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The universality of £-functions attached to Maass 
forms 

Hirofumi N agoshi 

Abstract. 

We establish the universality theorem on the strip { s E C 11/2 < 
Res < 1} for automorphic £-functions attached to Maass forms for 
SL(2, Z), without the assumption of the Ramanujan conjecture. From 
this theorem, some results concerning the value distribution of the 
derivatives of those £-functions are obtained. 

§1. Introduction 

Let ((s) be the Riemann zeta-function. In 1914 Bohr and Courant 
[3] showed that the set {((so+ ir) lr E JR} is dense in e for any fixed 
s0 E D. Here and henceforth D denotes the region { s E e I ~ < Re < 1}. 
Extending this result, in 1972 Voronin [22] showed that if n is a posi
tive integer, then the set {(((so+ ir), ('(so+ ir), ... , ((n-ll(s0 + ir)) E 
en lr E JR} is dense in en for any fixed so E D. Furthermore, in 1975 
Voronin [23] [6] obtained a remarkable result, which is called the uni
versality theorem for ((s ). His result above in 1972 is a corollary of this 
theorem (see [6, p. 252, Theorem 2]). A modern form of the universality 
theorem for ((s) is the following (see [8, p. 225, Theorem 5.2]): 

Let K be a compact subset of D with connected complement. Let 
h( s) be a non-vanishing continuous function on K which is holomorphic 
in the interior (if any) of K. Then for any E > 0, 

liminf -T1 m ({r E [0, T] I max l((s + ir)- h(s)l < E}) > 0, 
T-+rXJ sEK 

where m denotes the Lebesgue measure on JR. 
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After Voronin's discovery, in 1981 Bagchi [1] (see also [8]) gave an
other proof of this theorem, using probability-theoretic ideas. Also, 
Bag chi [2], Gonek [5] and Voronin independently showed the universality 
theorem for the Dirichlet L-function L(s, x) with a character X mod q; 
in fact, the joint universality theorem for L(s, x)'s, which is a stronger 
result, was shown. 

Let f be a holomorphic normalized Heeke eigen cusp form of in
tegral weight for SL(2, Z). LaurinCikas and Matsumoto [9] succeeded 
in proving (without any assumption) the universality theorem for the 
automorphic L-function associated with f. Their proof is influenced by 
Bagchi's thesis [1] and accomplished by introducing an idea, which is 
called "the positive density method" in [13]. This theorem was general
ized in [11] to the case of holomorphic normalized newforms of integral 
weight with respect to Heeke congruence subgroups of SL(2, Z). See 
also [10]. 

As is well known, the Ramanujan conjecture for those automorphic 
forms was proved by Deligne. This conjecture is used in their proofs of 
those universality theorems. Generalizing their theorems further, Steud
ing [20] established the universality theorem for Dirichlet series in the 
Selberg class, under certain assumptions including the Ramanujan con
jecture. This result is very extensive. 

We note, however, that it is conjectured by Linnik and Ibragimov 
that all Dirichlet series, except for trivial exceptions, would have the 
universality property. See [13, p. 65]. In addition, it should be noted 
that so far automorphic cuspidal representations of GL(n) (n ~ 2) for 
which the Ramanujan conjecture has been proved are few and that this 
conjecture is difficult to prove. For a study towards this conjecture, see 
e.g. [12]. Hence, it would be desirable to seek proofs of the universality 
theorems above without using the Ramanujan conjecture and to study 
the universality theorem for a Dirichlet series whose coefficients are not 
certain to possess a bound like the Ramanujan conjecture. 

Let r = PSL(2, Z) and lHI be the upper half-plane {z E qimz > 0}. 
Throughout this paper, we fix a simultaneous L 2 (f\IHI)-eigenfunction tp 

of the operators ~, Tn ( n = 1, 2, ... ) and R which is not a constant func
tion (see Section 2). This is a typical example of GL(2)/Ql-automorphic 
forms for which the Ramanujan conjecture is still open. The universality 
of the automorphic L-function L(s, tp) attached to tp was discussed by 
the author [17]. He proved that L(s, tp) has the universality property 
on the strip 1/2 <Res< 25/32, by using Kim-Sarnak's bound (2.2). 
It was also shown that if the Ramanujan conjecture for tp is true then 
L(s, tp) has the universality property on D. 
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The purpose of the present paper is to establish the universality 
theorem for the L-function L(s, 'P) on the strip D, irrespective of the 
truth of the Ramanujan conjecture. Our main result is the following: 

Theorem 1.1. Let K be a compact subset of D = { s E e I ~ < 
Res < 1} with connected complement. Let h( s) be a non-vanishing 
continuous function on K which is holomorphic in the interior (if any) 
of K. Then for any c > 0, 

liminf !m({TE [O,T]I maxiL(s+iT,'P)-h(s)l <c}) > 0, 
T->oo T sEK 

where m denotes the Lebesgue measure on R 

We remark that our way of proving Theorem 1.1 gives a proof of the 
above universality theorem of [9], without using the Ramanujan conjec
ture (shown by Deligne). An important ingredient of our proof is the 
asymptotic formula ( 4.2) below. Theorem 1.1 suggests that, in general, 
such a bound as the Ramanujan conjecture would not be necessary for 
the universality property. (See also [17].) We can apply our argument to 
automorphic L-functions for Heeke congruence subgroups of SL(2, Z) as 
in [11] and [10], and presumably to a general Dirichlet series with suit
able assumptions milder than those of the paper [20] mentioned above. 

Although Theorem 1.1 above is an improvement on the main result 
of [17], we note that a certain argument in [17], which is inspired by the 
papers [23] and [5] (rather than Bagchi's thesis [1] and his paper [2]) and 
not employed in the present paper, is essential in [18]. 

Theorem 1.1 yields the universality theorem for the derivatives L(r) 

(s, 'P) of L(s, 'P), as in [17]. Further, the following corollaries can be 
deduced. Let N denote the set of all positive integers. 

Corollary 1.2. Let n EN. Let (sl, ... 'Sn) E nn such that Sj =I= Sk 
if j =I= k. Then the set {(L(sl +iT, 'P), ... 'L(sn +iT, 'P)) E en IT E JR} 
is dense in en. More precisely, it holds that for any ( a1, ... , an) E en 
and any c > 0, 

liminf !m({TE [O,T]I IL(sj+iT,'f!)-ajl <c 
T->oo T 

forallj=1, ... ,n}) > 0. 

Corollary 1.3. Let s0 ED and n EN. Then the set 

{ ( L(so +iT, 'P), L'(so +iT, 'P), ... 'L(n-l)(so +iT, 'P)) E en IT E lR} 
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is dense in en. More precisely, it holds that for any ( a1. ... , an) E en 
and any c > 0, 

liminf .!.m({TE [O,T]I IL{j-l)(so+iT,cp)-ajl <c 
T---.oo T 

for allj = 1, ... ,n}) > 0. 

Corollary 1.4. Let C be a region whose closure is a compact subset 
of D. Let n EN and a1, ... , an E C- {0}. Then 

lim inf .!. m ( { T E [0, T] I there exists a number Zj E C + iT such that 
T--+oo T 

L(zj,cp)=aj,foreveryj=1, ... ,n}) > 0, 

where C +iT means the set {w +iT I wE C} in D. 

Corollary 1.5. Let C be as in Corollary 1.4 and let n E N. Let 
a1 E C- {0} and a2, ... , an E C. Then 

lim inf -T1 m ( { T E [0, T] I there exists a number Zj E C + iT such that 
T--+oo 

L(j-l)(zj, cp) = aj, for every j = 1, ... , n}) > 0, 

where C +iT is as in Corollary 1.4. 

§2. Notation and preliminaries 

Let r = PSL(2,7l) and lHl = {z = x + iy E C I x E JR.,y > 0}, as 
before. Let L2 (f\IHI) denote the Hilbert space 

{!: IHI---t c I f(v) = f(z) for z E lHl and 'Y E r, 

r lf(z)l 2 y-2dxdy < oo} 
lrw. 

with the inner product (JI, h) = frw. fi(z)h(z)y- 2dxdy. An eigen

function in L2 (f\IHI) of the Laplacian ~ = -y2 ( ~ + 1/r) is called a 

Maass form (of weight 0) for r. The n-th Heeke operator Tn on L2 (f\IHI) 
is defined by 

1 " (az +b) Tnf(z) = Vn ~ f -d- . 
ad=n,a>O 

09<d 

Further, we define the operator R by Rf(z) = f( -z). Then, ~, Rand 
Tn's form a commutative family of symmetric operators on L2 (f\IHI). 
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As mentioned in Section 1, throughout this paper let us fix a si
multaneous L2 (f\lHI)-eigenfunction cp of~' R and all Tn's which is not 
a constant function. It is a cusp form. Several symbols and constants 
(e.g. the implied constants by the symbols « and 0) in the following 
will depend on cp. Let >.(n)(E JR.) denote the n-th Heeke eigenvalue of cp, 
i.e. Tncp(z) = >.(n)cp(z). Rankin-Selberg's theory yields 

(2.1) 2:::: l>-(n)l 2 "'Ax, X ___, 00, 

n:<:;x 

where A is some positive constant. For a prime p we write 

>.(p) = a(p) + f3(p) with a(p)f3(p) = 1, 

and throughout we assume la(p)l 2: lf3(p)l. Then the Ramanujan con
jecture for cp asserts that la(p) I = lf3(p) I = 1 for all primes p. This is 
still open. Towards the conjecture Kim and Sarnak [7] have recently 
established the bound 

(2.2) 
7 

la(p)l ::; p64 

for every prime p. 
The automorphic L-function L(s, cp) associated with cp is defined by 

L(s, cp) = ~ >.(n). 
L...t ns 
n=l 

According to (2.1), this series converges absolutely for Res > 1. By 
a certain multiplicative property of Tn's, we have the Euler product 
L( s, cp) = TIP: prime Lp( s, cp) with 

L (s,cp) := (1- >.(p) + _1 )-1 = (1- a(p))-1 (1- j3(p))-1 
p pS p2S pS pS 

The function L(s, cp) has analytic continuation to the whole s-plane. 
Further, it satisfies a certain functional equation (see e.g. [4, Proposition 
1.9.1]), whose critical line is Res=~· 

The following notation also will be used. Let lP' denote the set of all 
primes. Let p stand for a prime number, and Pn the n-th prime. Let S 
be the torus {sEC I lsi = 1}. As usual, for sEC we writes= CJ +it 
with CJ, t E R 
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§3. A limit result 

Let 1t(D) denote the space of analytic functions on D, and we equip 
1t(D) with the following topology of uniform convergence on compacta. 
Let us fix a sequence {Kn In E N} of compact subsets of D such that 
Kn C Kn+l for every n E Nand such that if K is a compact set in D 
then K C Kn for some n. For J, g E 1t(D), let 

(f ) ·= ~ Tn PnU, g) 
p ' g . L...- 1 + (! ) ' 

n=1 Pn ,g 

where Pn(f,g) := supsEK,. lf(s)- g(s)l. Then pis a metric on 1t(D). 
For a topological space X, we denote by B (X) the class of Borel sets 

of X. Let n denote the infinite-dimensional torus TIP Sp = n:=1 SPn' 
where Sp = S for each prime p. With the product topology and point
wise multiplication, n is a compact Abelian topological group. Denote 
by mn the probability Haar measure on (fl, B(fl)). For a prime p, let wp 
denote the projection of w E fl to the coordinate space Sp. Note that 
mn is the product of probability Haar measures on coordinate spaces 
SP' Hence { Wp I p E IF'}' w E n, is a sequence of independent random 
variables on n. 

In this paper, we define log(1 + z) := - 2::=1 (-~)" for z E C with 
lzl < 1. For a prime p E IF' and a number apES, we define the function 
/p(s,ap) = fp(s,ap,cp) on the region Res>! by 

Note that 

(3.2) eL:v:o;xfv(s,av) =IT (1- a(p~ap)-1 (1- ,B(p~ap)-1 
p::;x p p 

for x ~ 2 and s E C with Res > ! . 
For wE Q and sEC with Res> !, let us define 

L(s,cp,w) :=I] (1- a(:~wp) -1 (1- ,B(:~wp) -1 
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As is shown essentially in the proof of Proposition 4.6 below, the series 
L:p fv(s, Wp) converges in 1-l(D) for almost all w En. If w is an element 

in n such that L:v fv(s, wp) is convergent for Res > !, then by (3.2), 
the product L ( s, cp, w) also is convergent for Res > ! and we have 

(3.3) 

Therefore, L(s, cp, w) is an ?-£(D)-valued random element on n. 
Let P'P denote the distribution of the random element L(s, cp, w), i.e. 

Pcp(A) := mn ({wEn I L(s,cp,w) E A}), A E B (1-l(D)). 

ForT> 0, we define on 1-l(D) the probability measure 

(3.4) 

Pcp,r(A) := ~m({T E [O,TJI L(s+iT,cp) E A}), A E B (1-l(D)). 

Then, the next result is proved in [17]. 

Proposition 3.1. The measure Pcp,T converges weakly to Pep as 
T __. oo. 

§4. A denseness result 

The aim of this section is to prove Proposition 4.6 below. The theory 
of Hardy's space was used in [2] and implicitly in [9] to obtain similar 
results to Proposition 4.6. In the present paper, more fundamentally we 
will use an usual L2-space, as in [5]. 

The next result is essentially shown in the proof of [2, Proposition 
4.3]. 

Lemma 4.1. Let H be a complex Hilbert space with the inner prod
uct ( ·, ·) and the norm 11·11· Let { Un In E N} be a sequence in H satisfying 
the following two conditions: 

(i) L::=lllunll 2 < oo, 
(ii) L::=1 l(un, u)l = oo for any non-zero element u E H. 

Let any m E N be fixed. Then the set {L:~~m CnUn I m' E N, m' > 
m, Cn E S form:::; n:::; m'} is dense in H. 

Let U be a bounded, simply connected region in D which satisfies 
U c D, where U denotes the closure of U. As usual, L2(U) denotes 
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the set of all C-valued measurable functions on U which are square
integrable with respect to the Lebesgue measure. Then L 2 (U) is a com
plex Hilbert space with the inner product given by 

s = lT +it (lT, t E JR.). 

and the norm given by 

1 

llg(s)llu := J(g(s),g(s))u = (fu lg(s)l 2 dO"dt) 2 

If g(s) is a holomorphic function on D, then it is bounded on U and 
hence g( s) (precisely, the function given by the restriction of the domain 
D of g(s) to U) belongs to L 2 (U). Noting this, we define H(U) to be 
the closure in L 2(U) of the set 

{g(s) I g(s) is a holomorphic function on D} (c L 2 (U) ). 

Then H(U) is a closed subspace of the complex Hilbert space L 2 (U), so 
that H(U) is also a complex Hilbert space. 

To prove Proposition 4.4 below, we shall apply Lemma 4.1 with 
H = H(U) and Un = >.(pn)P;;s (s E U), where Pn denotes the n-th 
prime. The condition (i) of Lemma 4.1 is then satisfied by (2.1). 

Let g(s) E H(U). For each prime p we have 

(>.(p)p- 8 ,g(s))u = fu >.(p)p-8 g(s)d£Tdt = >.(p)69 (Iogp), 

where 

z E C. 

The function 6 9 (z) is entire. By the Cauchy-Schwarz inequality, 

where A:= supsEU lsi < oo. Hence .6.9 (z) is of exponential type. 

Lemma 4.2. Let U be as above. Let g(s) be an element in H(U) 

such that limsupx-+oo,xER logl~,(x)l > -1. Then Lp l>-(p)69 (1ogp)l = 
00. 



The universality of L-functions attached to Maass forms 297 

This lemma is an analogue of [2, Lemma 4.8] and [9, Section 4], and 
will be proved in the next section. An ingredient of the proof is the 
asymptotic formula 

( 4.2) X ---+ CXJ. 

This formula is derived from [16, Theorem 2] and partial summation. 

Lemma 4.3. If g(s) is a non-zero element of H(U), then the func
tion .6.9 ( z) is not identically zero. 

Proof. This is proved in [17]. 0 

Now we check the condition (ii) of Lemma 4.1 with H = H(U) and 
Un = >.(pn)p:;;, 8 • Let g(s) be a non-zero element of H(U). Then, from 
Lemma 4.3 and [2, Lemma 4.5] we have 

. log 1.6. (x)l 
hmsup 9 > -1. 

x--+oo, xElR X 

Hence Lemma 4.2 gives L~=l l(>.(pn)P:;;, 8 ,g(s))ul = oo. 
Thus, by Lemma 4.1 we obtain 

Proposition 4.4. Let U be a bounded, simply connected region in 
D which satisfies U C D. Let any y > 0 be fixed. Then the set 

{ L >.(p~cp v;:;:: y, cp E S for y..:;, p..:;, v} 
y~p~v p 

is dense in H(U). That is, for any g(s) E H(U) and any E > 0, there 
exist v ;:;:: y and Cp E S, for each prime p with y ..:;, p ..:;, v, such that 

2 

1 g(s)- L >.(~~cp dadt <E. 
U y~p~v 

The next lemma is a generalization of [21, p. 303, Lemma] and 
proved in [14]. 

Lemma 4.5. Let U be a bounded region in C. Let K be a com
pact set in <C such that K c U. Let B > 0. Suppose that h( s) is a 
holomorphic function on U. If h( s) satisfies 

i lh(s)l 2 dadt::; B, 
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then 
max lh(s)l ::::; b(U, K) VB, 
sEK 

where b(U, K) is a certain positive constant depending only on U and 
K. 

Finally we can prove the next result, in which let fp(s, ap) be as in 
(3.1). 

Proposition 4.6. The set of all series I:P fp(s, ap), apE S, which 
converge in 'H(D) is dense in 'H(D). 

Proof. It suffices to prove that for any g(s) E 'H(D), any compact 
subset K of D and any E1 > 0, there exists a series I:P fp(s, ap), ap E S, 

which converges in 'H(D) and which satisfies supsEK lg(s)- I:P fp(s, ap)l 

< E'. 

Let g(s) E 'H(D) and K be a compact subset of D. Let E > 0 be 
arbitrary. Set a 1 := min{Re sIs E K} > ~- We take a bounded, simply 
connected region U in D which satisfies K C U and U C D. 

As in [8, p. 183] and [17], it follows from Kolmogorov's theorem ([8, 
p. 5, Theorem 2.11]) and (2.1) that the series L;P >.(~~wp = 2::~= 1 >.(p;~,wPn 
converges on the region Res > ~ for almost all w E n. In view of this, 

let us take a sequence {bp E SIp E lP'} such that I:P >.(~:bp converges on 

the region Res > ~. We note that it converges uniformly on compacta 
in that region, by a property of Dirichlet series. By (2.1), the series 

converges absolutely and uniformly on compacta in the region Res > ~. 
Using (2.1) and (4.2), we have 

( ) 
1/2 ( ) 1/2 

~ l.\(p)l3:::::: ~ l.\(p)l2 ~ l.\(p)l4 « x. 

By this, (2.1) and (4.2), the series 
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converge absolutely and uniformly on compacta in the region Res>~
Since it is known (see (2.2)) that lo:(p)l ~ p9 with some absolute positive 
constant () < 3/10 for all primes p, we have 

uniformly for Res > ~- Consequently, the series L:P fp(s, bp) converges 
uniformly on compacta in the region Res > ~, so that L:Pfp(s,bp) 
converges in H(D). 

Since the series~ >.(p)bp and~ ~4 I a(p)"+f3(p)n I converge uni-
L...p p" L..p L..n=2 npns 

formly on compacta in the region Res > ~, we may take a large real 
number y satisfying 

yl-5(0"1-3/10) 

5 (at - 3/10)- 1 < c:, 
sup (z= t I o:(p): ~~(p)n I) < c: 
sEK p?:_yn=2 P 

I ~ >.(p)b I £ and supsEK L..p?:_y1 ~ < c: or allYl> y. 

By Proposition 4.4, there exist a number v 2: y and Cp E S, for each 
prime p with y ~ p ~ v, such that 

This and Lemma 4.5 yield 

(4.3) '""' '""' .A(p )cp ~a;: g(s)- L..; fp(s, 1)- L..; --s- ~U,K c:. 
p<y YSPSV p 

Now for each prime p we set ap to be 1 if p < y, cp if y ·~ p ~ v, 
and bp if p > v. Noting that L:P?:.Y fp(s, ap) converges for Res> ~ and 
using the definition of y, we have, uniformly for s E K, 
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Therefore using ( 4.3) and the definition of y, we conclude that uniformly 
for s E K 

lg(s)- Lfp(s,ap)l = (g(s}- Lfp(s,ap)- L .A(p~ap) 
P p<y y-::;,p-::;,v p 

- L .A(p~ap- (Lfp(s,ap)- L .A(:~ap) 
p>v p p?_y p?_y 

«u,K c + IL .A(p;bp I+ c «c. 
p>v p 

This completes the proof. D 

In this proof, the bound la(p)l ~ p0 with an absolute positive constant 
() < 3/10 is used. If instead a much better bound as in (2.2) is used, 
then we will have a shorter proof (see [17]). 

§5. Proof of Lemma 4.2 

In our proof of Lemma 4.2, the following result is used. This is [2, 
Lemma 4.6] and a variant of the Bernstein theorem. 

Lemma 5.1. Let h(z) be an entire function of exponential type. Let 
{rm I mEN} be a sequence of complex numbers and a,/3,"( be positive 
real numbers such that 

(a) 

(b) 

(c) 

(d) 

Then 

I. log lh(±iy)l 
1msup ~a, 

y-+oo, yEIR Y . 

lrm- rnl 2: "( lm- nl, 

lim rm = (3, 
m---+oo m 

a/3 < 1r. 

m,n 2:1, 

I. log lh(rm)l _ 1. log lh(x)l 
1m sup I I - 1m sup I I . 
m-+oo rm x-+oo, xEIR X 
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Proof of Lemma 4.2. Let a= a(U) := 10+sup8 EU lsi- By (4.1) we have 

(5.1) I. log l69 (±iy)l < 1msup _a. 
y->oo, yER Y 

Fix a positive number /3 satisfying 

(5.2) f3a < 1r. 

Let M = M(/3,g) denote the set of positive integers m such that there 
exists a number r E ((m- ~) /3, (m + ~) /3] with l69 (r)l:.:::; e-r. 

Now let us suppose 

(5.3) 
1 L m <oo. 

m~M 

Write M = {Cn In EN} (c N) with e1 < e2 < .... From (5.3) we see 
that 

lim em = 1. 
m--+oo m 

Bythe definition of M, there exists a number rm for each m EN such 
that (em- 1/4) /3 < rm :S (em+ 1/4) /3 and l69 (rm)l :S e-rm. Then 

(5.4) lim rm = /3 and 
m-+oo m 

lim sup log 1.0-g(rm)l :.:::; -1. 
m-+oo Tm 

If m > n, then 

(5.5) /3 /3 /3 r - r > (e - e )/3 - - > (m - n)/3 - - > - (m - n). m n- m n. 2 _ 2 _ 2 

Therefore Lemma 5.1, together with (5.1), (5.2), (5.4) and (5.5), yields 

I. log l69 (x)l 1 1msup . :.:::; - , 
x->oo,xER X 

This contradicts the assumption on g(s), so that (5.3) must be false. 
Thus we have 

(5.6) 
1 L:- =00. 
m 

m~M 

Fix a number J.t with 0 < J.t < {i,. Define a set of primes P 1-' = P J.t,rp 

by 
PI-':= {p:prime I f-.t :S IA(P)I :S 2}. 
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Set a= am,f3 := exp ((m- D /3) and b = bm,f3 := exp ((m + t) /3) for 
mEN. Then we obtain, for a large real number x, 

L l-\(p)69 (1ogp)l »11- l69 (logp)l 

(5.7) 
1 

2 2:.:: 2:.:: l69 (logp)l2 2:.:: 2:.:: -. 
m\tM pEP,,. m\tM pEP,, p 
m<C;x a<p<C;b m<C;x a<p<C;b 

Fix a positive number o with o < j3 /2. For a number x > 0, put 
1r(x) := #{p:::; x} as usual and define 1r11-(x) = 7rJ1-,rp(x) by 

1r11-(x) := #{p:::; xI p E PM}. 

Then, as is shown below, we have 

(5.8) 

uniformly for u E JR. with a(1 + o) :::; u :::; b, if m is sufficiently large. 
Now we prove the inequality (5.8). Consider the polynomial Q/1-(x) := 

-x4 + (4 + J.L2)x2 - 4J.L2 = -(x- 2)(x + 2)(x- J.L)(x + J.L). Set the interval 
Ill-:= [-2, -J.L] U [J.L, 2]. Note that Q/1-(x) < 0 if x rf. Iw Hence we get 

(5.9) 

2:.:: Q/1- (,\(p)) :::; 2:.:: Q/1- (-\(p)) 
a<p<C;u 

:>.(p)E/1, 

:::; Mil- L 1 =Mil- (1r11-(u)- 1r11-(a)), 
a<p<C;u 
:>.(p)E/1, 

where Mil-:= max{Q/1-(x) I x E Ill-} > 0. 
Let m be sufficiently large. Recalling 0 < J.L < J273, let us take 

a small positive real number c such that 0 < c < o /100 and 2 - 3J.1 2 -

c(5+J.L2 ) ( 4ef312 + 4) o- 1 > 0. From ( 4.2) and the prime number theorem 
1r( X) "' lo~ x, we obtain 

( 4ef3/2 + 4) :::; 1r(u)(2 +c)- 1r(a)(2- c):::; 2 + c 0 (1r(u)- 1r(a)). 

Here we have used the relation 

(5.11) 
4ef3!2 + 4 

1r(u) + 1r(a):::; 0 (1r(u)- 1r(a)) 
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for any u with a(1 + 8) ~ u ~ b (see [9, p. 353]). It is known (see e.g. 
[15, Remark 5.2.2] and [17]) that 

"""' 2 X L.,l.\(p)l '""lox' 
p~x g 

X ---> 00. 

This, the prime number theorem and (5.11) imply that 

L .\(p)2 = L .\(p)2- L .\(p)2 ~ 7r(u)(1- t:)- 7r(a)(1 + t:) 
a<p~u p~a 

( 4ei3/Z + 4) . 
(5.12) ~ 1-t: 8 (1r(u)-1r(a)). 

Thus, from (5.12) and (5.10) it follows that for all large m, 

This and (5.9) complete the proof of (5.8). 
Using partial summation and (5.8), we obtain for all large m 

(5.13) 
1 
-» """' p 1-' L., p 

pEP1.,a<p~b a(1+8)<p~b 

1 

From the prime number theorem 1r(x) = J2x l:guu + 0 ( xe-cv'logx) with 

some constant c > 0 and partial summation, we find that for all large m 

(5.14) """' 1 » (~ _ log(1 + 8)) ~ > 0 
L., 2 j3 m ' a(1+8)<p~b p 

since 8 < ei312 - 1. 
Combining (5.7), (5.13) and (5.14), we have 

(5.15) 

which goes to oo as x ---> oo, by (5.6). This completes the proof of the 
lemma. D 
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§6. Proof of Theorem 1.1 

We shall deduce Theorem 1.1 from Propositions 3.1 and 4.6 in the 
same way as in [8, Section 6.5]. The next result is obtained in [8, p. 23, 
Theorem 7.10]. 

Lemma 6.1. Let {Xm} be a sequence of independent 'H(D)-valued 
random elements and suppose that I::'=l Xm converges in 'H(D) almost 
surely. Let Sxm be the support of Xm. Then the support of I::'=l Xm 
is the closure of the set of all f E 'H(D) which may be written as a 
convergent sum f = I::'=l fm with fm E Sxm. 

Using this lemma, Proposition 4.6 and (3.3), we can prove the next 
result about the measure P'P defined in Section 3, by the same argument 
as in the proof of [8, p. 230, Lemma 5.5]. 

Lemma 6.2. Let1i0 (D) be the set {h(s) E 'H(D)Ih(s) has no zeros}. 
Then the support of the measure P'P contains 7-{0 (D). 

In fact, it can be proved that the support of the measure P'P is the 
set 

{h(s) E 7-{(D) I h(s) = 0 or h(s) has no zeros}, 

as in [8, p. 230, Lemma 5.5]. However, Lemma 6.2 is sufficient for our 
purpose. 

Proof of Theorem 1.1. First we consider the case that h( s) has non
vanishing analytic continuation to H(D). Let G = Gh,c: be the set of 
functions g E 'H(D) such that maxsEK lg(s)- h(s)l < E. Then G is 
<?Pen in 'H(D), and by Lemma 6.2 h(s) is in the support of P'P. Hence 

P'P (G) > 0. From this, (3.4), Proposition 3.1 and a property of weak 
convergence we conclude that 

liminf -T1 m ({T E [0, T] I max IL(s +iT, cp)- h(s)l < c}) 
T-->oo sEK 

= hT"minf P<p,T (G) 2: P'P (G) > 0, 
-->00 

which completes the proof of the present case. 
Now we consider the general case. Let h(s) be as in the theorem 

and E > 0 be an arbitrary small number. Since h(s) has no zeros on K, 
by Mergelyan's theorem [19, Theorem 20.5] there exists a polynomial 
q(s) such that q(s) =F 0 on K and 

(6.1) max lh(s)- q(s)l < c/4. 
sEK 
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Noting that q(s) has only finitely many zeros and using the condition 
of K, we can find a simply connected region U such that K C U and 
q(s) f. 0 on U (see [19, Theorem 13.11, (b), (d)]). Then there exists 
a holomorphic function logq(s) (see [19, Theorem 13.11, (h)]). Using 
Mergelyan's theorem again, we find another polynomial r(s) such that 

max lq(s)- er(s) I =max lq(s)ller(s)-logq(s)- 11 < E/4. 
sEK sEK 

This and (6.1) give 

(6.2) max lh(s)- er(s)l < E/2. 
sEK 

Since er(s) f. 0 for all s E D, we can use the result of the former case 
already proved, which yields 

liminf ~m({TE [O,T]I maxJL(s+iT,tp)-er(s)l <E/2}) > 0. 
T->oo T sEK 

This together with (6.2) completes the proof. D 
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