic map a unique such potential J.l>. where the data 
(a, b) is meromorphic, albeit with non accumulating poles. There are 
other constructions along the same lines which avoid using meromorphic 
data (at some cost though). 

c) The algorithm parallels the Enneper-Weierstrass representation for
mula (hence its name). Indeed J.l>. is the analog of 

~(w2 - 1) 

Hw2 + 1) 

iw 

6 LS0(3)~ is the complexification of LS0(3)r. As a matter of fact 
LS0(3)~ := {81 3 A f--> g>. E S0(3)c I r(g>.) = g->.} where S0(3)c := {M E 

M(3,C)I tMM = ll and detM = 1}. 
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The map g;.. obtained from JL>. corresponds to the (standard) integral 
Jz j;..dz (actually both integrals have the same expression, but the latter 
takes place in an abelian group). Finally the Iwasawa decomposition 
reduces to taking the real part. Notice that the analogy is not only in 
spirit, but that under some conditions, the DPW algorithm reduces to 
the Enneper-Weierstrass representation formula. 

3.3. Generalizations 

The result of J. Dorfmeister, F. Pedit and H.-Y. Wu applies to any 
harmonic map from a simply connected 0 C C to a symmetric space 
G j H, with G compact semisimple. In [15] the first author has built 
a similar theory for Willmore surfaces. Recall the definition: for any 
surface ~ immersed in JR.3 , we define the Willmore functional as 

where H denotes as usual the mean curvature. The critical points of 
this functional satisfy the fourth order PDE 

where K is the Gaussian curvature, and they are called Willmore sur
faces. Actually this problem had been tackled ten years earlier by 
K. Voss. Later on it was realized that G. Thomsen had also studied 
it in 1923 [34], and many important results on these surfaces can be 
found in W. Blaschke's book [4] (however in 1929, Willmore was only 
ten years old and Blaschke could not possibly guess that his "conformal 
minimal surfaces" would become famous under the name of Willmore 
surfaces). Let us add that S. Germain had already considered the same 
problem early in the 19th century. 

The crucial property of Willmore surfaces is the invariance under 
conformal transformations of JR.3 U { oo} (also known as the Mobius group 
of S3 , which is isomorphic to the connected component of the identity 
in S0(4, 1)). This group has dimension 10, and is generated by the 
translations, dilations and inversions of JR.3 . In variance means that for 
any surface ~ without boundary and any Mobius transformation T, 
W(T(~)) = W(~). Consequently the Willmore problem does not rely 
on the Euclidean structure of JR.3 but rather on its conformal structure. 
Since JR.3 is (locally) conformally equivalent to the sphere S3 or the 
hyperbolic space H 3 , the (local) theory of Willmore surfaces is identical 
in all three spaces. 



Hamiltonian stationary Lagrangian surfaces 175 

Another important property (rediscovered by R. Bryant [6], though 
already known to Blaschke) is the existence of the conformal Gauss map, 
a notion akin to the classical Gauss map of Euclidean geometry, but 
adapted to conformal geometry. This map takes values in the set S3 •1 

of oriented spheres and planes of lli.3 (the notation S3 •1 will be explained 
below). If ~ is an oriented surface in lli.3 , the conformal Gauss map 1 
maps any point m to the unique sphere or plane tangent to ~ at m such 
that their mean curvature vectors coincide - or equivalently with the 
same orientation and mean curvature. Note that the mean curvature of 
a sphere is the inverse of its radius; hence the conformal Gauss map is 
a plane if and only if H vanishes. 

A study of conformal geometry shows that the set of oriented spheres 
and planes of lli.3 is canonically isomorphic to 

which is indeed the unit sphere in Minkowski space lli.4 •1 , hence the 
notation. The set S3 •1 has a natural pseudo-riemannian structure, and 
is also a symmetric space, being written as S0(4, 1)/S0(3, 1). 

All this construction is motivated by the following analog of the 
Ruh-Vilms theorem. 

Theorem 2 ([4], [6]). Let X : 0-+ ~ be a conformal parametriza
tion of a surface in lli.3 or S3 , and 1 : 0 -+ S3 •1 its conformal Gauss 
map. Then 

• 1 is weakly conformal, namely for any z E 0, 1 is conformal 
at z or d1 z = 0, 

• ~ is a Willmore surface if and only if 1 is harmonic. 

This suggests immediately a strategy for analyzing and constructing 
Willmore surfaces, by analogy to the theory of CMC surfaces. One 
should study harmonic maps from n to S3 •1 and deduce from them 
conformal Willmore immersions. However it is trickier to reconstruct 
the Willmore immersion from the conformal Gauss map than the CMC 
surface from the classical Gauss map. Although feasible in principle, 
singularities may arise at umbilic points, hence the difficulties. See [15] 
for details. 

A slightly different strategy proposed in [15] allows us to avoid the 
problem with the umbilic points. It relies on another kind of Gauss 
map: for that purpose we choose x : n ~ S 3 any map such that 
X(z) i- X(z), \:fz E 0. Now there is a canonical way to associate to 
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each pair of disjoint points in S 3 a 3-dimensional spacelike subspace 
in IR4 •1 . Thus the pair (X, X) : n ----+ S3 X S3 induces a map z : 
0 ----+ Gr3 (IR4 • 1), where Gr3 (IR4 • 1 ) is the Grassmannian of 3-dimensional 
spacelike subspaces contained in IR4 •1 . Of course another choice X' in 
place of X would lead to another map Z' and one goes from Z to Z' 
through a gauge transformation parametrized by a map in c=(n, IR2 ). 

The key point here is that Gr3 (IR4 •1 ) = 800 (4, 1)/80(3) x $0(1, 1), 
so that any map Z can be lifted to a map ¢ : 0 ----+ 800 (4, 1); then 
the Maurer-Cartan form w := ¢-1d¢ can be deformed into a form w.\ = 
>. - 1w~ +wo + >.w~, which is curvature-free if and only if X is a conformal 
Willmore immersion. Therefore we see a way to rely on the results of 
J. Dorfmeister, F. Pedit and H.-Y. Wu. Note that here w~ is not a 
(1, 0)-form in general, except for special gauge choices of Z (which can 
be achieved only locally in general). 

§4. Another example of an integrable system in geometry: 
Hamiltonian stationary Lagrangian surfaces 

We will describe now another integrable system which also corre
sponds to a variational problem in differential geometry, and shares 
many traits with the problems seen above. Nevertheless this new system 
cannot be reduced to the study of a harmonic map via some Gauss map, 
as was the case for CMC or in spirit for Willmore surfaces. Details of 
this work can be found in [17, 18, 19]. 

4.1. Hamiltonian stationary Lagrangian submanifolds 

A symplectic manifold is a (real) even-dimensional manifold M 2 n 

endowed with a closed 2-form w that is non-degenerate, i.e. for any 
point m E 11,1, and any covector a E T;;,M there exists a unique vector 
V E TmM such that w(V, .) = a. The form w is called a symplectic 
form. Hereafter we will consider manifolds that are also endowed with 
a Riemannian metric g, compatible with w in the sense that the tensor 
field J defined by g(JV, W) = w(V, W) for any V, W E TmM is an 
almost-complex structure, i.e. J 2 = - .n. 

The simplest example is IR2n with the standard scalar product ( . , . ) 
and the symplectic form 

w := dx1 1\ dy 1 + · · · + dxn 1\ dyn. 

The corresponding almost-complex structure J is actually complex (mean
ing that IR2n :::::' en is indeed a complex manifold); it is given in the 
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( x 1 , y 1 , ... , xn, yn) coordinates by the matrix 

0 -1 
1 0 

0 0 
0 0 

0 0 
0 0 

0 -1 
1 0 

177 

The metric and symplectic structures merge into the standard Hermitian 
product (. , . ) H := (. , . ) - iw(., . ) . As a consequence, the group of 
linear transformations of JR2n preserving both the scalar product and 
the symplectic form is U(n), the group which preserves the Hermitian 
product. 

We now mix both structures to set up a variational problem. Using 
the metric g, one defines the volume of any immersed submanifold ~ 
of M, A(~) := JE dVol. We study critical points of this functional but 
restricted to (i) Lagrangian submanifolds ~ and (ii) Hamiltonian varia
tions (which in particular preserve the condition of being Lagrangian). 
A Lagrangian submanifold of (M, w) is a sub manifold ~ of dimension n 
such that the restriction of w to~ vanishes: wiE = 0. Equivalently, using 
the almost-complex structures, JT mM is orthogonal to T mM for any 
m E M. A vector field V on M is said to be Hamiltonian if there exists 
hE C 00 (M, JR) such that dh(.) = w(V, .) (in other words V = -J"vh). 
We write then V = ~h and call V the symplectic gradient of h. It is easy 
to show that the flow of a Hamiltonian vector field preserves Lagrangian 
submanifolds, i.e. the image of a Lagrangian submanifold by the flow is 
again a Lagrangian submanifold. 

A Hamiltonian stationary Lagrangian submanifold is a Lagrangian 
submanifold such that the volume is constant up to first order for any 
Hamiltonian variation: for any hE C00 (M,JR), 6A(~h) = 0. In general 
this notion is weaker than minimality (for a Lagrangian submanifold). 
Indeed let 1{ be the mean curvature vector. By definition it is the unique 
normal vector field along ~ such that for any infinitesimal variation V 
of~' 

6A(~)(V) = - ~ g(H, V)dVol. 

Then a Hamiltonian stationary Lagrangian submanifold is a solution to 
the following system 

(12) { L g(JH, 'Vh)d~~ : ~. for any hE C00 (M,JR) 
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Examples 

a) In JR2 the symplectic form is just the volume form dx 1\ dy. For 
dimensional reasons, any curve is Lagrangian. The minimal curves are 
the straight lines, but Hamiltonian stationary curves are the critical 
points of length for area-preserving variations. Thus these are straight 
lines and circles. In this case the problem of Hamiltonian stationary 
Lagrangian submanifolds is akin to the isoperimetric problem. 

b) In JR4 an example of Hamiltonian stationary Lagrangian surface 
is the flat torus 

In [27], Y. G. Oh has conjectured that this torus minimizes area among 
all tori obtained from it through Hamiltonian deformations. Under reg
ularity assumptions, a proof of that conjecture has been obtained by H. 
Anciaux [2]. 

4.2. Characterizing Hamiltonian stationary submanifolds 

In order to understand further the geometry of these submanifolds, 
we need a better formulation than (12} for the variational problem, and 
in particular for the mean curvature. vector. 

Considering first the case M = JR2n ~ en, let us tackle the problem 
from the Ruh-Vilms theorem angle and connect it to the Gauss map 
of a Lagrangian immersion. Obviously this map takes values in the 
Grassmannian of oriented Lagrangian n-planes 

GrLag(Cn) ~ U(n)jSO(n) ~ U(l) x (SU(n)jSO(n)). 

The Gauss map we will consider is the map 'Y: ~ ---t GrLag(Cn) sending 
each m E ~ to its oriented tangent space 'Y(m) = Tm~· As mentioned 
above, Gr Lag splits into two parts and we can write 'Y = ( e i,B, i) where 
ei,B (respectively, i) takes values in U(l) (respectively, SU(n)/SO(n)). 
The IR/27l'Z-valued map (3 is called the Lagrangian angle and we claim 
it is the only relevant part of the Gauss map, as far as Hamiltonian 
stationary submanifolds are concerned. 

Lemma L Let ~ be a Lagrangian submanifold. Then the mean 
curvature vector of~ is 

1{ = ~J\1(3, 

where ei,B is the U(l) component of the Gauss map. 
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Note that, even if (3 is only defined modulo 27r, its gradient is well
defined everywhere. Finally we apply lemma 1 to equation (12) to con
clude that 

~ g(J H, V'h)dVol = - ~ g(\7(3, V'h)dVol = ~ hb.Ef3 dVol. 

Hence: 

Theorem 3. A Lagrangian submanifold ~ of en is Hamiltonian 
stationary if and only if 

(13) 

Despite its compact form, this equation is a third order nonlinear 
PDE. Indeed the operator b.E depends (nonlinearly) on the immersion 
X, and (3 depends on the first order derivatives of X. 

One may wonder how to extract painlessly the angle (3. Simply pick 
any oriented orthonormal frame (e1 , ... , en) of Tm~; then 

eif3 = B( e1, ... , en) where () = dz 1 1\ ... 1\ dzn. 

This characterization offers a seamless generalization to Calabi-Aubin
Yau manifolds. These manifolds are complex Kahler manifolds (i.e. the 
almost-complex structure is complex and parallel) with flat Ricci tensor. 
As a crucial consequence, the canonical bundle is flat. Recall that the 
canonical bundle of a complex manifold is the (complex) one-dimensional 
bundle K of (n, 0)-forms (locally generated by dz 11\ ... 1\dzn). The metric 
induces a connection on K whose curvature is a multiple of the Ricci 
form p = Ric(J., . ); hence the flatness of K. Consequently there exists 
a (local) nonzero parallel section () of K, which generalizes dz 1 1\ . . . I\ dz n, 
and we define the Lagrangian angle in the same fashion. 

The definition of Lagrangian angle along a Lagrangian submanifold 
can also be extended to Kahler-Einstein manifolds (see [36]). In that 
case the Ricci tensor is a multiple of the metric, and consequently the 
Ricci form is proportional to the symplectic form w. Thus the curvature 
of the canonical bundle vanishes along a Lagrangian submanifold. We 
can define a parallel section() along~ only (not on the whole manifold) 
and give meaning to the Lagrangian angle. Then again 1t = ~J\7(3. 

4.3. Hamiltonian stationary Lagrangian surfaces in !R4 

We specialize now to Lagrangian surfaces in IR4 ::::: C2 . In this case 
we may assume without loss of generality that the surface is given by a 
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conformal immersion X : !1 ---. JR.4 . As usual we take !1 to be a simply 
connected domain in the plane. 

Inspired by the previous constructions for CMC surfaces, we build 
a moving frame ( e1, e2) in IR.4 such that 

(14) 

for any z E !1. In other words (e1, e2 ) is an unitary basis of C2 over 
C, or (e1, e2 ) are the columns of a matrix in U(2). That way we have 
constructed a map F: n---> U(2) ~ C2 lifting X, defined by 

F( ) ·= ( e1(z) e2(z) X(z) ) 
z . 0 0 1 . 

Before going further we need to understand what we are looking for. 
If we lift X into U(2) ~ C2 (using Darboux frames for instance), the 
lift F will include first order information on X and the Euler-Lagrange 
equation (13) will be reduced to second order (as in the harmonic map 
case). If we hope to go one step further, it is judicious to lift the pair 
(X, -y)- which takes values in (U(2) ~ C2)/ 80(2)- where 'Y is the Gauss 
map defined above. Since (X,-y) contains first order data (on X), the 
lift should contain second order derivatives. Such a solution is feasible 
but hardly optimal; indeed the only relevant part of the Gauss map is 
the Lagrangian angle. So we want to lift the pair (X, ei,8), which is a 
U(2) ~ C2 / SU(2) map. 

To achieve this, we require from the lift F (defined as above) that 

B(e1, e2) = ei,8 where f3 is the Lagrangian angle along I:. 

From now on, the lift will always be such (and we call it a Lagrangian 
lift). Let a:= F- 1dF be the Maurer-Cartan form, taking values in the 
Lie algebra of U(2) ~ C2 , g = u(2) EBC2 . To have a better understanding 
of the geometry of this Lie algebra, we introduce the matrix 

( 

0 0 
0 0 

K:= 1 0 
0 -1 
0 0 

-1 0 0 l 0 1 0 
0 0 0 , 
0 0 0 
0 0 1 

(recall that although we write U(2) we always think of real matrices), 
and define an automorphism Ton U(2) ~ C2 by g f-+ KgK-1. Abusing 
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notation we write T again for its differential at identity, acting linearly on 
g. Since r 4 = id, its action diagonalizes on gc = (u(2)E9<C2 )c which splits 
into four eigenspaces g~ for each eigenvalue ie, where £ E { -1, 0, 1, 2}. 
So we may write 

a = a-1 + ao + a1 + az . 

As a direct consequence of the choice of lift, each component has a 
geometrical meaning: a±1 contain (dX, ea), a 0 contains the su(2) part, 
and a 2 is more or less d{J, indeed this is the second order information 
we aimed at. As in the harmonic map case we can split into dz and dz 
parts, writing ae = a~+ a~. We read off the splitting all the geometrical 
properties we need. 

Theorem 4. a) The Lagrangian immersion X is conformal if and 
only if a~ = a~ 1 = 0. 

b) Let X be a conformal Lagrangian immersion, then X is Hamiltonian 
stationary if and only if 

(15) da>. + a>. A a>. = 0, for any >. E 5 1 C <C, 

where 

Equation (15) puts forward a family of deformations of a= p-1dF 
in a manner similar to what happens in the CMC or harmonic case. In 
particular, (15) is the necessary and sufficient condition for the existence 
of F>. : 0 -+ U(2) ~ <C2 such that dF>. = F>.a>.; and each F>. yields 
by projection on <C2 a conformal Hamiltonian stationary Lagrangian 
immersion X>.. 

This result shows that the Hamiltonian stationary problem is an 
integrable system. We may at that point use appropriate tools like the 
twisted loop groups 

and obtain essentially the same results as for CMC surfaces: a Weierstrass
type formula and a classification of all tori (which are of finite type 
again). 

4.4. Generalization to other symmetric spaces 

Switching from flat ~4 to other Hermitian symmetric spaces of di
mension 2 ( <CP2 , <CP1 x <CP1 and their non-compact duals), it remains 
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true that Hamiltonian stationary Lagrangian surfaces are the solutions 
of an integrable system, even if the Lagrangian angle is not anymore 
globally defined (since these manifolds are not Calabi-Aubin-Yau) [19]. 
Nevertheless the Lagrangian angle can be defined along the surface only, 
because the manifolds are Kiihler-Einstein. Furthermore, the integrable 
system retains the same structure; the only change lies in the Lie algebra 
g in which the Maurer-Cartan form takes values. For instance, we write 
the complex projective plane as <CP2 = 5U(3)/U(2) and g = su(3). As 
above, we have a notion of an "appropriate" lift of (X, eii3), and also an 
order four automorphism with the same geometric properties. All results 
hold, up to the loop group splittings which depend on the compactness 
of g; at that point we have either global or local results, according to 
the space under consideration. 

The case of Lagrangian surfaces in <CP2 deserves special attention 
due to its relation with conical singularities of Lagrangian surfaces in 
complex 3-manifolds. Indeed such singularities have a limit cone C c 
<C3 whose intersection ~ with the unit sphere is a Legendrian surface, 
namely the tangent plane at any m E ~ C 5 5 is orthogonal to both m 
and im. This is a contact condition: ~ is tangent to a four dimensional 
non integrable distribution in 5 5 . The Hopf fibration 1r : 5 5 ___, <CP2 

projects Legendrian surfaces down to Lagrangian surfaces. Conversely, 
any (simply connected) Lagrangian surface admits a unique Legendrian 
lift through 1r, up to a multiplicative constant, giving rise to a Lagrangian 
cone in <C3 . Moreover Hamiltonian stationarity is preserved from the 
cone to the projected surface in <CP2 . So is minimality, so that special
Lagrangian cones in <C3 correspond to minimal Lagrangian surfaces in 
<CP2 , a subcase of our integrable system. Notice that an intermediate 
integrable system can be written for Legendrian surfaces in 5 5 . 

4.5. Another approach for Lagrangian surfaces in JR4 

Finally let us inspect more carefully Hamiltonian stationary La
grangian surfaces in JR4 . Using the splitting gc = g~ 1 + g~ + gf + g~, 
equation (15) uncouples to yield (almost) linear systems. It turns out 
that constructing such surfaces amounts to solving consecutively two 
linear PDEs, and integrating, a procedure much simpler than the infi
nite dimensional methods described previously. Even more, this process 
applies actually to Lagrangian surfaces themselves, not only the station
ary ones. Before we proceed with the construction, let us point out its 
limitations: since the decoupling relies upon commutation properties, it 



Hamiltonian stationary Lagrangian surfaces 183 

will never apply to other Hermitian symmetric spaces like CP2 , nor to 
the CMC case. 

The simplest way to obtain these results consists in taking a par
ticular lift F among the Lagrangian lifts of (X, eif3) (X is as usual a 
conformal Lagrangian immersion, not necessarily stationary). Indeed, 
choose F = (eif3El, eif3E2, X) or ( -eif3E1J -eif3E2 , X), where (E1 , E2 ) is any 
unitary basis. Clearly F satisfies our axiom from section 4.3. We may 
actually write 

where s1 and s2 are complex-valued functions. If we set 

then ¢satisfies the Dirac~type equation 

(16) V¢=M¢, 

where 

V:= ( 
o 8j08z ) 

-8/8z 
and M := ! ( 8(3oj8z !::1(30/!l ) . 

2· u uz 

Reciprocally, given any map (3: n ~ IR and any¢ solution of (16), then 
the C2-valued one-form 

is closed: d~ = 0. Thus there is a map X : n ~ C2 ~ JR4 such that 
dX = ~ and whenever ¢ does not vanish, X is a conformal Lagrangian 
immersion. Furthermore, X is Hamiltonian stationary if and only if (3 
is harmonic. 

An alternative approach was developed by R. Aiyama [1]. We ex
plain here the connection with our framework. Write 

_. if3!2 ( a+ b ) ·- ( a+ b ) 
X -. e i(a- b) ' and <P .- i(a- b) · 

Clearly the components of the immersion X can be expressed in terms 
of <P and (3 without integration. But <P satisfies also a Dirac equation: 
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VCJ? = - M Cf?. The variables Cf? and ¢ are related by 

- ( 0 -1) ¢ = (V + M). 1 0 Cf?. 

We obtain in this way a Weierstrass representation of sorts for Lagran
gian surfaces in R4 . Analogous formulations have already been suggested 
for surfaces· in R3 , extending the Enneper-Weierstrass formula to the 
non-minimal case; see for instance the work of B. G. Konopelchenko [21]. 
It is quite instructive to compare his representation formula with the one 
for Lagrangian surfaces we have just obtained. The representation for
mula of B. G. Konopelchenko consists in choosing a real-valued function 
p on 0, called the potential, and a map¢: 0 ..... C2 (actually a spinor) 
such that V¢ = p¢ (with the same notation as before). Then the R3-

valued one-form 

satisfies dry = 0. Hence the existence of a map Y : 0 ..... R3 such 
that dY = ry; furthermore Y is a weakly-conformal immersion with first 
fundamental form 

I= (ls1l2 + ls2l2)2 ( ~ ~ ) 

and mean curvature given by 2p = H(ls1l2 + ls2l2). 

However both formulae differ deep inside in that the quantities in
volved ( ¢, /3, p) are of a different nature in each problem (e.g. p is a 
density while /3 is a function), and also because one is quadratic while 
the other is essentially linear. Still there are interesting analogies and 
in some particular cases, both Dirac equations coincide. Thus some 
Lagrangian surfaces in R4 correspond to some surfaces in R3 . This 
Dirac-like approach yields quite simple expressions in the Hamiltonian 
stationary case. Notably it leads to a complete description of all such 
tori in R4 . Using this representation, H. Anciaux [2] has obtained precise 
isoperimetric estimates in relation to Oh's conjecture. 

In this survey, we have exhibited only some aspects of integrable 
systems theory, and skipped interesting developments such as finite type 
solutions (e.g. all CMC tori have finite type, as shown by U. Pinkall 
and I. Sterling [28] (see also [16])), the dressing action, and so on. We 
have also given few examples. For more details of the general theory 
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see [13, 33, 16]; for Hamiltonian stationary Lagrangian surfaces, see 
[17, 18, 19]. 
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