
Advanced Studies in Pure Mathematics 51, 2008 
Surveys on Geometry and Integrable Systems 
pp. 1-53 

Exploring surfaces through methods from the theory 
of integrable systems: The Bonnet problem 

Alexander I. Bobenko 

A generic surface in Euclidean 3-space is determined uniquely by 
its metric and curvature. Classification of all special surfaces where this 
is not the case, i.e. of surfaces possessing isometries which preserve the 
mean curvature, is known as the Bonnet problem. Regarding the Bonnet 
problem, we show how analytic methods of the theory of integrable sys
tems - such as finite-gap integration, isomonodromic deformation, and 
loop group description - can be applied for studying global properties 
of special surfaces. 

§1. Quaternionic description of surfaces. Bonnet problem 

1.1. Differential equations of surfaces 

Let F be a smooth orientable surface in 3-dimensional Euclidean 
space. The Euclidean metric induces a metric !l on this surface, which 
in turn generates the complex structure of a Riemann surfaceR. Under 
such a parametrization, which is called conformal, the surface F is given 
by an immersion 

and the metric is conformal: !l = eu dzdz, where z is a local coordinate 
on R. 

One should keep in mind that a complex coordinate is defined up 
to holomorphic z-+ w(z) transformation. This freedom will be used to 
simplify the corresponding equations. 
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2 A. I. Bobenko 

The conformal parametrization gives the following normalization of 
F(z, z): 

where the brackets denote the scalar product 

and Fz and Fz are the partial derivatives ~~ and ~~, where 

a 1(a .a) - =- - -z-
fJz 2 ox fJy ' 

The vectors F2 , Fz, as well as the normal N, with 

(2) < Fz, N >=< Fz, N >= 0, < N, N >= 1, 

define a moving frame on the surface, which due to (1, 2) satisfies the 
following Gauss-Weingarten equations: 

(3) CTz = Ucr, CJz = Vcr, cr = (Fz, Fz, Nf, 

( "" 0 Q 

)· (4) U= 0 0 lfle" 
2 

-H -2e-"Q 0 

v~ ( 0 0 ~ H_ en 

)· 0 Uz; Q 
-2e-uQ -H 0 

where 

(5) Q =< Fzz,N >, 1 u 
< Fzz,N >= 2He . 

The quadratic differential Qdz2 is called the Hopf differential. The first 
and the second fundamental forms 

< dF,dF > 

- < dF,dN > 
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are given by the matrices 

(6) 

I = u ( 1 0 ) II= ( Q + Q +!feu 
e 0 1 ' i(Q- Q) 

i(Q-Q) ) 
-(Q+Q)+Heu · 

The principal curvatures k1 and k2 are the eigenvalues of the matrix 
I I· I-1 . This gives the following expressions for the mean and the 
Gaussian curvatures: 

H = ~ (k1 + k2) = ~ tr (II· I-1 ), 

K = k1k2 = det (II· I-1) = H 2 - 4QQe-2u. 

A point P of the surface :F is called umbilic if the principal cur
vatures at this point coincide k1 (P) = k2 (P). The Hopf differential 
vanishes Q(P) = 0 exactly at umbilic points of the surface. 

Coordinates in which both fundamental forms are diagonal are called 
curvature line coordinates and the corresponding parametrization (not 
necessarily conformal) is called a curvature line parametrization. A cur
vature line parametrization always exists in a neighborhood of a non
umbilic point. Near umbilic points, curvature lines form more compli
cated patterns. 

The Gauss-Codazzi equations, which are the compatibility condi
tions of equations (3, 4), 

Uz - Vz + [U, V] = 0, 

have the following form: 

(7) 
Gauss equation 
Codazzi equation 

Uzz ~ t H 2 e:- 2IQI 2 e-u = 0, 
Qz- 2Hze . 

These equations are necessary and sufficient for existence of the 
corresponding surface. 

Theorem 1. (Bonnet theorem). Given a metric eu dzdz, a qua
dratic differential Q dz2 , and a function H on R satisfying the Gauss
Codazzi equations, there exists an immersion 

F: R-+ JR3 

with the fundamental forms {6). Here R is the universal covering ofR. 
The immersion F is unique up to Euclidean motions in JR3 . 
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We finish this section with some basic facts about a special class of 
surfaces. A conformal curvature line parametrization is called isother
mic. In this case the preimages of the curvature lines are the lines x = 
constant andy= constant on the parameter domain, where z = x+iy is 
a conformal coordinate. A surface is called isothermic if it allows isother
mic parametrization. Isothermic surfaces are divided by their curvature 
lines into infinitesimal squares. Written in terms of an isothermic coor
dinate z the Hopf differential Q(z, z)dz2 of an isothermic surface is real, 
i.e. Q(z, z) E R 

In terms of arbitrary conformal coordinates, isothermic surfaces can 
be characterized as follows. 

Lemma 1. Let F : R --+ IR.:3 be a conformal immersion of an umbilic 
free surface in IR.3 . The surface is isothermic if and only if there exists 
a holomorphic non-vanishing differential f(z)dz 2 on R and a function 
q : R--+ IR* such that the Hopf differential is of the form 

(8) Q(z, z) = f(z) q(z, z). 

It is easy to see that w = J VJ[Z5 dz is an isothermic coordinate. 

1.2. Quaternionic description of surfaces 

We construct and investigate surfaces in IR3 by analytic methods. 
For this purpose it is convenient to use the Lie algebra isomorphism 
so(3) = su(2) and to rewrite the equations (3, 4) for the moving frame 
in terms of 2 by 2 matrices. This quaternionic description turns out 
to be useful for analytic studies of general curves and surfaces in 3-
and 4-spaces as well as for investigation of special classes of surfaces 
[Bob1, KS2, DPW, Bob2, KPP, PP]. 

Let us denote the algebra of quaternions by lHI, the multiplicative 
quaternion group by lHI* = lHI\ {0}, and their standard basis by {1, i,j, k}, 
where 

(9) ij = k, jk = i, ki = j. 

This basis can be represented by the Pauli matrices O"" as follows: 

( ~ 1 ) .. 
O"z = ( ~ -z 

(J"l = O = Z I, 0 
) = i j, 

(10) 0"3 = ( 
1 0 

) = i k, 1 = ( ~ 0 -1 ~ ) . 
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We identify lHI with 4-dimensional Euclidean space 

q = qol + q1i + q2j + q3k +------+ q = (qo, q1, q2, q3) E ffi.4 . 

The sphere S 3 c ffi.4 is then naturally identified with the group of unitary 
quaternions lHI1 = SU(2). 3-dimensional Euclidean space is identified 
with the space of imaginary quaternions Im lHI 

a=1 

The scalar product of vectors in terms of quaternions and matrices is 
then 

(12) 
1 1 

<X Y >= --(XY + YX) = --tr XY. 
' 2 2 

We will also denote by F and N the matrices obtained in this way from 
the vectors F and N. 

Let us take <I> E lHI. which transforms the basis i,j, k into the frame 
Fx,Fy,N: 

(13) Fx = eui2 <I>- 1 i<I>, Fy = eui2 <I>- 1j<I>, N = <I>- 1k<I>. 

Then 

(14~ F2 = -ieui2<I>- 1 ( ~ ~ ) <I>, F2 = -ieu/2 <.[>- 1 ( ~ ~ ) <I>, 

and all the conditions ( 1) are automatically satisfied. 

The quaternion <I> satisfies linear differential equations. To derive 
them we introduce matrices 

(15) 

The compatibility condition Fzz = Fzz for (14) implies 

'Uz Uz 
V22- Vn = 2' Un- U22 = 2' U21 =-V12, 

where Ukz and Vkz are the matrix elements of U and V. In the same way 
one obtains from (14) 

Fzz = ~HeuN 
Fzz = UzFz + QN 

Fzz = UzFz + QN 

U21 = -V12 = ~Heu/2 
2 

u12 = -Qe-u12 

v21 = Qe-u/2 . 
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Recall that 1> is defined up to multiplication by a scalar factor. We 
normalize this factor by the condition 

(16) det 1> = e¥, 

for reasons which will be clarified in the next section. For the traces of 
U and V this implies 

trU = Uz 
2' 

Uz 
trV-- 2 . 

Finally one arrives at the following 

Theorem 2. By the isomorphism (11), the moving frame Fz, Fz, N 
of a conformally parametrized surface (z is a conformal coordinate) is 
described by formulae {13),(14), where 1> E lHI* satisfies the equations 
(15) with U, V of the form 

(17) 

(18) 

U- 2 ( 

Uz 

- ~Heu/2 

( 
0 

V= 
Qe-u/2 

Corollary 1. The conformal frame 1> satisfies the Dirac equation 

8z ) 1> = ~H1> 0 2 . 

It turnes out that at this point the whole construction can be re
versed. Namely, starting with a solution to the Dirac equation one 
can derive a Weierstrass type representation (see (21) below) for con
formally parametrized surfaces. This idea was recently developed by 
Konopelchenko [Kon] and further in [Tai, PP, KS2], although in other 
forms the Weierstrass representation of surfaces was known already to 
Eisenhart [Eis] and Kenmotsu [Ken]. 

Theorem 3. Let DCC be a simply connected domain and (s 1 , s2)T : 
D -+ C2 be a solution to the Dirac equation with the potential p E 

C00 (D) 

(19) 



The Bonnet problem 

Then 

(20) 

is a conformal frame (14) of the conformally immersed surface 

(21) 

I 2 d -2 ds1 z- s2 z 

I s1s2 dz + 8182 dz. 

The metric and the mean curvature of the surface are given by 

7 

Proof. Note that ( -s2 , s1 )T is also a solution to (19) due to the 
symmetry of the Dirac equation. At this point <I> given by (20) can 
be identified with the conformal frame <I> of Corollary 1. The formula 
for the metric (22) follows from (16). Substituting it into our previous 
formulae (14) for conformal frame one defines 

These formulae are automatically compatible. Integrating them one 
arrives at (21). 

1.3. Spinor description of surfaces 

As shown in [Bob2}, the quaternionic description of the previous 
section is actually a global one. Let UiDi = R be an open covering of 
n with local coordinates Zi : Di -> c. Conditions (14, 16) determine a 
quaternionic valued smooth <I>(zi, Zi) uniquely up to sign on each Di. To 
establish the global nature of <I> recall that a holomorphic line bundle S 
is called a spin bundle if it satisfies S ® S = K, where K is the canonical 
bundle. 

Denote the first column of <I> by ( ~~ ) . 

Lemma 2. 81 and 82 are smooth sections of the same holomorphic 
spin bundle S. 
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Proof. Consider two intersecting Di n Dj f= 0 with corresponding 
Pi(Zi, zi) and Pj(Zj, Zj)· Identifying the representations for the Gauss 
map in terms of Pi and Pj one obtains on Din Dj 

Pi= ( c(f c~j ) Pj. 

with some Cij : Din Dj ---. C*. Further, identifying the tangent frames 

Fz; = Fzi ~ and using Pa2PT 0'2 = det P one obtains 

<f>T ( 1 0 ) <f>. = dzj <f>T ( 1 0 ) <f>. 
• 0 0 • dzi J 0 0 1 ' 

which finally implies c~j = ~· The transition functions Cij : Din Dj ---> 

c* defined through Pi obviously satisfy the cocycle condition CijCjk = 
Cik and thus define a line bundle 8 with 8 ® 8 = K. 

In local coordinates the 8n may be written as 8n = sn(Zi, zi) ,;dii. 

Using the equivalence of spinor representation of conformal frames 
of surfaces and solutions of the Dirac equation, proven in Corollary 1 
and Theorem 3, we arrive at the following global reformulation [Tai, PP] 
of Theorem 3. 

Theorem 4. A half-density p (i.e. a smooth section of K! ® id) 
and two not simultaneously vanishing spinors 8 1 , 82 (i.e. smooth sec
tions of 8 ~ K! with (S1, 82) =/= (0, 0) VP E R) satisfying the Dirac 
equation ( 19) determine through 

I 8r- 8~ 
(23) 18182 + 8182 

a conformal immersion F : R ---> ~3 , where R is the universal covering 
of R. The metric and the mean curvature of the immersion are given 
by 

Remark. In the case of minimal surfaces H = 0 tb.e spinors 8 1 and 
82 are holomorphic and the representation (23) is known as the spinor 
Weierstrass representation [Sul, Bob2, KS1]. 

On a Riemann surface of genus g there exist 229 non~isomorphic 
spin bundles which are distinguished by different spin structures. For 
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a geometric interpretation of the spin structure of the spin bundle S in 
terms of the immersion (23) we refer to [Bob2]. Spin structures classify 
regular homotopies of immersions [Pin]. 

1.4. Alternative descriptions of surfaces and the Bonnet 
problem 

Bonnet Theorem 1 characterizes surfaces via the coefficients eu, H, Q 
of their fundamental forms. These coefficients are not independent and 
are subject to the Gauss-Codazzi equations (7). A natural question is 
whether some of these data are superfluous. The following natural can
didates for more "economic" characterization of surfaces were studied. 

(i) The most geometric setting of the problem is the oldest one and 
is due to Bonnet. He posed the question whether one can eliminate 
the Hopf differential from the description of surfaces, i.e. whether the 
metric eu and the mean curvature function H alone suffice to describe 
a surface completely. Generic surfaces are determined uniquely by the 
metric and the mean curvature function. Bonnet himself [Bon] made 
the initial progress in the investigation of the special surfaces where it is 
not the case, i.e. which possess non-congruent isometric "relatives" with 
the same mean curvature function. The rest of these lectures is devoted 
to this problem, which is fairly named the Bonnet problem. 

(ii) The conformal Hopf differential q := Qe-~. Note that whereas 
the Hopf differential is a quadratic differential, i.e. a section of the line 
bundle K 2 , the conformal Hopf differential is more exotic - it is a section 
of K~ 0 k-~. The reason for its introduction by U. Pinkall is that q 
is invariant with respect to the Mobius transformations of the ambient 
ffi-3 . A non-isothermic surface is uniquely determined by q up to Mobius 
transformations. Counting dimensions, one immediately observes that 
generic sections of K~ 0 k-~ do not correspond to surfaces in ffi-3 . A 
proper equation for q of surfaces in ffi-3 is still unknown. 

(iii) The Dirac potential or mean-curvature half-density p = ~He-~. 
As one can see from its definition, this potential is a half-density, i.e. a 
section of the line bundle K~ 0 k~. Recently, description of surfaces 
through Dirac spinors attracted much attention [KS2, Tai, PP]. Unfor
tunately, one has neither existence nor uniqueness in this description. A 
generic Dirac operator (with generic potential) has trivial kernel, thus 
generic half-densities do not yield surfaces. On the other hand, there 
may exist many immersions with the same potential p, for example all 
special surfaces appearing in the Bonnet problem. 
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Returning to the Bonnet problem, note that already Bonnet indi
cated all special surfaces which possess non-congruent isometric "rela
tives" with the same mean curvature function. There are three cases 
when this happens. 

1. Constant mean curvature surfaces. Let :F be a surface with 
constant mean curvature H. The Gauss-Codazzi equations (7) are ob
viously invariant with respect to the transformation Q -+ Qt = eitQ, t E 
R Applying the Bonnet theorem one obtains the one parameter fam
ily :Ft, :F = :F0 of isometric surfaces with the same constant mean 
curvature H. In the last ten years there was much interest in study
ing global properties of surfaces with constant mean curvature and now 
they are rather well investigated by various methods (see for example 
[Wen, PS, Kap, Bobl, GKS]) including methods of the theory of inte
grable systems. 

2. Bonnet pairs are exactly two non-congruent isometric surfaces :F' 
and :F" with the same mean curvature function. The theory of Bonnet 
pairs is very closely related [Bia2, KPP] to the theory of isothermic 
surfaces and as such belongs also to geometry described by integrable 
systems. Up to now, global theory of Bonnet pairs is not well developed, 
in particular it is unknown whether there exist compact Bonnet pairs, a 
question first posed in [LT]. 

3. Bonnet families. In [Bon], Bonnet himself was able to show that 
besides the surfaces with constant mean curvature there exists a class 
of surfaces, depending on finitely many parameters which possess one
parameter family of isometries preserving the mean curvature. These 
surfaces were studied by many authors [Haz, Gra, Car, Che, BEl, Rou] 
and recently global classification [BE2] of them was obtained using meth
ods from the theory of integrable systems. 

The remaining three sections are devoted to consideration of these 
three cases. 

§2. Constant mean curvature surfaces 

2.1. Associated family 

If the mean curvature of :F is constant, then the Gauss-Codazzi 
equations 

1 2 -
U - + -H eu- 2QQe-u = 0 

zz 2 ' Q-z =0, 
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are invariant with respect to the transformation 

(24) 

Integrating the equations for the moving frame with the coefficient Q 
replaced by Qt = AQ we obtain a one-parameter family :P of surfaces. 
All the surfacef;l :P are isometric and have the same constant mean 
curvature. Treating t as a deformation parameter we obtain the first 
family of special surfaces indicated by Bonnet (see Section 1.4). 

Theorem 5. Every constant mean curvature surface has a one-pa
rameter family of isometric deformations preserving the mean curvature. 
The deformation is described by the transformations (24). 

Without loss of generality we normalize H = 1. The quaternion 
<I>(z, z, A) solving the system (15, 17) with Qt = AQ describes the moving 
frame Fz, Fz, N (13, 14) of the corresponding surface. Knowing the 
family <I>(z, z, A) in a neighbourhood of A = e2it allows us to derive an 
immersion formula without integration the frame with respect to z, z, 
but just by differentiation by t. Before presenting this important formula 
we pass to a gauge equivalent frame function 

(25) 

normalized by 

(26) <I>o(z, z, A= eit) E SU(2), t E JR. 

Although it is known that compact CMC surfaces exist for any genus g 
[Kap], their analytic description remains an open problem. Its solution 
requires a development of new analytic methods. Until now the theory 
of integrable systems was successfully applied for description of planes, 
cylinders, tori [PS, Bob1] (g = 1) and punctured spheres [KMS]. In this 
section we are dealing essentially with the theory of CMC tori whhich 
can be completely classified through analytic methods from the theory 
of integrable systems. Since the canonical bundle in this case is trivial, 
introducing a global complex coordinate,· one can describe spinors in 
terms of doubly-periodic functions (see Section 2.3). 

Theorem 6. [Bob1] Let <I>0 (z, z, A= eit) be a solution of the system 

(27) <I>oz = Uo(A)<I>o, 
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(28) 

) ( 
Uz 

i.AQe-"1' ) _ ( - ':' 
..!_eu/2 

Uo(-') = .4 2,\ 
,\!:...eu/2 u ' Vo(-')- i U:z _.....::_ -Qe-u/2 

2 4 ,\ 4 

normalized by (26). Then F and N, defined by the formulae 

(29) 

describe a CMC surface and its Gauss map, with metric eu, mean cur
vature H = 1, and Hopf differential Qt = e2itQ. 

Conversely, let F be a conformal parametrization of a CMC surface 
with metric eu, mean curvature H = 1, and Hopf differential Qt. Then 
F is given by formula (29) where <1>0 is a solution of (27, 29) as above. 

Proof First we note that both F and N are imaginary quaternions 
and therefore can be identified with vectors in JR3 . By identification 
(25) the system (29) coincides with the quaternionic representation (17) 
for the equations for the moving frame with the Hopf differential ,\Q. 
Differentiating (29) we get 

-<1>-1 0 <I> + !:._<l>-1[cr U, (-\)]<1> = -ieu/2<1>-1 0 au (-') · ( 
o at o 2 o 3 , o o 1 

· u/2"'-1 ( 0 1 ) "' -ze '±' 0 0 '±', 

which coincides with (14). 

Remark. In a neighborhood of a non-umbilic point Q f= 0 by a 
conformal change of coordinate z -> w(z) one can always normalize 
Q = ~-Thus, umbilic free CMC surfaces are isothermic. In this paramet
rization the Gauss equation becomes the elliptic sinh-Gordon equation 

(30) Uzz +sinh u = 0. 

2.2. Loop group formulation 

The matrices A = U0 + Vo, B = i(Uo - V0 ) corresponding to real 
vector fields ax = az + az and ay = i ( az - az) belong to the loop algebra 
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and <1> 0 in (27) lies in the corresponding loop group 

Here S 1 is the set 1>-1 = 1. When defined for general complex .A, elements 
of gH[.A] and GH[.A] satisfy the real reduction 

For applying analytic methods of the theory of integrable systems it is 
crucial that CMC surfaces can be characterized in terms of this loop 
group completely without referring to the special geometric nature of 
the coefficients of A and B. It is not difficult to prove the following 

Theorem 7. Let ¢ : D --+ GH[.A] be a smooth map on D C C 
satisfying ¢z¢- 1 = A.\+ B with A : D --+ GL(2, q. Then the gauge 
equivalent 

i 
<Po = exp( 2 arg A21 cr3)¢ 

satisfies (27) with U0 , V0 of the form (29) and describes the conformal 
frame of the immersion 

of D in IR3 with the mean curvature H = 1. 

2.3. CMC tori. Analytic formulation 

Methods of Section 2.2 can be used not only in local but also in 
global studies of CMC surfaces. It is a classical result of Hopf [Hop] 
that the only CMC surface of genus zero is a round sphere. Indeed 
the holomorphic quadratic differential Q dz 2 on a sphere must vanish 
identically. Then (4) implies in particular N +F = C =constant, which 
yields < F - C, F - C >= 1. 

Classification of CMC tori is not as simple as of spheres but analytic 
tools enable us to achieve success in this case also. The reason for 
a simplification in the case g = 1 is the fact that, unlike the case of 
Riemann surfaces of genus g ;:::: 2, on a torus it is possible to introduce 
a global complex coordinate. 

Any Riemann surface of genus 1 is conformally equivalent to the 
factor of the complex plane by a lattice C/ £. The corresponding con
formal parametrization of a torus is given by a doubly-periodic mapping 
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F : C/ L---+ JR3 . The metric and the Hopf differential in this parametriza
tion are described by doubly-periodic functions u(z, z), Q(z, z). Note 
that H =constant implies Q 2 = 0 and Q(z) is a bounded elliptic func
tion, thus a constant. This constant is not zero, otherwise, as follows 
from the consideration above the surface is a sphere. Thus CMC tori 
have no umbilic points. As before we normalize the Gauss equation to 
(30) by Q = ~· 

Denoting the generators of L by Z1 = X1 + iY1, Z2 = X2 + iY2 one 
obtains the following 

Proposition 1. Any torus with mean curvature H = 1 can be con
formally parametrized by a doubly-periodic immersion F : C ---+ JR3 

F(z + Z;, z + Zi) = F(z, z), i = 1,2 

with the H opf differential Q = ~. In this parametrization the metric 
u(z, z) is a doubly-periodic solution to the elliptic sinh-Gordon equation 
(30). 

Note that due to the ellipticity of equation (30) all CMC tori are 
real analytic. 

To describe all CMC tori one should solve the following problems. 

1. Describe all doubly-periodic solutions u(z, z) of the elliptic sinh
Gordon equation (30). 

2. Integrate linear system (27) with U0 (.A), V0 (.A) respectively given by 

(32) - 2 1 ( Uz 

2 i.Aeu/2 

to find <I> 0 (z, z, .A= eit). 

1( _:!!:.i!. - 2 
2 ±e-u/2 

3. Formula (29) for F describes the corresponding CMC immersion. 
In general, this immersion is not doubly-periodic. One should specify 
parameters of the solution u(z, z), which yield doubly-periodic F(z, z). 

These three problems can be solved simultaneously using methods 
of the finite-gap integration theory. In the rest of the lecture we give an 
idea of how this solution is found. 

2.4. Higher flows and the fundamental theorem 

Let u(z, z) be a solution of the sinh-Gordon equation. The pertur
bation u<(z, z) = u(z, z) +Ev(z, z) of u(z, z) satisfies (30) up to the terms 
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of order 0( E2 ) if and only if v(z, z) is a solution of the linearized elliptic 
sinh-Gordon equation 

(33) (8z 2 +cosh u(z, z))v(z, z) = 0. 

The elliptic sinh-Gordon equation is one of the possible real versions 
of the sine-Gordon equation, which is one of the basic models of the the
ory of integrable systems. Integrable systems possess infinitely many 
conservation laws, which induce infinitely many commuting flows of the 
corresponding dynamical system. In particular, applying standard alge
braic tools of the theory to the sine-Gordon equation one can prove that 
there exists v(uz, ... , u~k)), which solves (33) and is a polynomial in all 
its arguments. Such a polynomial can be treated as a tangential vector 
field to the space of solutions of the elliptic sinh-Gordon equation. These 
vector fields induce flows on the phase space of the dynamical system 
(30), which in the theory of solitons are called higher flows. 

There exists a regular algebraic description of these commuting flows 
through formal Killing field (see [FPPS]), which is in our case a sym
metric K 0 ( ->.) = cr3 K 0 (>.)cr3 formal power series solution 

00 

(34) Ka(>.) = L Km>. -m 

m=l 

of 
Ka(>.)z = [uo(>.), Ko(>.)], Ka(>.)z = [Vo(>.), Ka(>.)]. 

Coefficients Km can be computed recursively. 

Lemma 3. The diagonal terms K2n = VnCT3, n = 1, ... of the 
formal Killing field {34) define tangential vector fields Vn 

(35) (8zz +cosh u)v, = 0. 

l . l . (2n-1) 
Vn are po ynorma s zn Uz, ... , Uz . 

Any complex vector field v, generates two real tangential vector 
fields 

W2n-l = Vn + Vn, W2n=i(vn-v,), n=1, ... 

Lemma 4. Let u(z, z) be a doubly periodic solution 

u(z + Zi, z + Zi) = u(z, z), i = 1, 2 Im ZI/Z2 -=/= 0 

of the elliptic sinh-Gordon equation and Wn, n = 1, ... be the correspond
ing tangential real vector fields. Only finitely many tangential vectors Wn 
are linearly independent. 



16 A. I. Bobenko 

Proof All Wn are also doubly-periodic. Equation (35) determines 
an elliptic operator L on the torus T : 

It is well known that the spectra of this operator is discrete, which 
implies in particular that all the eigenspaces are finite dimensional. All 
tangential vectors Wn belong to the kernel of L. This observation proves 
the lemma: dim span{wn}n=l, ... < ::xJ. 

This lemma is the reason for the existence of a polynomial Killing 
field. 

Theorem 8. Let u(z, z) be a doubly-periodic solution of the elliptic 
sinh-Gordon equation (30), and U0 , V0 are given by (32). Then in the 
loop algebra 9H[>.] there exists a polynomial Killing field 

2N-1 
(36) Wa(>.) = L WnN' 

which satisfies 

(37) 

Wo(>.)z 

Wa(>.)z 

n=-(2N-1) 

[uo(.A), Wo(>.)], 

[vo(.A), Wo(>.)]. 

This fundamental theorem in different forms appeared first in [PS, 
Hit]. For a recent elegant proof see [FLPPS]. 

The coefficients of TVn, n > 0 are polynomials in Uz, ... , u~2N-l-n) 
d ±u/2 th f TXT 0 1 . l . (2N-l+n) d an e , oseo nn,n< arepoynonuas1nu2 , ..• ,u2 an 

±u/2 TXT • 1 . l f - (2N-1) (2N-1) Tl l d' e , vvo lS a po ynomma o Uz, Uz, ... , Uz , uz . 1e ea mg 
coefficient is of the form 

W2N-l =a ( O/ eu 2 

e-u/2 ) 

0 ' 
O#aEC. 

Solutions possessing polynomial Killing fields are called solutions 
of finite type or finite-gap solutions. The theory of finite-gap solutions 
is a well established branch [DKN, BBEIM] of the theory of integrable 
equations. Due to Theorem 8, all doubly-periodic solutions of the elliptic 
sinh-Gordon equation are finite-gap. 
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2.5. The spectral curve and Baker-Akhiezer function 

Let u(z, z) be a solution of the elliptic sinh-Gordon equation with 
the polynomial Killing field W0 (.A). The curve 

(38) det(W0 (.A)- pJ) = 0 

is called the spectral curve of the solution u(z, z). The spectral curve is 
independent of z, z. 

Compactified at f.L = oo the hyperelliptic curve (38) determines a 
compact Riemann surface 6 of genus g. Due to symmetries of the loop 
algebra g H [.A], besides the hyperelliptic involution (J.L, .A) ----+ (- J.L, .A) it 
possesses two more involutions: a holomorphic 

(39) 7f: (J.L, .A)----+ (J.L, -.A) 

and an anti-holomorphic f : (J.L, .A) ----+ (Jl, ± ). 
The factor Riemann surface C = 6/ 7f plays central role for the 

explicit construction of section 2.6. The covering 6 ----+ C, (J.L, .A) f---T 

(J.L, A), A := .A 2 is unramified and C is a Riemann surface of genus g, 
where g = 2g - 1. The anti-holomorphic involution 

(40) 
1 

T: (fL,A)----+ (Jl, A). 

acts on C. 

Due to (37) the system 

cPz = Uo¢, ¢z = Vo¢, Wo¢ =J.L¢ 

has a common vector valued solution ¢(P, z, z), which is called the 
Baker-Akhiezer function. Here P = (J.L, .A) is a point on C. In the finite
gap integration theory of the sine-Gordon equation, usually a gauge 
equivalent function 

is used. Immersion formula (29) is obviously invariant with respect to 
this transformation. 

Suitably normalized as 1f!(P, 0, 0) = (!) , this function satisfies 

( 41) 



18 A. I. Bobenko 

The Baker-Akhiezer function 1/J has essential singularities at the points 
=±,o± E 6 defined by>.(=±)= =,>.(o±) = 0. The involution 1r 

interchanges these points ;r(oc+) = =-,;r(O+) = o-. Denote their 
projection on C by = and 0 respectively. Due to the symmetry ( 41) the 
pole divisor of 1/J on 6\ { =±, o±} is the lift of a divisor V on C \ { =, 0}. 

Finally after some computations one can prove the following analytic 
properties of 1/J. 

Theorem 9. The Baker-Akhiezer function 1/J possesses the following 
analytic properties: 

1. 1/J is transformed by (41) under the action of the involution 1r, 

2. 1/J is meromorphic on 6 \ { =±, o±}. The pole divisor V of 1/J on 
C \ { oc, 0} is independent of z, z, and is a non-special divisor of degree 
g. The Abel map A(V) of V on C satisfies 

( 42) A(V- TV) = A(O- =), 

3. 1/J has essential singularities at the points =±, o± of the form 

1/J(P, z, z) (( 1 ) ) i)..z ± 1 + o(1) exp(±T ), 

1/J(P, z, z) 
zz 

0(1) exp(=F 2).. ), 

2.6. Baker-Akhiezer function. Formulae 

Due to the symmetry ( 41) the Baker-Akhiezer function 1/J can be 
described in terms of the data { C, V}. Here C is a hyperelliptic Rie
mann surface of genus g with the anti-holomorphic involution (40) and 
branch points at ).. = 0, = and V is a non-special divisor of degree g 

on C satisfying ( 42). We call these data admissible. It io crucial that 
the construction of Section 2.5 can be reversed and a result similar to 
Theorem 7 holds. 

Theorem 10. Let { C, V} be admissible data. There exists a Baker
Akhiezer function 1/J with these data and 1/J is uniquely characterized by 
the analytic properties listed in Theorem 9. 

Admissible { C, V} generate a finite-gap solution of the elliptic sinh
Gordon equation and thus a surface with constant mean curvature H = 
1, which we call a CMC surface of finite type. It follows from Sections 
2.4, 2.5 that all CMC tori are CMC surfaces of finite type. 
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The Baker-Akhiezer functions and hence CMC surfaces of finite type 
can be described explicitly. Let 

9 1 
M 2 =A IJ(A- Ai)(A- ~), 

i=l Ai 
I Ai I< 1 Vi 

be a non-singular hyperelliptic curve C with an anti-holomorphic involu
tion T : A --> t. Choose a canonical homology basis a 1 , b1 , ... , a9 , b9 with 
ai-cycles surrounding the cuts [Ai, L], i.e. Tai = -ai. Let W1, ... , w9 

be the dual basis f Wm = 27ri8nm of holomorphic differentials. The Jan 

period matrix Bnm = Jbn Wm determines the Riemann theta function 

1 
e(u) = L exp(2(Bk, k) + (u, k)), 

kEZY 

We need also the Abelian differentials of the second kind D00 , Do nor
malized by the condition 

n = 1, ... ,g 

and the following asymptotics at the singularities 

D00 --> d,JX., 
Do--> d )A, 

A--> oo 

A--> 0. 

Denote the vector of b-periods of Doo by 

Finally note that in explicit description one can replace the divisor V 
of admissible data by its Abel map D E Jac(C). One can show that in 
the chosen normalizations the reality condition (42) is equivalent to the 
condition D E iJR9. 

Theorem 11. The Baker-Akhiezer function with the data { C, D} 
is given by the formulae 

'l/J1(P, z, z) = e(J:, w + W)e(D) ( i 1P( o _0 )) 
---"~----- exp - ZH00 + ZHQ 

e(J:, w + D)e(W) 2 oo 

'1/Jz(P, z, z) e(J:, w + W + 6.)e(D) ( i 1P( o -o )) 
p exp - ZH 00 + ZHQ • 

e(Joo w + D)e(W + 6.) 2 oo 
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Here .D.= 7ri(1, ... , 1), the vector DE iJR9 is arbitrary, 

W=iRe(Uz)+D 

and the integration paths in all the integrals are identical. The corre
sponding solution to the sinh- Gordon equation is given by 

(43) 
_ B(W +.D.) 

u(z,z) = 2log B(W) . 

Applying now Theorem 6 to 'lj;(P, z, z) with P = Po = (Mo, Ao), 
I A0 I= 1 one arrives at the following final formulae for CMC immersions 
of finite type [Bob1]. 

Theorem 12. The quaternion valued solution q>(z, z, .Ao) of the lin
ear system (27, 32} with the finite-gap coefficient (43} is given by q> = 

i ( B(W + l) 
y'B(W)e(W +.D.) B(W +.D.+ l) 

B(W -l) ) . 
-B(W +.D. -l) exp(zcr3 Re (zL)), 

where l = J:,o w is the Abel map of Po = (M0 , Ao) chosen on the unit 

circle A0 = .A2 = e2it and L = J:,o !:lJO. The matrix q> is normalized by 

B(l)e(l +.D.) 
det q> = 2 B(O)e(.D.) . 

The corresponding CMC immersion is given by (29}. This immersion 
is doubly-periodic granted a lattice £ with the basic vectors z 1' z2 exists 
such that 

(44) Re(ZkU) E 21rZ9 , Re(2Zk 1:0 !100 ) E 21rZ, k = 1,2, 

and the differential !100 vanishes at the point Po 

(45) 

CMC tori are singled out from general quasiperiodic immersions 
of finite type by the periodicity conditions ( 44, 45), which are in fact 
conditions on the corresponding hyperelliptic curve C of genus g only. 
One can show [Jag, Bob1] that there are no CMC tori with g = 1 and 
that for g > 1 there exists a discrete set of spectral curves C generating 
CMC tori. The parameter DE iJRY remains arbitrary. So the CMC tori 
with g > 2 (changes of Din the plane span{ReU,ImU} are equivalent 
to reparametrization of the torus) possess commuting deformation flows. 
These deformations are area preserving [Bob1]. 
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2. 7. Examples of CMC tori 

(a) (b) 

Fig. 1. Wente torus having a threefold symmetry, and one fundamental 
piece 

21 

All finite-gap solutions of the sinh-Gordon equation of genus g = 1 
and g = 2 are doubly-periodic. There are no CMC tori with g = 1. The 
simplest CMC tori were found by Wente [Wen] and analytically studied 
by Abresch [Abr] and Walter [Wal]. These tori presented in Figures 1a, 
1 b possess a family of plane curvature lines. This implies the additional 
symmetry A---> 1/ A of the corresponding spectral curve of genus g = 2. 
The Wente torus in Figure 1a comprises three congruent fundamental 
domains shown in Figure 1 b. 

Spectral curves of genus g = 2 without additional symmetries also 
generate CMC tori. An example is presented in Figure 2. 

Taking spectral curves with g = 3 and the symmetry .A---> 1/ A one 
obtains all CMC tori with spherical curvature lines. The fundamental 
domain of such an example is shown in Figure 3. 

Figure 4 visualizes a CMC torus corresponding to a curve of genus 
g = 5. This torus possesses a 3-parameter family of area preserving 
deformations. Finally Figure 5 presents classical surfaces of Delaunay 
which correspond to spectral curves of genus g = 1 and are CMC surfaces 
of revolution. 

The figures of this section are produced by Matthias Heil using 
formulae presented in this lecture and the software for calculations on 
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Fig. 2. Twisted Wente torus Fig. 3. One fundamental piece of a 
torus with spherical curvature 
lines 

Fig. 4. A torus with spectral curve of Fig. 5. Delaunay surface 
genus g = 5 

hyperelliptic Riemann surfaces developed by him for Sfb288 in Berlin. 
Further examples can be found in [Hei]. 
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§3. Bonnet pairs 

In this section we present some preliminary results on local and 
global geometry of Bonnet pairs. 

3.1. Basic facts about Bonnet pairs 

Let :F1, F 2 C JR3 be a smooth Bonnet pair (Bonnet mates), i.e. two 
isometric non-congruent surfaces with coinciding mean curvatures at the 
corresponding points. As conformal immersions of the same Riemann 
surface 

they are described by the corresponding Hopf differentials Q1 , Q2 , the 
common metric eu dzdz and the mean curvature function H. Since the 
surfaces are non-congruent the Hopf differentials differ Q1 ;t Q2 . 

The Gauss-Codazzi equations immediately imply 

Proposition 2. Let Q1 and Q2 be the Hopf differentials of a Bonnet 
pair F1 and F2 -t JR3 . Then 

(46) 

is a holomorphic quadratic differential h dz 2 on R and 

(47) 

Due to the second statement of Proposition 2 the umbilic points of 
F 1 and F 2 correspond. Denote by 

U = {P E R: Qk(P) = 0} 

the corresponding set of umbilic points on R. 

Proposition 3. Let Q1 and Q2 be the Hopf differentials of a Bon
net pair F1 and F2 -t JR3 . Then there exist a holomorhic quadratic 
differential h on R and a smooth real valued function a : R -t JR such 
that 

(48) 

Proof Define a smooth quadratic differential g dz2 by g = Q1 + Q2 . 

Identity (47) implies hg + gh = 0. Thus the quotient a= -if is a real 
valued smooth function a: R\Uh -t JR, whereUh ={PER: h(P) = 0} 
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is the zero set of h. Let us show that o: can be smoothly extended to 
the whole of n. At any Zo E uh the holomorphic differential h is of the 
form 

h(z) = (z- zo)Jho(z), ho(zo) =f. 0, J EN. 

Real-valuedness of o: near zo implies g(z) = (z - zo)J go(z) with go 
smooth, which in its turn implies smoothness of o: at zo. 

Corollary 2. Umbilic points of a Bonnet pair are isolated. The 
umbilic set coincides with the zero set of h, U = Uh. 

The number -J where J is defined above is called the index of the 
umbilic point. We call the zero divisor Du = (h) of h the umbilic divisor 
of a Bonnet pair. 

For compact Riemann surfaces R, Propositions 2, 3 imply the fol
lowing 

Theorem 13. 

(i) There exist no Bonnet pairs of genus g = 0. 

(ii) Bonnet pairs of genus g = 1 have no umbilic points. 

(iii) The umbilic divisor Du of a Bonnet pair of genus g 2: 1 is of degree 
4g- 4 and its class is Du = 2K, where K is the canonical divisor. 

Proof A holomorphic quadratic differential on a sphere vanishes 
identically h = 0, which means Q1 = Q2, and the surfaces are congruent. 
A holomorphic quadratic differential on a torus does not have zeros, thus 
U = 0 for tori. 

The point (i) of Theorem 13 was proven in [LT]. 

Taking into account the similarity of the analytic description of Bon
net surfaces and CMC surfaces and the progress in the investigation of 
CMC surfaces achieved by methods from the theory of integrable sys
tems (see Section 2), the most promising open problem to attack by 
these methods seems to be the problem of existence and description of 
Bonnet tori mates. 

For tori one has R = Cj C. Scaling the lattice C appropriately one 
can always normalize h = -i, i.e. 

(49) 
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The corresponding Gauss-Codazzi equations of Bonnet mates become 

(50) 

Note that the Gauss-Codazzi equations of isothermic surfaces Q = a/2 E 
JR. differ only slightly 

(51) 

3.2. Lax representation and connection to isothermic sur
faces 

Looking for a Lax representation for Bonnet pairs, it is natural to try 
to merge the frame equations of two Bonnet mates. For tori, cylinders, 
or simply connected domains it is enough to consider the case of R 
being a domain D in C Cylinders and tori are distinguished by the 
corresponding periodicity lattices £. Since our main interest lies in the 
investigation of tori let us restrict ourselves to the case of umbilic free 
Bonnet pairs. As in Section 2, introducing a global complex variable 
z on D we normalize the corresponding frame matrices traceless and 
the Hopf differentials as in ( 49). The following theorem can be checked 
directly. 

Theorem 14. Normalized by (49), conformal frames <1> 1, <1>2 : D--+ 
SU(2) of a Bonnet pair 

can be extended 

(52) <I>(z, z, >.. = 0) = ( <1>01 

to <I>(z, z, >..) satisfying 

(53) <l>z = V<I> 
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with 

( u1 0 0 

) -i>.eu/2 0 
0 -i>.e-u/2 

u2 
0 0 

(54) u 

v ( v1 0 -i>.eu/2 

) 0 0 
0 0 v2 -i>.e-u/2 0 

Conversely, the linear system (54) with Ql = Q -1- Q2 = Q is compatible 
if and only if the metric e u, the mean curvature function H, and the 
H opf differentials Q1 , Q2 on D satisfy the Gauss- Codazzi equations of 
Bonnet pairs. Conformal frames of the Bonnet mates are determined 
through (52) by a suitably normalized common solution <l?(z, z, >.) of (53) 
evaluated at ).. = 0. 

Remark. In the general case of an arbitrary Riemann surface R and 
holomorphic quadratic differential h, a spinor form of the Lax represen
tation for Bonnet pairs similar to (14) can be easily made by merging 
the spinor frames (see Section 1) of the corresponding surfaces. 

Remark. In the case Q1 = Q2 = Q = Q system (53, 54) becomes 
a Lax representation for isothermic surfaces in JR:3 in isothermic coordi
nates. 

The matrices U + V and i(U- V) corresponding to real vector fields 
8x and 8y possess the symmetries 

(55) A(->.) ( 1 
0 ) A(>.) ( 1 ~1)' 0 -1 0 

(56) A(,\) ( 0"2 0 ) A(>.) ( a2 ~2). 0 0"2 0 

Denote by 

gs[>.] ={A: lR-+ gl(2, lHI) I A(->.)= ( 
1 0 

) A(>.) ( 
1 0 )} 0 -1 0 -1 

the corresponding loop algebra, and by 

Gs[>.] = {¢: lR-+ GL(2,1Hl) I¢(->.)= ( 
1 0 

) ¢(>.) ( 
1 0 )} 0 -1 0 -1 
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the corresponding loop group. 

By the normalization (52) the solution <I>(z, z, >.)is determined uniquely 
up to right multiplication by a matrix depending only on >. 

(57) <I>(z, z, >.)-+ <I>(z, z, >.)G(>.), G(O) = 1. 

<I>(z,z,>.) can be chosen to lie in GB[>.]. Then the matrix 

(58) ( o s ) -1 I T 0 :=<I> <I> A A=O 

is off-diagonal and its coefficients are quaternion valued functions of z 
and z. 

For a description of the geometry of S and T, the notion of isother
mic surfaces in JR4 and of the dual isothermic surface is required. An 
immersion f : D -+ JR4 is called isothermic if it is conformal and the 
vector fxy lies in the tangent plane fxy E span{fx, fy}· It is convenient 
to describe isothermic surfaces in JR4 = lHI in quaternionic form, i.e. as 
mappings f : D -+ lHI with the coordinates 

f=fol+hi+fzj+hk. 

Its differential is df = fx dx + fy dy. An important property of an 
isothermic immersion f : D -+ lHI is the closedness of the form 

(59) 

The corresponding immersion determined up to translation by this form 
and denoted by f* : D -+ lHI is also isothermic and is called the dual 
isothermic surface. Note that the dual isothermic surface is defined 
through one-forms and therefore the periodicity properties of f are not 
respected. The relation (59) is an involution. Moreover one can check 
that 

Lemma 5. The transformation (59) is characteristic for isothermic 
surfaces. 

Proposition 4. 

(i) Let Q 1 and Q2 , normalized by (49), be Hopf differentials of a Bonnet 
pair F 1 and F2 : D -+ ImlHI. Then T : D -+ lHI defined by {58) is an 
isothermic surface in the three-dimensional sphere 5 3 C JR4 = lHI and 
S : D -+ lHI in {58) is its dualS= T*. The isothermic surfaces S and 
T are related to the Bonnet pair by 

(60) dST = dT*T 

dF2 TdS = TdT*. 



28 A. I. Bobenko 

(ii) Let Q1 = Q2 = Q in (54) be real. Then S: D--+ Imll:ll given by (58) 
is the isothermic surface determined by the fundamental forms with the 
coefficients eu, H, Q, and T : D --+ Im IHl is its dual T = S*. 

Proof Let us prove the first statement. Formula (58) implies 

or equivalently 

These frames are obviously conformal and are related by (59). Lemma 
5 implies that T is isothermic. Moreover dT can be integrated explicitly 

(62) 

Indeed, differentiating the last expression one obtains 

dT = <l>2 1(d<I>l <l>1 1 - d<l>2<l>2 1 )<I>1 = 

e-"12<I>2 1 ((Q2 - QI) ( ~ ~ ) dz + (Q 1 - Q2) ( ~ ~ ) dz) <l>1 

which coincides with the previous expression for dT. Integrating, one 
obtains T = <I>2 1<I> 1 +constant. The constant can be normalized to zero 
by transformation (57) with an appropriate G(.\) E G8 [.\]. Obviously 
the surface given by (62) lies in the three sphere S 3 = IHI1 . Using (62) 
we obtain 

dST -ie-u/2.pll ( 0 dz 
) <I>l dz 0 

TdS -ie-u/2.p21 ( 0 dz 
) <I>2 = dz 0 

which coincides with (60). 

The proof of the second claim is even simpler (see [BP]). 

The next theorem is essentially due to Bianchi [Bia2]. A modern 
version of it in terms of quaternions is derived in [KPP]. 

Theorem 15. F1 and F2 : D --+ Imll:ll = JR3 build a Bonnet pair if 
and only if there exists an isothermic surface T : D --+ IHI1 = S 3 c JR4 
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(or equivalently an isothermic surface R : D ---> Im lffi = IR.3 ) such that 

(63) dFz 

dT* T = ~(1- R)dR*(1 + R) 

TdT* = ~(1 + R)dR*(1- R). 

29 

Proof Let us show first the equivalence of the representations in 
terms of T and R. The class of isothermic surfaces is invariant under 
Mobius transformations. In particular, isothermic surfaces in 5 3 and in 
IR.3 are related by stereographic projection, which in quaternionic form 
can be represented by T = ~~~ with R E Im lffi = IR.3 , T E lffi 1 = 5 3 . For 
the frames this implies 

dT 2(1- R)- 1dR(1- R)- 1 

dT* ~(1- R)dR*(1- R), 

which proves the equivalence of the two representations of the theorem. 
The passing from Bonnet pairs to isothermic surfaces is proven in Propo
sition 4. Conversely, given R, the representation (63) shows that dF1 

and dF2 are conformal and lie in Imlffi. Due to dF2 = TdF1T- 1 the 
immersions are isometric. 

Similarly one can show (see [KPP]) that the forms dF1 , dF2 defined 
by (63) are closed and that the mean curvature functions of the corre
sponding surfaces coincide. 

To study a global version of Theorem 15 in the case of Bonnet tori 
mates let H and F 2 : IC ---> IR.3 be a Bonnet pair with doubly periodic 
frames dF1 and dF2 with the same period lattice £. The frames <1?1 and 
<1?2 are periodic up to a sign 

where Z1 , Z2 are generators of£ and Pik E Z2 characterize the spin struc
tures of the immersions. The isothermic surface given by (62) is a torus 
in 5 3 if the spin structures of F1 and Fz coincide (Pi1 = Pi2, i = 1, 2) and 
is a torus in three dimensional real projective space IR.P3 = 5 3 j { -1} 
if the spin structures differ. Conversely, an isothermic immersion T : 
ICI £---> 5 3 I { -1} generates by (63) a Bonnet pair with frames dF1 and 
dF2 defined on IC I£. The spin structures of these two surfaces are the 
same iff T is an immersion to 5 3 with the lattice £. 
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Corollary 3. Bonnet mates with doubly periodic frames dF1 and 
dF2 are in one to one correspondence with isothermic tori in JRP3 . Bon
net mates with doubly periodic frames dF1 ,2 and coinciding spin struc
ture are in one to one correspondence with isothermic tori in 5 3 . The 
corresponding relations are given by formulae {63). 

Formula (63) allows us to control the periodicity of the frame of a 
Bonnet pair. To be able to control the periodicity of the immersion one 
needs an analog of formula (29) describing the corresponding immersion 
without integration. We call a solution 

<I>: D x lR ---+ Gs[A] 

(z, A) f-t <I>(z, z, A) 

of (53, 54) normalized (see proof of Proposition 4) if the coefficient T of 
its decomposition (58) at A = 0 is a unitary quaternion T : D---+ lHh, i.e. 
(62) holds. Obviously this solution can be extended to all A E C. 

Proposition 5. Let <I>(z, z, A) a normalized solution of (54) with 
Q of the form (49). Then the corresponding Bonnet pair F1 (z, z) and 
F2 ( z, z) is restored by the following coefficients of quaternionic 2 by 2 
matrices 

(64) 1 -1 
2<1> <l>.A.A 1-A=O, 

(65) 
1 
2<l>-1<l>.A.A- ( <l>-1<l>.A) .A 1-A=O· 

Proof To prove the formula for dF1 let us differentiate it by z and 
z to obtain 

1 
d( 2 <I>- 1<l>.A.A) = <l>- 1 (U.Adz + V.Adz)<l>.A, 

where we used U.A.A = Vu = 0. Evaluating this expression at A = 0 
using (52), (62) and (61), one finally obtains 

1 _ 1 ( dST 0 ) 
d(2<I> <l>.A.A)L"=0 = 0 dTS . 

Now the formula for dF1 follows from (60). The formula for dF2 is 
proven by an analogous computation 

SdT 
0 T~S). 
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3.3. Loop group description 

As we have seen already in Proposition 4 the theory developed in 
Section 3.2 includes two different cases: the case of Bonnet pairs when 
the Hopf differentials Q1 = Q and Q2 = Q are different and thus gen
erate two non-congruent surfaces, and the case Q = Q of isothermic 
surfaces in ~3 . The loop group GB[>.] and the loop algebra gB[>.] of 
Bonnet pairs are described in Section 3.2. In the case of isothermic sur
faces Q = Q, the corresponding loop group and algebra are specialized 
further as follows: 

GI[>.] {¢ E GB[>.JI ¢T(>.) ( ~2 ~2 

{A E gB[>-]1 AT(>.)=- ( 0 

) ¢(>.) = ( ~2 ~2 ) } 

gi[>.] 
0"2 

~2 )}. 

As in the previous sections the main strategy for applying analytic 
methods of the theory of integrable systems consists of two steps: first, 
to characterize the frame equations through analytic properties of <I> as 
a function of >. without referring to the special geometric nature of the 
coefficients of the frame equations and, second, to construct those <I>(>.) 
explicitly. For this purpose it is more convenient to pass to a gauge 
equivalent 

(66) )<t> 

to (53), linear problem 

(67) 

( 
0 -Qe-u/2 0 0 

} !Leu/2 Uz -i>. 0 
(68) Uo 2 -2 

0 -i>. Uz -Qe-u/2 
2 

0 0 !ieu/2 0 2 

( 
Uz _!f_eu/2 0 -i>. 

} -2 2 

Vo 
Qe-u/2 0 0 0 

0 0 0 _ !ieu/2 
2 

-i>. 0 Qe-u/2 ~ 
2 

normalizing the solution at >. = oo. Note that all immersion formulae 
(64, 58) are preserved under this gauge transformation. 
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Proposition 6. Let 

l]i: D X IR --+ GB[>.] 
z, >. f---+ IJi(z, z, >.) 

be a smooth mapping satisfying 

(69) l]izl]i- 1 = A(z,z)>.+B(z,z) 

with some A(z, z) and B(z, z), having the asymptotics 

(70) w(z, z, >.) = (L + M(z, z).\- 1 + o(.\- 1 )) exp(-i.A(hz + hz))C(>.) 

at >. --+ oo with 

u 0 0 jJ L= 
1 1 
1 -1 
0 0 

and 

("0 0 

o.J,~u 
0 0 

I) 0 1 0 0 0 
11 = 0 0 -1 0 0 

0 0 0 0 0 

for some M(z, z) and C(>.). If, for the coefficients of M, one has 

(71) 

then 

(72) 

can be parametrized as in ( 68) with some real valued u( z, z), H ( z, z). If 
in addition 

(73) 

then Q(z, z) in (68) is also real valued. 

Proof. Due to the assumption of the theorem, U0 is of the form 
U0 = A>.+ B. Substituting the asymptotics (70) one obtains for the 
coefficients 

Similarly the symmetry (55) and the asymptotics (70) imply V0 = C>.+ 
D with 
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The matrices A and C are of the required form. For the matrices B and 
D a simple computation gives 

( -!, 
M12 0 0 

) Af22- M32 0 0 
-z 0 0 M32- M22 -M21 

0 0 M42 0 

(74) B 

D 
(Mu-M., -M42 0 0 

). . M21 0 0 0 
-z 0 0 0 M31 

0 0 -M12 M41- Mn 

where we have used the symmetry of M 

( 
~ ~ ~ ~ ) M ( ~ ~ ~ ~ ) = -M. 
0 0 -1 0 0 1 0 0 
0 0 0 -1 1 0 0 0 

The anti-holomorphic involution A ----+ ,\ of the loop group implies 

M12 = Af21, M42 = M31, Mn = -Af22, M32 = -M41· 

Finally, comparing the coefficients and using the compatibility condi
tions one shows that U0 , V0 are of the form (68). 

The result of Proposition 6 is not optimal. Whereas the conditions 
(69) and (70) are quite standard for the loop group description of inte
grable systems, the constraint (71) is difficult to take into account by 
analytic construction of the \li-function. For isothermic surfaces the sit
uation is more fortunate. \li-functions satisfying both constraints (71), 
(73) can be characterized in terms of the corresponding loop group G 1 [.A]. 

Theorem 16. Let 

\ji: D X lit ----+ GI[.A] 

z,.A f---> \li(z,z,.A) 

be a smooth mapping satisfying (69) and (70). Then its logarithmic 
derivatives (72) can be parametrized as in (68) with some real valued 
u(z,z),H(z,z),Q(z,z). The corresponding isothermic surfaceR: D----+ 
llt3 and its dual R* : D ----+ llt3 are given by 

(75) 
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Proof Both constraints (71, 73) follow from the condition U0 

A.\ + B E g I [ ,\] and formula ( 7 4). The immersion formula for isothermic 
surfaces mentioned as part (ii) of Proposition 4 is preserved by the gauge 
transformation ( 66). 

The Kamberov-Pedit-Pinkall formula (63) for the frame of a Bonnet 
pair also can be explicitly integrated in terms of the W-function of the 
corresponding isothermic surface in Ilt3 . The corresponding formula was 
obtained jointly with P. Grinevich. 

Theorem 17. Let \Lf : D x !It ---> G I [ ,\] be a \Lf -function of an isother
mic surface R : D ---> Ilt3 , i.e. it satisfies ( 67) with Q = Q. Then the 
Bonnet pair F1 ,2 : D ---> Ilt3 corresponding to it by (63) is given by 

F 1 = ~ ( R* - RB + C + A + B - RR*) 

(76) F2 = ~(R*- RB +C-A-B+ RR*), 

where the quaternionic coefficients are defined by (75) and 

Proof Since all the immersion formulae are invariant with respect 
to the gauge transformation ( 66) one can use any of the extended frames 
<I> or \Lf of the isothermic surface performing computations. The diagonal 
or off-diagonal structure of the matrices (75) and (77) follows from the 
symmetry (55). Introducing W := Udz+ Vdz and using W.>..\ = W.\.\.\ = 

0 one obtains 

d\Lf 

d(\Lf-l\Lf.\) 

d(w- 1 w.\.\) 

d(w- 1 w.\.\.\) 

W\Lf 

w- 1 w.\ w 
2w- 1w.\ w.\ = 2d(w- 1 w.\)w- 1 w.\ 

3\Lf- 1W.\ \Lf.\.\ = 3d(\Lf- 1 \Lf.\)\Lf- 1W.\.\· 

For the coefficients at ,\ = 0 this implies 

dA (dR)R* 

dB (dR*)R 

dC (dR)B = d(RB)- R(dR*)R 

dD (dR*)A = d(R* A)- R*(dR)R*. 
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Using these expressions all the terms in the formula (63) can be trans
formed to differentials 

(dR*)R- RdR* 

R(dR*)R 

Integrating one arrives at (76). 

3.4. Surfaces of finite type 

dA +dB- d(RR*) 

d(RB- C). 

We have shown that isothermic surfaces and Bonnet pairs can be 
studied in frames of the theory of integrable systems. Applying standard 
methods one can define for these surfaces higher flows, the Biicklund
Darboux transformations\ finite-gap solutions etc. 

In contrast to the case of CMC surfaces, the linearizations of the 
Gauss-Codazzi equations of isothermic surfaces (51) and of Bonnet pairs 
(50) are not elliptic. This fact prevents us from applying the arguments 
of Section 2 and claiming that all corresponding immersions with dou
bly periodic fundamental forms are generated by finite-gap solutions. 
We call surfaces corresponding to the finite-gap solutions of the Gauss
Codazzi equations or equivalently surfaces with a polynomial Killing 
field (see Section 2) surfaces of finite type. This class of surfaces is 
worth studying, in particular, since it may contain Bonnet tori mates. 

A polynomial Killing field W(A) of an isothermic surface or a Bon
net pair of finite type is an element of the loop algebra gi[A]. The 
coresponding spectral curve 6 

det(W(A) - JlJ) = 0 

is a four-sheeted covering 6 ---+ t 3 IL· Due to symmetries of the loop 
algebra it possesses the holomorphic involutions 1r : (J.L, A) ---+ (J.L, -A) and 
(j : (J.L, A) ---+ ( -J.L, A), and an anti-holomorphic involution f : (J.L, A) ---+ 
(Ji, 5.). The Riemann surface C = 6 j1r is an algebraic curve of J.L and 
A = A 2 • It also possesses the symmetries a : (J.L, A) ---+ (- J.L, A) and 
T: (J.L,A)---+ (p,A). The factor curve Ca := C/a is quadratic in J.L2 and 
thus a hyperelliptic one. 

Proposition 7. The spectral curve C of an isothermic surface and 
of a Bonnet pair is a double covering of a hyperelliptic curve. 

1The Biicklund-Darboux transformations of isothermic surfaces are known 
already in local differential geometry [Dar, Bia3] and in theory of solitons [Cie] 
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Let us indicate the steps of construction of the finite-gap solutions in 
this case. Although the considerations are similar to those of Section 2, 
technically they are more involved. By more or less standard technique 
one describes explicitly finite-gap solutions of the complexified system 
(51), i.e. of the system corresponding to the loop algebra without the real 
reduction (56). The spectral curve in this case remains to be a double 
covering of a hyperelliptic curve, but does not necessarily possess the real 
involution T. The differentials analogous to the differentials nl and n2 
turn out to be Abelian differentials of the second kind with singularities 
at the branch points of the covering C---+ Ca. They are odd with respect 
to the involution a. Their vectors of b-periods describing the velocity of 
the linear dynamics on the Jacobian lie in the odd part of the Jacobian 
with respect to the involution a. The dynamic of the corresponding 
nonlinear system lies on the Prym variety Pryma (C) of the covering 
C---+ Ca. 

The real reduction (56) leads to constraints on parameters of the 
finite-gap solution. It is a technical but rather involved problem to clas
sify all possible cases leading to real finite-gap solutions of (51) and thus 
to isothermic surfaces and Bonnet pairs of finite type. This is not yet 
done. Note that due to explicit formulae (75, 76) for the corresponding 
immersions, the isolation of tori from general surfaces of finite type is 
then straightforward. 

§4. Bonnet families 

4.1. Definition of Bonnet surfaces and simplest properties 

A natural question is whether there may exist more than two isomet
ric surfaces with the same mean curvature function, for example three 
such surfaces (Bonnet triple). It was known already to Bonnet that a 
Bonnet triple implies the existence of a one-parameter family of isomet
ric surfaces with the same mean curvature function. We will prove this 
result in Section 4.4 after we learn more about these families. 

Let F be a smooth surface in ~3 with non-constant mean curvature 
function. F is called a Bonnet surface if it possesses a one-parameter 
family 

Fn T E (-t,t), t > 0, Fo =F 
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of non-trivial2 isometric deformations preserving the mean curvature 
function. The family (F7 ) 7 E( -E,E) is called a Bonnet family. A Bonnet 
family can be described as a conformal mapping 

(78) 
F: (-E,E) X R 

(T, z) 
---+ JR3 

c-t F(T,z,z) E > 0, 

where z is a local coordinate z on the Riemann surface R. 

The set U C R of preimages of the umbilic points on F 7 is indepen
dent ofT (see Section 3). Obviously, the set V ={PER : dH(P) = 0} 
of preimages of critical points of the mean curvature function on F7 is 
also T-independent. 

Similarly to Proposition 3 one can prove 

Proposition 8. The holomorphic quadratic differential 

(79) 2 8 ( - 2 'P(z, T) dz := OT Q z, z, T) dz . 

vanishes exactly at the umbilic points. 

In a neighbourhood of a non-umbilic point Q(P) =/= 0 there exist 
smooth real-valued functions 7/J(z, z, T), q(z, z) such that Q(z, z, T) 
ei1/J(z,z,T) q(z, z). Differentiating we obtain 

(80) ( _ ) . ip( Z, T) 
Q z, z, T = -1 7/J ( ) 

7 z,z,T 

This representation is a special case of (8), which implies 

Corollary 4. Bonnet surfaces are isothermic away from umbilic 
points. 

Representation (80) implies that 'lj;7 is a harmonic function on R \U. 
Moreover, from a more detailed analysis of the local behaviour at an 
umbilic point one can deduce [BE2] that the function 'lj;7 can be extended 
to a nowhere vanishing harmonic function 7/J7 : R -+ JR.*. 

With 'lj;7 defined this way, the identity 

(81) 

holds on all n. 
2We call an isometry of a surface non-trivial if it is not induced by an 

isometry of the ambient space. 
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Theorem 18. Let :F be a Bonnet surface. Then 

(i) Umbilic points are critical points U C V of the mean curvature func
tion. 

(ii) The set V of critical points of the mean curvature function is discrete 
in R. 

Proof From the Codazzi equations it follows that dH = 0 if and 
only if Qz = 0. Differentiating (81) with respect to zone obtains 

Thus Q = 0 implies Qz = 0. To show that Vis a discrete subset of R, 
we use 

where we use that 1/JT is a non-vanishing harmonic function on R. Since 
1/JTz QT dz 3 is a cubic holomorphic differential, its zeros (which comprise 
the set V) are discrete. 

4.2. Local theory away from critical points 

In this section we develop local theory of Bonnet surfaces in l!l3 

away from possible critical points of the mean curvature function F : 
( -E, E) x R \ V ___, l!l3 . The preimages of holomorphic local charts z : 

U c R \ V ___, C are always assumed to be simply connected. 

The following "stationary" characterisation of Bonnet surfaces is 
classical [Gra]. 

Theorem 19. An umbilic free surface :F is a Bonnet surface if and 
only if 

(i) :F is isothermic. 

(ii) 1/Q is harmonic, i.e. 

(82) 

where z is an isothermic coordinate and Q dz 2 is the Hopf differential. 

Proof ":=;.": follows from Corollary 4, (80), and harmonicity of 1/JT. 
"~":Let z be an isothermic coordinate and eu(z,zl,H(z,z),Q(z,z) be 
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a solution to the Gauss-Codazzi equations (7) with Q satisfying (82). 
Locally there exists a holomorphic function h(z) such that Q(z, z) 
1/ (h(z) + h(z)). Define Q( z, z, T) via 

(83) _ (1-iTk00) 1 
Q(z,z,T)= 1+iTh(z) h(z)+h(z)' 

where T is a deformation parameter equivalent to T. One can easily 
check that IQ(z, z, T)i = IQ(z, z)l and Qz(z, z, T) = Qz(z, z) holds. Thus 
eu(z,z), H(z, z), Q(z, z, T) is also a solution of (7) for all T. The surfaces 
corresponding to different T are isometric and have the same mean cur
vature. They form a Bonnet family. 

It is easy to see that the Codazzi equations imply 

h'(z) Hz(z, z) = h'(z) Hz(z, z). 

Introducing locally the new conformal coordinate 

(84) 

one finds that the mean curvature function depends on t = w + w only. 
This finally leads to the fact that the Gauss-Codazzi equations can be 
reduced to an ordinary differential equation, which is derived below. 

One can directly check that Q satisfies 

Qw(w,w,T) = Qw(w,w,T) = -IQ(w,w,TW. 

Inserting 

(85) u 2Qw 2IQI2 
e = Hw =-HI 

into the Gauss equation one obtains 

(86) ( H"(t))'- H'(t) = IQI2 (2- H2(t)) 
H'(t) H'(t) ' 

d 

dt 

For a general holomorphic function h(w), equation (86) does not possess 
a solution depending on t only. 

The identity IQI~ = IQI~ implies 

( h"(w) h"(w)) - _ 1 -,-

h'(w) - h'(w) ( h(w) + h(w)) - 2 (h (w)- h (w)). 
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IJYpe II Q(w,w) H solves 

A1 

A2 

B 

c 

( sin(2w)) 1 
- 2 sin(2w) sin(2t) 

( ( H")' _ H') sin2 (2t) = 2 _ H2 8 

2 ( cos(2w)) _1_ H' 4 H' sin2(2t)H' 
cos(2w) sin(2 t) 

2 ( sinh(2w)) 1 ( ( H") 1 
_ H') sinh2(2t} = 2 _ H 2 8 

- sinh(2w) sinh(2t) 
-

sinh2(2t)H1 H' 4 H' 

w1 ( ( H")' ) H2 2 --- H' - H' t2 = 2 - H' - t2H' wt 

Table 1. Table of fundamental functions 

This equation can be solved explicitly. Up to appropriate normalizations 
h( w) is one of the following five forms 

w, h2(w) e4iw, h3(w) 
1 

w' 
tanh(2w), h5(w) tan(2w). 

Finally one arrives at the following classical result of E. Cartan [Car] 
(see also [BEl, BE2] for detail). 

Theorem 20. Away from umbilic points there are 3 types of Bonnet 
families, which are characterized by the modulus of the Hopf differential: 

4 
TypeA:IQA(w,w,T)I 2 =. 2 . 

sm (2t) 
4 

Type B: IQB(w,w,T)I2 = . 2 . 
smh (2t) 
1 

Type C: IQ0 (w,w,T)IZ = t 2 . 

The families are given by the surfaces with the fundamental forms pre
sented in Table 1. 

Here H(t) is any smooth solution with H' < 0 of the correspond
ing ordinary differential equation in Table 1. The corresponding one
parameter families of isometries are intrinsic isometries of the surface 
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described by imaginary translations of the coordinate w 

(87) w---+ w + ip(T). 

The surfaces of type A1 and A2 are isometric with the same mean cur
vature Junction. 

Corollary 5. Bonnet surfaces are real analytic. 

The equations for the mean curvature function in Table 1 were first 
derived by N. Hazzidakis in [Haz]. We call them Hazzidakis equations. 

A Bonnet surface in ~3 is said to be of type A, B, or C, respectively, 
if away from critical points of the mean curvature function it is of the 
corresponding type. One can show that a Bonnet surface is exactly of 
one of the types A, B, or C. 

4.3. Local theory at critical points 

In this section we derive a differential equation describing Bonnet 
surfaces near (isolated) critical points. 

The identity (81) at an umbilic point implies the following local 
representation of the Hopf differential. 

Proposition 9. Let P E U c R be an umbilic point of a Bonnet 
surface. Then there exists a neighbourhood U of P, a local conformal 
chart z : U ---+ C with z(P) = 0, a holomorphic non-vanishing function 
rp: U---+ C*, and an integer J > 0 such that the Hopf differential on U 
is 

(88) ( _ ) . J ( rp(z,T) ) 
Qz,z,T=-lZ .!.( _). 

o/T z,z,T 

The function 7/JT z is holomorphic on U and therefore can be repre
sented as 7/JTZ = zM O(z), 0(0) i= 0 with some M ?:: 0. Analysing the 
Codazzi equations 
(89) 

Qz = ZJ ZM 0 ( ~~) 
one obtains 

(90) 

1 u =-H-e 2 z ' 

e(o) 1= o. 

Non-umbilic critical points correspond to J = 0. We call -J with J 
given by (88, 90) the index of the critical point. 
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The derivation of an ordinary differential equation at a critical point 
is similar to the one of section 4.2. The Codazzi equations (89) imply 

(91) 

Introducing a new conformal parameter w(z) by 

(92) 
z 8 
f 8z 

w 8 
f(O) 8w' 

with w(O) = 0 and f(z) = -icp(z)/B(z), one arrives at wHw = wHw. 
The last identity shows that the mean curvature function is a function 
of s = lwl2 only. Proceeding further as in Section 4.2, after apropriate 
normalizations (see [BE2] for detail) one obtains the following 

Theorem 21. Let :F be a Bonnet surface in ffi.3 with an (isolated) 
critical point of index -J. Then there exists a local conformal chart w 
at the critical point w = 0 such that the coefficients of its fundamental 
forms are given by 
(93) 

Q(w,w) dw2 (J + 2) (~ _ :~::) 1 _ws~+2 dw2, 

J 

eu(w,w) ldwl2 = -2 (J + 2)2 (1- sJ:2)2 H'(s) ldwl2, 

and H(w, w) = H(lwl 2) is a solution of 

(94) (sH"(s))' _ H'( ) = (J + 2)2 sH1 ( 2 _ H 2(s) ) 
H'(s) 8 (1- sH2)2 s H'(s) ' 

with the asymptotics 

(95) H(s) = H(O) + sJ+1 B(s) 

d 

ds' 

at s = 0, where B(s) is a non-vanishing, smooth function. Conversely, 
any solution of (94) with the asymptotics (95) at s = 0 via {93) deter
mines a Bonnet surface with critical point of index -J. The Bonnet 
family is given by the intrinisic isometry 

(96) 

The existence of Bonnet surfaces in ffi.3 with critical points of the 
mean curvature function will be proven in Section 4.6. 
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Finally note that Bonnet surfaces with critical points are necessarily 
of type B. The relation between the corresponding coordinates w of this 
section and wa = w of Section 4.2 is given by 

(97) 

We call a Bonnet surface with an isolated critical point a Bonnet surface 
of type Bv. 

4.4. Bonnet triple implies Bonnet family 

Theorem 22. Let F~, F2 , F3 be a Bonnet triple, i.e. isometric non
congruent immersions Fi : U -+ JR3 , i = 1, 2, 3 with the same mean 
curvature. Then there exists a one-parameter family of such surfaces 
Ft, t E (-t:,t:) with Ft=O = F1. 

The proof is divided into several Lemmas. The statement is local, 
and since the umbilic points of Bonnet pairs are isolated (Corollary 2) 
it is enough to consider the case of umbilic free surfaces Fi : U -+ JR3 . 

Denote by Qi the corresponding Hopf differentials. Proposition 3 implies 
that there exist smooth functions a, b, c : U -+ JR3 and holomorphic non
vanishing h1, h2, h3 such that 

Q1 = h2(1 + ic) = h3( -1 + ib), 

Q2 = h3(1 + ib) = h1( -1 + ia), 

Q3 = h2( -1 + ic) = h1(1 + ia). 

By change of the conformal variable the differential Q1 can be brought 
to the form 

(98) Q1(z) = 1+ic=h(-1+ib), 

with holomorphic non-vanishing h. 

Lemma 6. Function c(z, z) in {98) satisfies 

(99) 

Proof Eliminating b from (98) yields h-1(1+ic)+h-1(1-ic) = -2. 
Differentiating by z and substituting h one obtains that 

(h + 1)h 

is holomorphic, which implies (99). 
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Lemma 7. Let c: U ----t ~ be a smooth solution of {99}. Then there 
exists harmonic r : U ----t ~+ such that 

(100) f := (1 + ic)r 

is holomorphic. 

Proof The Cauchy-Riemann equations for (100) with real valued r 
read 

rx(1 + c2 ) + r(ccx- cy) = 0 

ry(1 + c2 ) + r(ccy + cx) = 0, 

where z = x + iy. The compatibility condition for this system is exactly 
(99). By direct computation one can check rxx + ryy = 0. 

Lemma 8. A surface with the Hopf differential Q1(z)dz2 given by 
{98} is isothermic. The isothermic parametrization w is determined by 

with f given by {100}. In the isothermic coordinate w the Hopf differ
ential of F1 equals ~dw2 . 

Proof Written in the coordinate z the Hopf differential equals 

Q1(z)dz2 = !_dz2 . 
r 

The conformal coordinate w of Lemma 8 is isothermic since the differ
ential in this coordinate is real. 

Since r is harmonic, the statement of Theorem 22 now follows from 
the characterization of the Bonnet families in Theorem 19. 

4.5. Bonnet surfaces via Painleve transcendents 

In this section we give an explicit description of Bonnet surfaces 
in terms of solutions of Painleve equations, which are certain ordinary 
differential equations of the second order 

(101) y" = R(y', y, x). 

Solutions of the Painleve equations - Painleve transcendents - are 
treated nowadays as non-linear special functions. The theory of these 
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special functions is rather well developed (see for example [IN, IKSY, 
Its]). In Section 4.6 we use elements of this theory for global classification 
of Bonnet surfaces. Of special importance for us is the Painleve property 
of these equations. Recall that a differential equation (101) is said to 
possess the Painleve property if it is free of movable branch and essential 
singular points, i.e. the only singularities of the solutions which change 
their position if one varies the initial data are poles. 

Regarding examples of the Bonnet surfaces of type B, let us expain 
how the quaternionic representation of Bonnet surfaces naturally leads 
to the above mentioned remarkable connection. Note that the Hazzi
dakis equations of types A and Bare analytically equivalent HA(it) = 

-iHB(t). 

Since the mean curvature and the metric of a Bonnet surfaces of type 
B depend on t = w + w only, it is natural to change the parametrization 
once more using t (or a function oft) as one of the variables. After some 
computations one arrives to the idea of considering 

(102) 

as new variables. In these coordinates the Hazzidakis equation is 

( 'H"(x)) 1 
1 4 ( 'H2 (x) ) 

(103) 4 x 'HI(x) + 'H (x) = (x- 1)2 2 + 4x'HI(x) ' 

where 'H(x) = H(t). The frame equations (15, 17) in parametrization 
(102) are now 

(104) 
Ba(x) B1(x) Bx(x) 
-A- + A - 1 + A - X ' 

(105) _ Bx(x) + C(x), 
A-X 

where all the coefficients of the matrices are given by some explicit for
mulae through 'H(x), 'H1(x) and 'H"(x). Ignore for the moment the 
complicated formulae for the coefficients in the matrices (104). What 
is more important is the special dependence of (104) on A. Equation 
(104) is a 2 by 2 matrix dimensional Fuchsian system with four regular 
singularities (at A = 0, 1, x, oo ). Equation (105) describes deformations 
preserving the monodromy group of the system. It is well known (see 
for example [JM]) that such isomonodromic deformations are the is
sue of the Painleve VI equation. In particular, all the coefficients of 
the matrices can be expressed in terms of solutions of this equation -
Painleve transcendents. A rather involved calculation (see [BEl]) of 
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the corresponding gauge transformation identifying the corresponding 
descriptions yields finally the following 

Theorem 23. Equation {103} possesses the first integral 
(106) 

x 2 (1t"(x) + _2_) 2 + x1t'(x) + 1t2 (x) + 1t(x) (x + 1) = rP. 
1t'(x) x-1 2 2(x-1)2 1t'(x) 2(x-1) 

Let 1t(x) be a solution of (103) with 1t'(x) =J 0 and() be a fixed root 
of {106). Then the function y(x) defined by 

(107) y(x) = __ 2_ (x (x- 1) 1t"(x) +(e-x(()- 2)) Jt'(x)) 2 

- 1t'(x) 1t(x) + (x- 1) 1t'(x) 

solves the Painleve VI equation of the following form 
(108) 

d2y 1 ( 1 1 1 ) 12 ( 1 1 1 ) I - -+--+-- y - -+--+-- y+ 
2 y y-1 y-x x x-1 y-x 

y(y-l)(y-x) (e2 (x-1) -{}(()+ 2)x(x-1)) 
2x2 (x-1) 2 (y-1)2 (y-x)2 · 

Conversely, for any solution of the Painleve VI (108) which is not of 
the form y(x) = constant · x-0 , the function 

(109) 1t(x) = -2 (x- 1) (()2 y(x)2- x2y'2(x)) 
- y(x) (y(x)- l)(y(x)- x) 

is a solution of (103} with first integral±() {106). 

The mappings {107} and {109} with the same () are inverse one to 
another. 

In a similar way [BEl] Bonnet surfaces of type C are described 
through solutions of the Painleve V equation. 

Corollary 6. The Hazzidakis equations for Bonnet surfaces of all 
types possess the Painleve property. 

4.6. Global classification of Bonnet surfaces 

In this section maximal or global Bonnet immersions F : R ---+ ffi.3 

are classified. These surfaces are characterized by the following natural 
"maximality" property: given an immersed Bonnet surface :F c ffi.3 there 
exists a global Bonnet immersion containing :F, i.e. 

:F = F(U), U cR. 
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Let us first prove the existence of critical points. 

Theorem 24. For arbitrary H(O) E IR, H0 < 0 there exists a real 
analytic Bonnet surface of type Bv with a critical point of index -J and 
with the mean curvature function and the metric at the critical point 
given by 

(J+2)2 -
H(O) and -2 (J + l)Ho dwdw. 

Proof. Substituting the ansatz 

00 

H(s) = H(O) + sJ+1 L Hi si, H 0 =1- 0 
i=O 

into equation (94) and using the corresponding recurrence formulae for 
Hi, one can prove that the series converges absolutely in a neighbour
hood of s = 0 (see [BE2]). Thus, for arbitrary H(O) E IR, Ho E IR* 
there exists a real analytic solution of equation (94) at s = 0 with the 
asymptotic 

(110) 

The claim follows now from Theorem 21. 

Let the local coordinate w be defined by (84) for the Bonnet surfaces 
of type A, B, and C and by (92) for the Bonnet surfaces of type Bv. 
We denote by U the largest connected domain in thew-plane, for which 
Q (see Table 1 and (93) respectively) is bounded. Furthermore, let 
V = {t = w+wlw E U} for the types A, B, and C, and V = {s = 
lwl 2 lw E U} for the type Bv. In the following Table 2, all the cases U, 
V, and the harmonic function 'l/J7 , parametrized by w, are listed: 

Proposition 10. Let H be a solution of one of the Hazzidakis equa
tions of types A, B, C, or Bv (see Table 1 and (94}) with H'(t) < 0 at 
some point t E V (the corresponding domains V are listed in Table 2}. 
Then H is real analytic on V. 

The proof of this proposition is based on using the Painleve property 
(see Corollary 6) together with the following 

Lemma 9. Let V 3 t be an open interval with smooth positive
valued functions J, g, IQI2 : V -> IR+ on it. Let H = H(t) be a real
valued solution of the generalized H azzidakis equation 

( . H 11(t))' 1 2 ( H 2 (t) ) 
(111) f(t) H'(t) - H (t) = IQI 2- g(t) H'(t) , 
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Type II u v 

A1, A2 
7r 

{ w E C I 0 < Re( w) < 4} 7r 
(0, 2) 2Re(tan(2w)) 

B { w E C I Re( w) > 0} (0, oo) 2 Re(tanh(2w)) 

Bv {wE C I lwl < 1} [0, 1) (1 +wJ+~) 
2Re 1- wJ+2 

c {wE C I Re(w) > 0} (0, oo) 2Re(w) 

Table 2. Global description of Bonnet surfaces 

smooth on V\P, where Pis a discrete set of poles of H(t). If H'(t0 ) < 0 
at some t 0 E V, then H is smooth everywhere on V, i.e. P = 0, with 
H'(t) < 0 for all t E V. 

To prove smoothness of H ( t) one shows that all poles of H ( t) are nec
essarily simple with negative residues and that in addition H'(t) never 
changes its sign. These two properties contradict one anothE!r. 

It is not difficult to show that immersions F : U ---+ ~3 of Bonnet 
surfaces of type A, B, C, or Bv given in Tables 1 and 2 are maximal. 
The function '1/JT defined in Table 2 is a non-vanishing function on U. The 
continuity of '1/JT yields that this function can not be extended beyond 
u. 

Finally using the arguments of Section 4.2 it is easy to show that 
the classified global Bonnet surfaces are all different, i.e. for two global 
Bonnet immersions Fi : Ri ---+ ~3 , i = 1, 2 there exist no open sets 
Ui c Ri, i = 1, 2 on which the surfaces coincide. 

Theorem 25. Any Bonnet surface in ~3 can be given a conformal 
parametrization F : R ---+ ~3 by a corresponding global Bonnet immer
sion F: U---+ ~3 , R CU. The latter are of one of the types A, B, C, 
Bv. The corresponding domains U are listed in Table 2. Given t0 E V 
(see Table 2} and arbitrary H(t0 ), H'(t0 ) < 0, H"(t0 ) there exists a 
unique solution H(t) of the Hazzidakis equation of type A, B, C (see 
Table 1), real analytic on V. This function determines the fundamental 
forms (Table 1} of the corresponding global Bonnet immersions of the 
type A, B, C. Given H(O), H0 < 0 there exists a unique solution H(s) 
of the Hazzidakis equation (94}, real analytic on V, with the asymptotics 
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{110). It determines by {93) the fundamental forms of the corresponding 
global Bonnet surface of type Bv. 

4.7. Examples of Bonnet surfaces 

Fig. 6. A branched Bonnet surface 
of type B 

Fig. 7. Bonnet surface of type Bv 

Let us present some figures of Bonnet surfaces of types B and Bv. 
Thbes correspond to parameter lines t = constant, i.e. to the trajectories 
of the isometric flow preserving the mean curvature function. Both 
the mean curvature function and the metric are preserved along these 
lines. The last fact can be clearly observed - the strips bounded by two 
consequent parameter lines t = h and t = t 2 are of constant width. The 
isometry is intrinsic, i.e. is not induced by a Euclidean motion of the 
ambient JR3 . The immersion domain U of Bonnet surfaces of type B is 
naturally split into fundamental domains 

Indeed the fundamental forms (see Table 1) are invariant with respect 
to the shift 

.7r 
w-+w+1 2, 

and thus immersed Un with different n's are congruent in JR3 . A Bonnet 
surface comprising three fundamental domains is shown in Figure 6. For 
an appropriate choice of parameters, several copies of the fundamental 
domain can close up and thus comprise a closed surface with a critical 
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point. Figure 7 shows such a case with three fundamental domains. It 
is worth mentioning that it was this figure which led us to suggest the 
existence of Bonnet surfaces with critical points. 

(a) (b) 

Fig. 8. Bonnet disk with a critical point with J = 6, and its cusp 

Figures Sa and Sb present another example of type Bv. The surface 
in Figure Sa is an immersed disk. The index of the critical point is 
J = 6. A more detailed view of one of the cusps of this surface is shown 
in Figure Sb. As before, the tubed curves are integral curves of the 
isometry field. The surface is probably embedded. 

Further examples can be found in [BEl, BE2]. 

References 

[Abr] U. Abresch, Constant mean curvature tori in terms of elliptic functions, 
J. Reine Angew. Math., 394 (1987), 169-192. 

[BBEIM] E. D. Belokolos, A. I. Bobenko, V. z. Enolskii, A. R. Its and V. 
B. Matveev, Algebra-Geometric Approach to Nonlinear Integrable 
Equations, Springer-Verlag, 1994. 

[Bia1] L. Bianchi, Vorlesung iiber Differentialgeometrie, Leipzig, Berlin, 1910, 
p. 454. 

[Bia2] L. Bianchi, Sulle superficie a linee di curvature isotherme, Rend. Ace. 
Naz. dei Lincei, (5), 12 (1903), 511-520. 

[Bia3] L. Bianchi, Ricerche sulle superficie isotherme and sulla deformatione 
delle quadriche, Annali di Math. Ser. III, 11 (1905), 93-157. 

[Bob1] A. I. Bobenko, Constant mean curvature surfaces and integrable equa
tions, Russ. Math. Surveys, 46 (1991), 1-45. 



The Bonnet problem 51 

[Bob2] A. I. Bobenko, Surfaces in terms of 2 by 2 matrices. Old and new in
tegrable cases, In: Harmonic Maps and Integrable Systems, ( eds. A. 
P. Fordy and J. Wood), Aspects Math., E23, Braunschweig Wies
baden, Vieweg, 1994, pp. 83-127. 

[BEl] A. I. Bobenko and U. Eitner, Bonnet surfaces and Painleve equations, 
J. Reine Angew. Math., 499 (1998), 47-79. 

[BE2] A. I. Bobenko and U. Eitner, Painleve Equations in the Differential Ge-
ometry of Surfaces, Lecture Notes in Math., 1753, Springer-Verlag, 
2000. 

[BP] A. Bobenko and U. Pinkall, Discrete isothermic surfaces, J. Reine 
Angew. Math., 475 (1996), 187-208. 

[Bon] 0. Bonnet, Memoire sur Ia theorie des surfaces applicables, J. Ec. 
Polyt., 42 (1867), 72-92. 

[Car] E. Cartan, Sur les couples de surfaces applicables avec conversation 
des courbieres principles, Bull. Sc. Math., 66 (1942), 1-30. 

[Che] S. S. Chern, Deformation of Surfaces Preserving Principal Curvatures, 
In: Differential Geometry and Complex Analysis, (eds. I. Chavel and 
H. Farkas), Springer-Verlag, 1985, pp. 155-163. 

[Cie] J. Cieslinski, The Darboux-Bianchi transformation for isothermic sur-
faces. Classical results versus the soliton approach, Diff. Geom. 
Appl., 7 (1997), 1-28. 

[Dar] G. Darboux, Sur les surfaces isothermiques, Comptes Rendus, 122 
(1899), 1299-1305, 1483-1487, p. 1538. 

[DKN] B. A. Dubrovin, I. M. Krichever and S. P. Novikov, Integrable systems 
I, In: Contemprorary problems of mathematics, Fundamental Direc
tions, Itogi nauki i Tekhniki, VINITI AN SSSR, Moscow, 4 (1985), 
210-315. 

[DPW] J. Dorfmeister, F. Pedit and H. Wu, Weierstrass type representation 
of harmonic maps into symmetric spaces, Commun. Anal. Geom., 6 
(1998), 633-668. 

[Eis] L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and 
Surfaces, Allyn and Bacon, Boston, 1909. 

[FLPPS] D. Ferus, K. Leschke, F. Pedit and U. Pinkall, Quaternionic Holomor
phic Geometry: Plucker Formula, Dirac Eigenvalue Estimates and 
Energy Estimates of Harmonic 2-Tori, Invent. Math., 146 (2001), 
507-593. 

[FPPS] D. Ferus, F. Pedit and U. Pinkall, Sterling, I.: Minimal tori in 8 4 , J. 
Reine Angew. Math., 429 (1992), 1-47. 

[Gra] W. C. Graustein, Applicability with preservation of both curvatures, 
Bull. Amer. Math. Soc., 30 (1924), 19-23. 

[GKS] K. Grosse-Braukmann, R. Kusner and J. Sullivan, Classification of 
embedded constant mean curvature surfaces with genus zero and 
three ends, preprint, 1997. 

[Haz] J. N. Hazzidakis, Biegung mit Erhaltung der Hauptkri.immungsradien, 
J. Reine Angew. Math., 117 (1887), 42-56. 



52 A. I. Bobenko 

[Hei] M. Heil, Numerical tools for the study of finite gap solutions of inte-
grable systems, Ph.D. thesis, TU Berlin, 1995. 

[Hit] N. J. Hitchin, Harmonic maps from a 2-torus to the 3-sphere, J. Diff. 
Geom., 31 (1991), 627-710. 

[Hop] H. Hopf, Differential geometry in the large, Lecture Notes in Math., 
1000, Springer-Verlag, 1983. 

[Its] A. R. Its, The Painleve transcendents as nonlinear special functions, 
In: The Painleve Transcendents, Their Asymptotics and Physical 
Applications, (eds. D. Levi and P. Winternitz), New York, Plenum, 
1992, pp. 40-60. 

[IN] A. R. Its and V. Y. Novokshenov, The Isomonodromic Deformation 
Method in the Theory of Painleve Equations, Lectures Notes in 
Math., 1191, Springer-Verlag, 1986. 

[IKSY] K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss 
to Painleve. A Modern Theory of Special Functions, Braunschweig, 
Vieweg, 1991. 

[Jag] C. Jaggy, On the classification of constant mean curvature tori in IR3 , 

Comment. Math. Helvetici, 69 (1994), 640-658. 
[JM] M. T. Jimbo and T. Miwa, Monodromy preserving deformation of 

linear ordinary differential equations with rational coefficients, II, 
Physica, 2 D (1981), 407-448. 

[KPP] G. Kamberov, F. Pedit and U. Pinkall, Bonnet pairs and isothermic 
surfaces, Duke Math. J., 92 (1998), 637-644. 

[Kap] N. Kapouleas, Compact constant mean curvature surfaces in Euclidean 
three-space, J. Differential Geom., 33 (1991), 683-715. 

[Ken] K. Kenmotsu, Weierstrass formula for surfaces of prescribed mean cur-
vature, Math. Ann., 245 (1979), 89-99. 

[KMS] M. Kilian, I. Mcintosh and N. Schmitt, New constant mean curvature 
surfaces, Experiment. Math., 9 (2000), 595-611. 

[Kon] B. G. Konopelchenko, Induced surfaces and their integrable dynamics, 
Stud. Appl. Math., 96 (1996), 9-51. 

[KS1] R. Kusner and N. Schmidt, The spinor representation of minimal sur-
faces in space, GANG, preprint III.27, 1993. 

[KS2] R. Kusner and N. Schmidt, The spinor representation of surfaces in 
space, GANG, preprint IV.18, 1996. 

[LT] H. B. Lawson, Tribuzy, R. de, On the mean curvature function for 
compact surfaces, J. Differential Geom., 16 (1981), 179-183. 

[PP] F. Pedit and U. Pinkall, Quaternionic analysis on Riemann surfaces 
and differential geometry, Doc. Math., Extra Volume ICM 1998, 
389-400. 

[Pin] U. Pinkall, Regular homotopy classes of immersed surfaces, Topology, 
24 (1985), 421-434. 

[PS] U. Pinkall and I. Sterling, On the classification of constant mean cur-
vature tori, Ann. of Math. (2), 130 (1989), 407-451. 



[Rou] 

[Sui] 

[Tai] 

[Wal] 

[Wen] 

The Bonnet problem 53 

I. M. Roussos, Global Results on Bonnet surfaces, J. Geom., 65 (1999), 
151-168. 

D. Sullivan, The spinor representation of minimal surfaces in space, 
notes, 1989. 

I. Taimanov, The Weierstrass representation of closed surfaces in JR3 , 

Funct. Anal. Appl., 32 (1998), 49-62. 
R. Walter, Explicit examples to the H-problem of Heinz Hopf, Geom. 

Dedicata, 23 (1987), 187-213. 
H. C. Wente, Counterexample to a conjecture of H. Hopf, Pacific J. 

Math., 121 (1986), 193-243. 

Mathematisches Institut 
Technische Universitiit Berlin 
Strasse des 17. Juni 136 
10623 Berlin 
GERMANY 

E-mail address: 
bobenko@math.TU-Berlin.DE 




