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Renormalized Rauzy inductions 

Takehiko Morita 1 

Abstract. 

The Rauzy induction is a dynamical system acting on the space 
of interval exchange transformations which is introduced by Rauzy in 
[20] and used by Veech to give an affirmative answer to the Keane 
Conjecture in [24] and [25]. The results in [25] enable us to construct 
induced transformations and jump transformations to the various sets. 
In this article the dynamical systems obtained by composing some of 
those transformations are called renormalized Rauzy inductions. Note 
that the two fold iteration of continued fraction transformation can be 
regarded as a classical example of renormalized Rauzy inductions via 
appropriate conjugacy. Our present goal is to establish the same kinds 
of central limit theorems as obtained in [17] for a class of renormalized 
Rauzy inductions. 

§1. Introduction. 

For a positive integer d ~ 2, we denote by Ad the positive cone 
{A = (A1, ... , Ad)t E JR.d : Aj > 0, j = 1, 2, ... , d} and by 6d the 
symmetric group of degree d. An element (A, n) E Ad x 6d is naturally 
identified with an interval exchange transformation T(> •. 1r) : [0, IAI) --+ 

[0, IAI), where IAI1 = L,~= 1 Ai. If A7r-ld =f=. Ad, we can obtain a new 
interval exchange transformation by taking an induced transformation 
of T(>.,1r) to the subinterval [0, IAI1 - min(A7r-ld, Ad)). Thus we obtain 
an almost everywhere defined dynamical system To : Ad x 6d --+Ad x 
6d on the space of interval exchange transformations. To determines 
also a dynamical system T : ~d-1 x 6d --+ ~d-1 x 6d, where ~d-1 
is the projective space consisting of elements A E Ad with IAI1 = 1. 
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We call both dynamical systems To and T Rauzy inductions. For each 
(.X, n) E Ad x 6d with A,--ld =f. Ad, there exist a d x d, 0-1 regular 
matrix A( .X, n) and a map D(.X) : 6d ---> 6d such that To(.X, n) = 
(A(.X, n)- 1 .X, D(.X)n) and T(.X, n) = ( 1;g;(11~ 1 , D(.X)n). We choose an 

irreducible permutation n<0l and we pay attention to its Rauzy class 
9\(n<0l) i.e. the totality of elements n' E 6d such that Tn(.X, n<0l) = 
(A', n') holds for some .X, A', and n. We consider the restricted dynamical 
system T : ~d- 1 x 9\(n<0l)---> ~d- 1 x 9\(n<0l) in what follows. 

Consider the simplest case d = 2. In this case 1r with n1 = 2 
and n2 = 1 is the unique irreducible permutation and R( 7r) = { 7r} 
and the Rauzy induction T and To are the Euclidean algorithms acting 
on A2 and ~b respectively. Put ~(L) = {A E A2 : A2 > .XI} and 
~(R) = {A E A2 : .X2 < .XI}. Then ~1 = ~(L) U ~(R) a.e. and we 
can define the jump transformations TA(L),A(R) : ~(L) ---> ~(R) and 
TA(R),A(L) : ~(R) -t ~(L). s = TA(R),A(L) 0 TA(L),A(R) : ~(L) -t 

~(L) is a typical example of the renormalized Rauzy induction in the 
title of this article. We see that S is an expanding map with respect the 
Hilbert projective metric 8 on ~1 restricted to ~(L ). Moreover, It is 
easy to see that S and the two-fold iteration T'f; of the so called continued 
fraction transformation Tc : (0, 1)---> (0, 1), : x f--+ ~- [~] are conjugate 
to each other via the projection ~(L) 3 (.X1, -X2) f--+ -XI/ A2 E (0, 1). 

It is well known that the ergodic theory of Tc, the metric theory of 
continued fractions, and the dynamical theory of the geodesic flow on 
the modular surface M 1 = lHI/ PSL(2, Z) are closely related, where lHI 
is the upper half-plane inC (see [15], [16], [19], [23]). We notice that 
the modular surface has at least two different faces. First, it has a face 
of cofinite Riemann surface. Secondly, it has the face of the moduli 
space of complex structures of surface of genus 1. So there are two 
possibilities to generalize the results on M 1 according to which face we 
look at. If we regard M1 as one of cofinite Riemann surface, we expect 
that we can construct a Markov map playing the role of Tf; for a general 
cofinite Fuchsian group. In fact, for any cofinite Fuchsian group r Bowen 
and Series [3] construct a one-dimensional Markov map whose action on 
an appropriately chosen subset in lR is orbit equivalent to that of r on 
lR U { oo}. One finds that Tf; is a typical example of Bowen-Series Markov 
map. The result concerning a determinant representation of the Selberg 
zeta function in [16] is generalized to the case of any cofinite Fuchsian 
group in [18] by making use of Bowen-Series Markov maps. Next in the 
case when we regard M1 as the moduli space of genus 1, we consider the 
moduli space M9 of genus g 2: 2 instead of M 1 . It is known that M9 

has a similar structure to M 1 . For example, the Teichmi.iller space of 
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genus g, the Teichmiiller modular group, and Teichmiiller geodesic flow 
play the roles of lHI, PSL(2, Z), and the geodesic flow of M 1. Note that 
Masur [14] solved the Keane Conjecture independently by showing the 
ergodicity of the Teichmiiller geodesic flow with respect to a canonical 
invariant measure. To the question "what plays the role of T[; in the 
case of M 9 ?" we do not have sufficient answer at present. But the 
Rauzy induction and its renormalizations expected to play the role of 
T[; for Teichmiiller modular group. We have to emphasize that the 
study of the transfer operator approach to the central limit problems for 
Markov maps with infinite Markov partition in [17] became a cornerstone 
of the subsequent work [18]. Apart from such a background, it will 
be interesting to study the dynamical central limit problems for the 
renormalized Rauzy inductions. 

From now on we concentrate on the central limit theorems for a 
class of renormalized Rauzy inductions. Veech constructed an a finite 
invariant measure JL of T which is equivalent to the product measure 
Wd-1 x ~ryt(7rU'l), where Wd- 1 is the volume measure of the projective 

space ,0.d-1 and ~ryt( 7rco1) is the counting measure on Dt( 1T(O)). Such 
a measure is unique in the sense that v is another T-invariant mea­
sure absolutely continuous with respect to wd_ 1 x ~ryt( 7r(o)), then there 
exists a positive constant c such that v = CJL. It is not necessar­
ily finite but the measure-theoretic dynamical system (T, JL) is con­
servative (i.e. any Borel measurable set E with r- 1 E c E satisfies 
JL(E,0.T- 1 E) = 0) and ergodic (i.e. any Borel measurable set E with 
T- 1 E = E satisfies JL(E)JL(Ec) = 0). Therefore we can see that for 
JL-almost every (>,(o),7T(Ol), there exists N such that AN(.>.(0 l,1T(o)) = 
A(.>.(0 ), 1T(0 l)A(T(.>.(0 ), 7T(0l)) · · · · · A(TN- 1 (.>.( 0 ), 7T(0l)) > 0 and the in­

duced transformation TAN((AC"l ,7rcol)) ofT to the set ,0.AN(AC"l ,7rcol) x { 1ro} 
is defined, where ,0.AN(AC"J,7rco>) = ,0.d-1 n AN(.>.(o),1T(o))Ad. Our main 
concern is such a renormalized Rauzy induction as TAN((ACo>,7rcoJ))· 

We fix (.>.(0l,7T(o)) as above and put B = AN(.>.(0 l,1T(o)) for the sake 
of simplicity. We can identify ,6.8 x { 1T(O)} with ,6.8 in a natural way. Let 
W3 = Wd-I(,6.8)- 1wd-1l.6. 8 and /18 = JL(,6.8 x {1r(O)} )-1 · JLbB" Clearly, 
/18 is a unique invariant Borel probability measure for T3 : ,6.3 ---> ,6.3 
equivalent to w8 . Moreover we show that T8 is an expanding map with 
respect to the Hilbert projective metric 8 on ,0.d-l restricted to ,6.8 
having an infinite Markov partition. Let Fe(,0.8) (resp. Fe(,6.8 ---> JR) ) 
be the totality of complex valued (resp. real valued) Lipschitz continuous 
functions on ,6.3 with respect to 8. The goal of this article is to establish 
the same kinds of central limit theorems as in [17] for the renormalized 
rauzy inductions T8 . Precisely we show the following two theorems. 
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Theorem 1.1. Let f be an element in Fe(~B ---+ JR) satisfying 
fila f df..LB = 0 which is not identically 0. Then there exists the limit 

(1.1) 

and there exists a positive number C1 such that for any g E Fe(~B), we 
have 

(1.2) 

( STa nf ) sup lw B 9 a < ' < b 
a, bEIR :a<b ' - Jv(!)n -

_ (1 d ) _1_1b _x; d I< C1llglle g WB tn= e X _ r,;; 1 

Lla y27r a yn 

where STa,nf = EZ:~ f o TJJ, WB,g = gwB, and llglle denotes the 
usual Banach norm of Lipschitz continuous function g with respect to 
the Hilbert projective metric 8. 

Theorem 1.2. Let f be an element in Fe(~B ---+ JR) satisfying 
fil 8 f df..LB = 0 which is not identically 0. Then for any g E Fe(~B) 
and for any rapidly decreasing function u on JR, we have 
(1.3) 

lim sup lv'n r u(a + STB,nf(x)) WB,g(dx) 
n-+oo aEIR J ilB 

-(La gdwB) (L u(t)dt) ~exp ( - 2n~~f)) I= 0. 

We should note that the exponential decay of correlations for the 
Rauzy-Veech-Zorich induction and the central limit theorem for the Te­
ichmiiller flow on the moduli space of abelian differentials are established 
recently by Bufetov [4] (see also Avila and Bufetov [1]). Moreover, Avila, 
Gouezel, and Yoccoz prove the exponential mixing of the Teichmiiller 
flow in [2]. From these results we can verify the exponential decay of 
correlations for a wider class of renormalized Rauzy inductions and a 
wider class of observables than those we consider. But the problems 
concerning the positivity of the limiting variance and the rate of con­
vergence of the central limit theorem are not discussed in these papers 
because these problems are not their main concern. We emphasize that 
Theorem 1.1 asserts that we obtain both the positivity of the limiting 
variance and the good rate of convergence of the central limit theorem 
although the class of renormalized Rauzy inductions and observables are 
restricted. In addition, Theorem 1.2 asserts that the rate of convergence 
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obtained in Theorem 1.1 is good enough to enable us to establish a weak 
version of local central limit theorem. 

In Section 2, we explain about interval exchange transformations 
and Rauzy induction. The Keane Conjecture is also treated in Section 2. 
We introduce the class of renormalized Rauzy inductions that we study 
in Section 3. Section 4 is devoted to the transfer operator approach to 
the central limit theorems and proofs of Theorem 1.1 and Theorem 1.2. 

Acknowledgements I am deeply grateful to the referee for informing 
me of the recent results [1], [2], and [4]. 

§2. Interval exchange transformations and Rauzy inductions. 

We note that the definition of our renormalized Rauzy induction is 
based on the ergodic property of Rauzy induction established by Veech 
[25] and Masur [14] in their way to solve the Keane Conjecture on interval 
exchange transformations. Therefore we start with some historical topics 
on the metric theory of interval exchange transformations and Rauzy 
inductions. 

For (>., 1r) E Ad x 6d, we define (3(>.) E {0} x Ad so that (3j(>.) = 
Li= 1 Aj for 0 ::; j ::; d. Consider a partition a(>.) of the interval X ( >.) = 
[0, 1>-h) into subintervals Xj(>.) = [f3j- 1(>.),(3j(>.)) (1 ::; j ::; d). Let 
>.,. = (>.,.- 11 , ... , >.,.-,d)t. Then the interval exchange transformation 
T(> .. 1r) : X(>.) ____,X(>.) is defined by 

d 

(2.1) T(>,,,.)x = x + '2:::(f3,.j-1(>.,.)- f3j-l(>.))Ix1 (>..)(x). 
j=l 

By definition T(>...1r) maps the j-th interval Xj(A) in a(>.) onto 1rj-th 
interval X,.j(>.,.) in a(>.,.) isometrically preserving the orientation. Thus 
the Lebesgue measure m restricted to X(>.) is an invariant measure for 
T(>...,.)· Consider the simplest case when d = 2, 1r1 = 2, 1r2 = 1, and 
>. = (1 -a, a) with 0 < a < 1. Then Ta = T(>..,1r) : [0, 1) ____, [0, 1) is 
the so called Weyl automorphism and it is conjugate to 27ra-rotation 
R2,.a : S 1 ____, S 1 on the unit circle. The following is well known. 

Theorem 2.1. The following are equivalent: 

(1) a is irrational. 

(2) For any x E [0, 1), theTa-orbit of x is dense in [0, 1). 

(3) The Lebesgue measure m on [0, 1) is the unique invariant Borel 
probability measure of Ta. 
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Recall the definitions of minimality and unique ergodicity for a 
homeomorphism H on a compact metric space (X, p). His called mini­
mal if and only if there is no nonempty closed set E satisfying T E = E 
and E -=1- X. H is called uniquely ergodic if and only if it has a unique 
invariant Borel probability measure. We summarize important facts on 
these notions as the following theorem: 

Theorem 2.2. Let H be a homeomorphism on a compact metric 
space X. Then we have the following 

(1) 

(2) 

(3) 

H is minimal if and only if for any x E X, H -orbit of x is 
dense in X. 
H is uniquely ergodic if and only if there exists a Borel prob­

n-1 

ability measure m on X such that .! L f(Hkx) converges to 
n k=O L f dm uniformly in x for any continuous function f on X. 

Assume H is uniquely ergodic. Then H is minimal if and only 
if the unique invariant Borel probability measure has positive 
value for any non empty open set. 

Keane [11] introduced the notion of minimality to general interval 
exchange transformations and proved the following. 

Theorem 2.3. For an interval exchange transformation T(>.;rr), the 
following are equivalent. 

(1) T(> .. ,1t) satisfies the following two conditions: 
(M.1) There is no periodic point. 
(M.2) If an non empty subset F of X(A) satisfies T(> .. 1r)F = F 

and if F can be expressed as a finite union of left closed 
and right open intervals whose endpoints are elements in 

cu~:~ UnEz{T{l,7t),Bj(A)}) u {1}, then F = X(A). 
(2) For any x E X(A), T(>.,1t)-orbit of x is dense in X(A). 

More concrete sufficient condition for an interval exchange transfor­
mation to be minimal are also obtaineds in [11]. We give one of them 
below. A E Ad is called irrational if its components are linearly indepen­
dent over Q and 1l" E 6d is irreducible if 1!"{1, 2, ... , k} = {1, 2, ... , k} 
implies k = d. 

Theorem 2.4. If A is irrational and 1l" is irreducible, then T(>.,1r) is 
minimal. 

From this theorem one may expect that a similar assertion to The­
orem 2.1 holds. But it is shown in [10] (see also [12]) that there exists a 
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minimal interval exchange transformation which is not uniquely ergodic. 
Keane conjectured that for fixed irreducible 7T E 6d, T(> •. 1r) is uniquely 
ergodic Lebesgue almost every A E Ad. The outline and the strategy of 
solving the Keane Conjecture can be found in Veech [25]. Veech intro­
duced a sort of 'renormalization group approach' to the problem and 
solving the conjecture by showing that the so called Rauzy induction 
acting on the space of interval exchange transformation has a natural 
invariant measure. Namely, the unique ergodicity can be regarded as 'al­
most universal property' of interval exchange transformations and the 
Rauzy induction plays the role of renormalization group in the procedure 
to establish such an 'almost universal property'. 

Next we recall the definition of Rauzy induction To : Ad x 6d ---> 

Ad x 6d for our convenience. Consider the following d x d matrices L(1r) 
and R(1r) 

L(7r) = ( Id-1 od-1 ) 
ed-1(7r- 1j)t 1 ' 

(2.2) 

( I1r-'d K1r-'d,d-1r-'d ), R(7r) = 
od-1r-'d,1r-'d Jd-1r- 1 d 

where h is the k X k identity matrix, Od-1 is d- 1-dimensional zero 
column vector, ed_ 1(7r- 1j) is the d- 1-dimensional unit vector whose 
7T- 1j-th component is 1, ok,l is the k X l zero matrix and K1r-ld,d-1r-ld 

and Jd-1r-'d are 1r-1d x (d- 1r-1d) matrix and (d- 1r-1d) x (d -7T-1d) 
matrix given by 

(~ 
0 

J K1r-'d,d-1r-'d = ) Jd-1r- 1 d = 
0 
0 

respectively. In addition we consider two transformations L, R 
6d defined by 
(2.3) 

(a-j::::; a-d) 

(a-j =d) (La-)j = {:~ + 1 

a-j + 1 otherwise 

{
a-j 

(Ra-)j = a-d 

a-(j- 1) 

(j ::::; (J"-1d) 

(j=a-- 1d+1) 

otherwise 
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(2.4) 

Then the Rauzy inductions To : Ad x 6d........, Ad x 6d and T : ~d-1 x 
6d........, ~d-1 x 6d are defined for (>., n) with >.7r-ld of. >.d by 

(2.5) 

To(>., n) =(A(>., n)-1 >., D(>.)n), 

A(>., n)- 1 >. 
T(>., n) =( lA(>., n)-1>.11 'D(>.)n). 

We are only interested in irreducible permutations. Fix a irreducible 
element a- E 6d. Consider the Rauzy class 91 = 91(a-) introduced in 
[20]. Wd-1 and rt!Jl below denote the volume measure on ~d- 1 and the 
counting measure on 91, respectively in the below. The result about 
T : ~d-1 x 91........, ~d- 1 x 91 that we need is the following. 

Theorem 2.5 (Veech [25] (see also [26])). There exists a T in­
variant measure p, equivalent to wd- 1 x rt!Jl on ~d- 1 x 91 which makes 
T both conservative and ergodic. For each 1r E 91, the density p, on 
~d-1 ( = ~d-1 x { 1r}) with respect to Wd-1 is given by the restriction of 
a function on Ad which is rational, positive, and homogeneous of degree 
-d. 

We shall explain how to use Theorem 2.5 to solve the Keane Conjec­
ture. In what follows we only consider the irrational element in Ad and 
permutations in a fixed Rauzy class 91. In this case T(>,,1r) is minimal and 
Tn(>., n) can be defined for any n EN. Let M(>., n) denote the totality 
of Tp,,1r) invariant Borel measures on X(>.). Consider the map c[J(>..,1r) : 

A1(>., 1r) ........, Ad defined by cfJ(>..,1r) (v) = (v(Xl(>.) ), ... , v(Xd(>.)) )t. Then 
we can show that cfJ(>..,1r) is affine, continuous, and injective. Thus l'vf(>., n) 
is identified with its image S(>., n). Moreover it is not hard to see by 
definition that 

(2.6) S(>.,n) = An(>.,n)S(>.(nl,n(n)) (c An(>.,n)Ad) 

holds, where (>.(n), n(n)) = Trr(>., n) and An(>., n) = A(>.(D), n(D)) 

· · · · A(>.(n- 1), n(n- 1)) for n 2: 0. Note that if T(>..,1r) is minimal then 
m(X(>.(nl))........, 0 (n........, oo). Therefore there exists N = N(>.,n) such 
that AN(>., n) > 0, i.e. all entries of the matrix AN(>., n) are positive 
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and moreover there exists a neighborhood U(>-., n) C Lld_ 1 of).. such that 
AN(>-.', n) = AN(>-., n) for any>-.' E U(>-., n). Now we are in a position 
to make use of Theorem 2.5. Theorem 2.5 implies that the Poincare 
Recurrence Theorem holds for (T,p). Since J-L is equivalent to Wd- 1 on 
Lld- 1 x { 1r} for each 1r E !Jt, so wd_ 1-almost every >-. is a recurrent point 
i.e. having the property that not only T(>,,1r) is minimal for any 1r E !Jt 
but also for any neighborhood U C Lld_ 1 of>-., Tn(>-., n) visits U for in­
finitely many number of n. Choose >-. satisfying such a property and for 
1r E !Jt, choose N such that B =AN(>-., n) > 0. Then we see that both 
1r(n) = 1r and AN(>-.(n)1f(n)) = B hold for infinitely many n. Combining 
this with the fact (2.6), we find a infinite sequence Cn = Cn(>-., n) of 
d x d nonnegative matrices such that 

(2.7) 

for any n. The positivity of B > 0 implies that dim n~1 BC1BC2 · · · · · 

BCnAd = 1. Hence we arrived at the affirmative answer to the Keane 
Conjecture. 

Theorem 2.6. Let 1r E 6d be irreducible. Then T(>,,1r) is uniquely 
ergodic for Lebesgue almost every >-. E Ad. 

We finish this section with the following remark. 

Remark Choose any 1r E !Jt and fix it. For any irrational 
>-. E Lld_ 1 , we can assign an infinite sequence (Dn) E {L, R} 2 + so that 
D(>-.(n)) = Dn, equivalently, A(>-.(n), 1f(n)) = Dn(1r(n)) for each n 2': 0 (see 
(2.4)). In virtue of Theorem 2.5, there exists a Borel set f2(n) c Lld- 1 

such that Wd- 1(f2(n)) = Wd- 1(Lld-d and the map 3 : f2(n)----+ {L, R} 2+ 
defined by 

(2.8) 3(>-.) = (D(>-.(n))) 

is injective and for any finite sequence (Dk)k;;;t E {L, R}n, the subset of 
the elements >-. for which (Dk)k;;;t occurs in 3(>-.) infinitely many times 
has the total measure. 

The assertions except for the injectivity of 3 are easy consequences 
of Theorem 2.5. But it is also easy to see that An(>-., n) = An'(A', n) 
if and only if n = n' and A(Tk(>-., n)) = A(Tk(>-.', n)) for every k with 
0 :::; k :::; n - 1 since from the definition of To and T we have for each 
n2':0 

(2.9) >-.' E An(>-., n)Ad if and only if An(>-.', 1r) =An(>-.,, n) 
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§3. Renormalization of Rauzy inductions. 

Before introducing renormalized Rauzy inductions, we recall the 
definition of jump transformations and induced transformations. Let 
(X, B, J.L) be a IJ finite measure space and T : X --+X a J.L-nonsingular 
transformation such that J.L almost every x E X has the property that 
for any E E B with J.L(E) > 0, rnx E E holds for infinitely many n 2:: 0. 
Then for any E, FEB with J.L(E) > 0 and J.L(F) > 0, we put for x E E 

(3.1) n(E,F;x) = inf{n 2::1: Tnx E F}. 

In the case when E = F we just write as n(E; x) = n(E, E: x). From our 
assumption n(E, F; x) < oo J.L-a.e. Thus we obtain almost everywhere 
defined transformation TE,F : E --+ F called the jump transformation 
of T from E to F by 

(3.2) TE,FX = yn(E,F;xlx. 

In the case E = F, TE,F is denoted byTE and called the induced trans­
formation ofT toE or the first return map ofT to E. Roughly speak­
ing, 'renormalization of the transformation T' means the procedure 
constructing a new transformation by producing jump transformations 
and their composition. 

From the fact mentioned in the previous section we can consider the 
renormalization of the Rauzy induction T : fl.d_ 1 x 91 --+ fl.d_ 1 x 91. 
Set 

(3.3) 

ll.(L,1r) = (L(1r)Ad-1 nll.d-d x {1r} 

={.A E ll.d-1 : Ad> A7r-ld} X {7r} 

ll.(R, 1r) = (R(1r)Ad-1 n ll.d-d x {1r} 

={AEll.d-1: Ad<A7r-td}x{7r} 

ll.(L) = U ll.(L,1r), ll.(R) = U ll.(R,1r). 

Consider a jump transformation Tt:,.(L),t:..(R) : ll.(L) --+ ll.(R) and 
Tt:,.(R),t:..(L) : ll.(R) --+ ll.(L). Then we can define a transformation 
S = Tt:..(L),t:..(R) o Tt:,.(R),t:..(L) : ll.(L)--+ ll.(L). Sis a typical example of 
the renormalized Rauzy induction. Note that Zorich [27] shows that S 
has a finite invariant measure equivalent to the restriction of wd_ 1 x ~ryt 

to ll.(L). In particular, in the case of d = 2 it has a classical meaning. 
In this case there exists a unique Rauzy class {1r : 1r(1) = 2, 1r(2) = 1}. 
If one notices that T acts as the Euclidean algorithm on the projec­
tive space ll.d- 1 = ll.(R) U ll.(L ), one obtains the following commutative 
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(3.4) 

Renormalized Rauzy inductions 

6-(L) 

~1 
(0, 1) 

~ 6-(L) 

1~ 
-------> (0, 1) 

T(, 
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where 6-(L) x {1r} is identified with 6-(L), tp : 6-(L) --+ (0, 1) is the 
homeomorphism given by tp(A) = -XI/-X2, and Ta : (0, 1)--+ (0, 1) is the 
continued fraction transformation given by Tax= ~ - [~]. 

The rest of the section is devoted to the study of a special class of 
renormalized Rauzy inductions whose members are not generalization 
of Tf, but it is useful to explain our idea. Let (.X, 1r) E 6-(L, 1r) (resp. 
6-(R, 1r)) be such that A is irrational. Then we can find N ~ 2 such that 

(3.5) 7r(N) = 7r, AN(A, 7r) > 0. 

We denote AN(A, 1r) by B for the sake of simplicity. Consider the set 
6. 8 =BAd n 6.d_ 1 and 6.(B,1r) = 6-s x {1r}. We are interested in the 
induced transformation Ts of the transformation T to the set 6-(B, 1r). 
We regard T8 as a transformation on 6.8 in a natural way. 

For nonnegative invertible matrix A, let 6-A = AAd n 6-d- 1 and A 
- - A 

denotes the map A : 6-d-1 --+ 6-d-1 given by Ax= lAx!, for x E 6-d-1· 

Lemma 3.1. Let T8 be as above. There exist sequences of distinct 
nonnegative integral matrices A= {A(k)} and C = {C(k)} satisfying the 
following: 

(1) A (k) B = BC(k) and det A (k) = det C(k) = ±1. 
-- A- 1x 

(2) Tslt~.As = A- 1 , i.e. Tsx = IA- 1xh for A EA. In particular, 

Ts6.AB = 6-s for each A E A. 
(3) The family of the set P = { 6-AB : A E A} forms a measurable 

partition of 6-s, i.e. ws(6.AB n 6-A'B) = 0 for A, A' E A 
with A -1- A' and ws(6.s \ UAEA 6-As) = 0, where ws = 

Wd-1 (6-s )- 1Wd-1bs 

Proof. All assertions in the lemma are easy consequences of Re­
mark in the end of Section 2. For example, we can find the family A 
as follows. Let x E 6-s be a irrational recurrent point for T. Let n be 
the first return time of x for T. T8 x = Tnx holds. Therefore we see 
that An(x, 7r)- 1x E BAd. Thus x E 6.A,(x,1r)B· In virtue of (2.9) we 
have A(Tn+k(x, 1r)) = A(Tk(x, 1r)) for each k with (0 :::; k :::; N- 1) 
and AN(x, 1r) = B. Put A(x) = An(x, 1r) and C(x) = B- 1 An(x, 1r)B. 
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There are countably many possibilities of Acx) and C(x) even if x varies. 
Hence there exists a countable set {xk} such that A = {A(xk)} and 
C = {C(xk)} are desired sequences. Q.E.D. 

Next we introduce the Hilbert projective metric on ~d- 1 . Note that the 
results on the Hilbert projective metrics that we need as well as their 
application to the study of ergodic behavior of dynamical systems are 
summarized in [13]. 

For x, y E Ad, we write x :::; y if each entry of y- x is nonnegative. 
Put 

(3.6) 

a(x, y) =sup{ a~ 0 : ax:::; y}, 

(3(x,y) =inf{b ~ 0: y:::; bx}, 

(3(x,y) 
e(x, y) =log-(-). 

a x,y 

8 is called the Hilbert projective metric on Ad. 8 is a pseudo-metric 
on Ad such that 8(x, y) = 0 if and only if x = cy holds for some c > 0. 
Thus 8 is a metric on the projective space ~d- 1 . The following two 
lemmas are well known facts and their more general forms can be found 
in [13]. 

Lemma 3.2. Let A be a nonnegative matrix. Then we have 

(3.7) ( diam(~A)) 8(Ax, Ay) :::; tanh 4 8(x, y) 

for any x, y E Ad, where diam(~A) = sup{8(Ax, Ay) : x, y E Ad} 

Lemma 3.3. For any x, y E Ad with lxl1 = IYib we have 

(3.8) 

For n ~ 1, put 

(3.9) 
An ={A1A2 ···An : A1, A2, ... , An E A} 

Pn ={~AB : A E An}· 

\Ve summarize the basic properties of the renormalized Rauzy induction 
TB as the following lemma. 

Lemma 3.4. Let TB be as above. Then we have the following. 

(1) (Markov property) For any n ~ 1 we have 

n-1 

(3.10) Pn = V TjikP and T!f~AB = ~B 
k=O 



(2) 

(3.11) 

(3) 

(3.12) 
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for any ~AB E Pn· In particular TJj : ~AB ---+ ~B is a 
homeomorphsim. 
(expanding) There exist C2 > 0 and () E (0, 1) such that for 
any n:::: 1 

holds for any x, y E ~AB E Pn. 
(finite distortion) There exists C3 > 0 such that for any n :::: 1 

II J(TJj)(x) I < C 8("n "n ) 
ogJ(TJj)(y) - 3- J.BX,J.BY 

holds for any x, y E ~AB E Pn, where JTJj) denotes the Ja­
cobian of TJj with respect to w B. 

Proof. (1) follows from Lemma 3.1. Since diam(~B) < oo, (2) is an 
easy consequence of Lemma 3.2. It remains to prove (3). To this end we 
need the following fact which is proved in [24]. For nonnegative matrix 
with I det AI = 1, the Jacobian J(A) of the map A : ~d-1 ---+ ~d-1 with 
respect to wd_ 1 is given by 

(3.13) 
- 1 

J(A)(x) = )Ax)~ for x E ~d- 1 . 

Note that if x E ~AB, then x = ATJjx by definition. Therefore we have 

J(TJj)(x) = )A-~xl~ = )ATJ1xlf 

Putting x' = TJjx and y' = TJjy we see that 

I
I J(TJj)(x) I = d II )Ay')1 I = d I)Ay')I - )Ax')1 I 
og J(TJj)(y) og )Ax')1 )Az'l1 

holds for some z' E ~B-

I
)Ay')1 -,)Ax'l11 ~ Li Lj Aij)xj ~ Yjl < )x'- y')1 

)Az )1 Li Lj A;jZj minj zj · 

Since z' E ~B, minj zj is bounded from blow by a positive constant 
depending only on B. Combining these estimate with Lemma 3.3, we 
arrive at the desired inequality. Q.E.D. 
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Remark In fact since B > 0, there exists C4 2: 1 depending only on B 
such that C41e(x, y) :::; lx- Yl1 :::; C4e(x, y) for any x, y E D.. B. Thus 
combining this with the trivial fact lx- Yl2 :S lx- Yl1 :S Vdlx- Yl2, we 
can obtain the similar result to Lemma 3.4 using the usual Euclidean 
metric on D..B instead of e. We employ the projective metric because 
the expanding property (2) in Lemma 3.4 follows easily from well known 
fact Lemma 3.3. 

§4. Central limit theorems 

This section is devoted to the proofs of Theorem 1.1 and Theorem 
1.2. We employ the transfer operator technique as used in [8], [17], and 
[21]. Let TB be the renormalized Rauzy induction as in the previous 
section. Consider the Perron-Frobenius operator £ of TB with respect 
to w B which is characterized by the identity. 

(4.1) { £f(x)g(x) dwB = { f(x)g(TBx) dwB 
J~B J~B 

for any f E L 1(wB) and for any g E L00 (wB)· In virtue of Lemma 3.1 
and the formula (3.13), it is easy to see that 

""" 1 -en f(x) = L.t IAxldf(Ax) 
AEAn 1 

(4.2) 

for any f E L 1(wB) and for any n 2: 1, where Ax= Ax/IAxlt as before. 
Thus £ can be thought as a bounded operator on C(D..B) as well as 
Ll(wB)· Let Fe(D..B) be the totality of Lipschitz continuous functions 
on D..B with respect toe endowed with the norm 

(4.3) ll9lle = [g]e + ll9lloo, 

where ll9lloo = supxE~B lg(x)l and [g]e = SUPx,yE~B:#y IY~{~,;~y)l i.e. 
the Lipschitz constant of g with respect to e. Fe(D..B --t IR) denotes 
the totality of real valued elements of Fe(D..B)· For f E Fe(D..B --t IR) 
and t E C, we define a perturbed Perron-Frobenius operator of £(t) 
L 1(wB) --t L1(wB) by 

( 4.4) £(t)g = £(e...citf g). 

Then it is easy to see that 

(4.5) 

holds for any n 2: 1. The following estimates play important roles in our 
argument. 
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Lemma 4.1. There exist positive constant C5, C6, C7 , and C8 in­
dependent of n and f such that the following estimates hold for any 
g E Fe(L:':iB) and for any t E C. 

(4.6) 

(4.7) 
[L:(t)ng]e ::=; c6 (e1Imtlll!ll=e)n[g]e 

+ C7enllmtlll/ll= (1 + eCs[/]eltl [f]eltl) llglloo· 

Proof. First we note that there exists C9 2: 1 such that 1/IAxl~ E 

[Cg-1, Cg]wB(6.AB) holds for any x E 6.AB, A E An and n 2: 1, where 
a E [c- 1, c]b means c 1b ::=; a ::=; cb. This follows from (3) in Lemma 
3.4 and the fact that each entry of x E 6.8 is bounded below by some 
constant depending only on B. 

In what follows we write f(n) = Sr8 ,nf for convenience. 

Thus the first estimate is obtained by choosing C5 = C9 

Next we show the second estimate. 

£(t)ng(x)- £(t)ng(y) 

ev'=Itfc,.J(Ax) _ ""' ev'=ItfcnJ(Ay) _ 

= L IAxl~ g(Ax)- L.. IAYI~ g(Ay) 
AEA,. AEAn 

= L (~- ~) ev'=ItfcnJ(Ax)g(Ax) 
AEAn !Axil IAYI1 

= L ~ (ev=Tt!(n)(Ax)- ev'=Tt/(n)(Ay)) g(Ax) 

AEA,. IAYil 

= L ~ev'=ItfcnJ(Ay)(g(Ax)- g(Ay)) 
AEA,. IAYil 

=l+Il+lll. 
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Then we have 

(4.8) 

in virtue of (3.12) and ( 4.6), where clO is a positive constant independent 
of n and g. Next we have 

(4.9) 

IIII ::; L ~ leh/=Itfcn)(Ax)-V"=Itfcn>(Ay)) _ 11· 
AEA,. IAYil 

. enllmtlllfllx llglloo 

< L _1_eCu(f]Hitl8(x,y). 
- AEA,. IAYI1 

. Cn[/]eltl8(x, y)enllmtlllfllx llglloo 

::;c5c11eCB[f]oltl [f]eltlenllmtlllfllx II gil 008(x, y ), 

where C11 is a positive constant independent of n and g, and Cs 
C11diam(~B)· Finally we have 

(4.10) 
III II::; L ~enllmtlllfll= [g]eC2Bn8(x, y) 

AEAn IAYI1 

::;c2c5(e1Imtlllfllx B)n[g]e8(x, y) 

in virtue of (3.11). Thus if we put C6 = C2C5 and C1 = Cg + C5C11, 
we see that the inequalities (4.8), (4.9), and (4.10) yield the estimate 
(4.7). Q.E.D. 

In virtue of the estimates in Lemma 4.1 we can apply the Ionescu­
Tulcea and Marinescu Theorem in [7] to the perturbed Perron-Frobenius 
operators .C(t) with t E R. More precisely, for each t E JR., as a bounded 
linear operator on Fe(~B), .C(t) has at most a finite number of eigenval­
ues of modulus 1 whose eigenspace are finite-dimensional and the other 
spectrum of .C(t) is contained in the disc with radius less than 1. In 
addition the spectrum on the unit circle of .C(t) as a bounded operator 
on L 1 ( w B) also consists of eigenvalues and their eigenspaces are identical 
with those of .C(t) as an operator on Fe(~B)· Further we can show the 
following. 
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Lemma 4.2. Let f be an element in Fe(~B ----+ JR.) which is not 
a constant function. Assume that .C(t)g = >..g holds for t E JR., >.. with 
modulus 1, and g E L 1(wB) with llgll£1(wB) = 1. Then it turns out that 
t = 0, >.. = 1, and g = chB for some constant c with lei = 1, where 
hB E Fe(~B) is the smooth density function of the unique absolutely 
continuous invariant probability measure J..LB = J..L(~B)- 1 J..L of TB with 
respect to w B . 

Proof. Let t, >.., g be as above. First we show that lgl = hB. In 
fact lgl = I.C(t)gl :::; .Cigl since .Cis positive operator. In addition, (4.1) 
yields fD.a .Cigl dwB = fD. 8 lgl dwB. Thus we have .Cigl = lgl in L1(wB)· 
In virtue of the Ionescu-Tulcea and Marinescu Theorem we see that lgl 
has a Lipschitz continuous version as noted in the above. Then we have 

(4.11) 
(h ;/ lgl)(x) =h B 1 (x ).en ( hBh 8 1lgl) (x) 

= L h81(x)IAxi!dhB(Ax)(h8 1 igi)(Ax) 
AEAn 

holds for any x E ~B and for any n EN. On the other hand .ChB = hB 
implies that 

( 4.12) L h81(x)IAxi!dhB(Ax) = 1 
AEAn 

holds for any x E ~B and for any n E N. Thus if x 0 E ~B satisfies 
(h B 1lgl) (xo) = maxxED.a (h B 1lgl) (x ), ( 4.11) yields that (h 81lgi)(Axo) = 
(h81lgl)(xo) holds for any A E An and for any n EN. Note that we can 
easily see that {Ax : A E An, n E N} is dense in ~B for any x E ~B 
from the assertions (1) and (2) in Lemma 3.4. Hence we conclude that 
h81 igi is a constant function. 

Next we have 

>..(h 8 1 g )(x) =h 81 (x ).C(t) (hB h 8 1 g )(x) 

(4.13) ev=Itf(Ax) _ _1 _ 

= L ( )lA ld hB(Ax)(hB g)(Ax) 
AEAt hB X X 1 

for any x E ~B· Since h81lgl = 1, (4.12) and (4.13) imply that 
(h81g)(x) = >.ev=Itf(Ax)(h81g)(Ax) holds for any x E ~B and for any 
A E A1. Consequently we have 

(4.14) 
l(h81g)(x)- (h81g)(y)l :Siev=Itf(Ax)- ev=Itf(Ax)i 

+ i(h8 1g)(Ax)- (h8 1g)(Ay)i 
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for any x, y E l:::iB and for any A E A1. Since we can choose a sequence 
{Ak} C A such that diam(/::iAkB) -> 0 (k -> oo) and f and (h[/g) 
are Lipschitz continuous with respect to 8, the inequality (4.14) implies 
that (h[/g) is a constant function. Thus we conclude that g = hB and 
J..etf = 1. Since f is continuous non constant function, f(l:::iB) is an 
interval with nonempty interior. Hence we can conclude that .A= 1 and 
t = 0. Q.E.D. 

Clearly {.C(t) : t E C} is an analytic family of bounded linear 
operators on Fe(l:::iB) as well as L 1(wB)· Moreover we see the following 
in virtue of Lemma 4.2. 

Proposition 4.3. There exist a neighborhood U of the real line lR 
and ro > 0 such that the open disc D(O, ro) of radius ro centered at 
the origin is contained in U and the analytic family {.C(t) : t E U} of 
bounded linear operators on Fe(l:::iB) satisfies the following: 

(1) FortE D(O, r0 ), .C(t) has the spectral decomposition 

(4.15) .C(t)n = .A(t)n E(t) + R(t)n 

for each n E N, where .A(t) is a simple eigenvalue of .C(t) 
with maximal modulus, E(t) is the projection onto the one­
dimensional eigenspace corresponding to .A(t), and R(t) is a 
bounded linear operator with spectral radius less than r 1 for 
some r1 E (0, 1) independent oft E D(O,ro). 

(2) Fort E U with IRe tl ~ ro, the spectral radius of .C(t) is less 
than 1. 

(3) .A(t) in the assertion (1) is a analytic function on D(O, r0 ) 

(4.16) 

(4) 

(4.17) 

such that 

.A(O) = 1, .A'(O) = 0, and 

A11 (0) = - lim .!_ { ftn) df.LB = -v(j) < 0. 
n-+<XJ n J flB 

E(t) and R(t) in the assertion (1) are analytic functions on 
D(O, r0 ) with values in bounded linear operators on Fe(l:::iB) 
given by the Dunford integrals 

E(t) = ~ 1 R(.C(t), z) dz, 
27l' -1 lz-ll=r2 

R(t)n = ~ 1 zn R(.C(t), z) dz 
27l' -1 lzl=r1 
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for each n E N, where 0 < r 1 , r2 < 1 are independent oft E 

D(O, ro) satisfying r 1 + r2 < 1 and R(£(t), z) = (zl- £(t))- 1 

denotes the resolvent operator of£( t). 

Proof. Combining Lemma 4.2 and Ionescu-Tulcea and Marinescu 
Theorem, we can see that if t E lR \ {0}, the spectral radius of £(t) is 
less than 1 and £(0) = £ has an eigenvalue 1 and the other spectrum of 
£is contained in D(O, r) for some 0 < r < 1. Thus all the assertions are 
easy consequences of the general perturbation theory for bounded linear 
operators (see Section VII-6 in [5] and [9]) except for the equations on 
.\1(0) and .\"(0) in (4.16). 

Let g be an element in Fe(I:3.B--+ JR). We consider the characteristic 
function tpg,n(t) = ft::.B eyCitfcnJg dwB of the distribution of f(n) with 
respect to the signed measure gw B. Then by ( 4.1) and ( 4.5) for t E 

D(O, r0 ) we have 

(4.18) 

where 

'Pg,n(t) = 1 £(t)ng dwB = .\(t)ne9 (t) + r9 ,n(t), 
6.13 

eg(t) = r E(t)g dwB 
lt::.B 

Note that e9 (t) and r9 ,n(t) are analytic functions on D(O, ro) satisfying 

for each k ::::: 0 where Ck is a constant independent oft E D(O, ro) and 
k ::::: 0 by ( 4.17). First we differentiate the functions in ( 4.18) after 
substituting tjn for t and hB for g. Next substitute 0 for t. Then we 
have ("'11 f(n) I( ) 1 I ( ) 1 I ( ) y -.l - dJLB = .\ 0 + -eh 13 0 + -rh 13 n 0 . 

6.n n n n ' 

Letting n --+ oo, we obtain .\'(0) = 0 in virtue of the Birkhoff Ergodic 
Theorem. Similarly, first we differentiate twice the functions in ( 4.18) 
after substituting tjfo fort and next substitute 0 fort. Since .\'(0) = 0, 
we have 

Letting n --+ oo, we obtain .\11 (0) = -v(f). It remains to prove the 
positivity of v(f). Since the autocorrelation off decays exponentially 
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fast by the spectral decomposition (4.15), we can apply the Leonov's 
result (see Chapter 18 in [6]). Therefore we can find a real valued element 
u E L 2 (J.LB) such that f = u o TB- u. Then we have e,r-::f e,r-::uhB = 
(e,r-::u o TB)hB. Operate£ on both sides of this equation, we see that 
£(1)(e,r-::uh8 ) = e,r-::uh8 . This contradicts the result in Lemma 4.2. 
Hence we have seen that v(f) > 0. Q.E.D. 

Consider 'Pg,n(t) =fila e,r-::tf<n>gdwB of the distribution of f(n) with 
respect to the signed measure gwB as above .. Now we can show the 
following. 

Theorem 4.4. There exists to > 0 such that if ltl :::; toJn, we have 

(4.20) 
I'Pg,n(Jn)- (La gdwB) exp (- v(~)t2)1 

:::; ( ( 012 ~ + 013 ~) exp (- v(~t2 ) + 014 ~r!) llglle, 

where r 1 E (0, 1) are the same constants as in Proposition 4-3 and 012, 

013, and 014 are positive constants independent of g and n. 

Proof By Proposition 4.3, there exists an analytic function w in 
D(O, ro) such that 

.X(t) = 1 - v(~)t2 + w(t)t3 • 

Thus 0 < to < ro is small enough, there exists 0 15 > 0 such that 

On the other hand by using (4.18) and the fact r 9 ,n(O) = 0, we have 

(4.22) 
<p9 n( ~)=A( ~te9 (0) +.X( ~t(e9 ( ~)- e9 (0)) 

' yn yn yn yn 

t + r9 ,n( Jn)- r9 ,n(O). 

Applying the inequality in (4.19) and the inequality (4.21) to (4.22), it 
is not hard to show the desired result. Q.E.D. 

Now we are in a position to prove Theorem 1.1 and Theorem 1.2. 
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Proof of Theorem 1.1. Recall the Berry-Esseen inequality (see [6]). 
Let F and G be distribution functions of probability measures on R 
Assume that G is differentiable. Then we have 

(4.23) 
21t h(u) 24 , 

sup IF(x)- G(x)l :0::::- - du +-sup IG (x)l, 
xEIR 7r 0 U 1rt xEIR 

where h(u) = f~oo eFiux dF(x)- f~oo eFiux dG(x). 
If we consider the special case when gin Theorem 4.4 is a probability 

density, then Theorem 4.4 gives an estimate of the function which plays 
the role of h in ( 4.23). Thus we can obtain the desired result by applying 
the Berry-Esseen inequality to the distribution function F of fen) with 
respect to gwB and the distribution function G ofthe normal distribution 
N(O, v(f)). The result for general g is its easy consequence. 

Proof of Theorem 1.2. Let g be a element in Fe(f::.B ---> JR.). Since 
g± satisfies [g±]e :0:::: [g]e, we may assume that g;::: 0 and fflu g dwB = 1. 

First we consider the case when u satisfies u E V(( -k, k)) for some 
k > 0, where V(K) denotes the space of test function with support in a 
set K c R Let a be any real number. Then we have 

Vn { u(a + f(n) (x))g(x) dwB = Vn { u(t)cpg,n(t)eFiat dt. 
J ilB 27r JIR 

Therefore we see that 

(4.24) 

where 

R ( ) _ Vn J ' ( ) ( ) Flat 1 n -- u t cpg,n t e , 
21r En~ It I :s;k 

R2(n) =2_ { (u(-t-)- u(O))'Pg,n(-t-)eFia)n, 
21r lltl<<nVn Vn Vn 

( 1 1 t u(f)t2 Fia t ) R3(n) = - (cpg,n(-)- e--·2-)e - vn u(O), 
27r ltl<<,yn Vn 

( 1 1 ·v(.f)t
2 FI t ) R4(n) =- - . e--2 -+ - a vn dt u(O). 

2n ltl><, ..;n 
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The sequence En in the above is chosen so that 

(4.25) En 1 0, EnVn i oo, and E~n~ 1 0 (n ___... oo). 

Now we have 

In virtue of (1) in Proposition 4.3 and the choice of to in Theorem 4.4, 
we see that 

II.C(t)nll- < 16 - -4- rl {c ((1 v(f)t 2 )n + n) 
8 - C1(k)r(k)n 

if ltl ::; to 

ifto < ltl ::; k, 

where C16 is a positive constant depending only on TB and f, Cl(k) a 
positive constant independent of g but dependent on k, and r(k) < 1 
denotes the supremum of the spectral radius of .C(t) with t running over 
the set [-k, -t0 ) U (t0 , k]. Thus we conclude that there exists a positive 
number C2 (k) such that 

(4.26) IRl(n)l ::::: Cz(k)vn ( 1- v(flE~) n llgllellulloo 

It is easy to see that 

( 4.27) 

Next in virtue of Theorem 4.4, we obtain 

for some C17 depending only on T8 and f. Finally we have 

Combining (4.26), (4.27), (4.28), and (4.29), we see that there exist 
C3(k) > 0 depending only on TB, J, and k, and In depending only on 
TB, f with In ___... 0 ( n ___... oo) such that 

(4.30) 
IR1(n) + R2(n) + R3(n) + R4(n)l 

::; C3(k)rn (lifLIIoo + llfL'IIoo) llglle· 
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Combining (4.24) with (4.30), we obtain 

(4.31) lvn l u(t)cpg,n(t)ev'=To!t dtl ::; C4(k) (llulloo + IIU'IIoo) llglle 

for some C4(k) depending only on TB, J, and k. Hence we conclude 
that { vfn'Pg,n(·)ev'=T<>(·) : n E N, a E IR} is a bounded family in the 
distribution space V(( -k, k))'. Since each y'ncp9 ,n(·)ev'=T<>(·) is a dis­
tribution of positive type, the family turns out to be a bounded family 
in the space of B(IR)' of the bounded distributions (see Chapter VII in 
[22]). 

Next we choose any u E S(JR) and fix it. Let J.Lg,n,a denotes the 
Radon measure such that P,g,n,a = vfn'Pg,n(·)ev'=T<>(·). Since {P,g,n,a} is 
a bounded set in B(IR)' and u E S(IR) C B(IR) , we have 

sup 1 r u(t + s) J.Lg,n,a(dt)l 
sEIR }R 

= sup 12
1 f u(t)yncp9 ,n(t)ev'=T<a+slt(dt)l ::; C1 (u), 

sEIR 7r JJR 

( 4.32) 

where C1 (u) > 0 is a constant depending on u but not on n. On the 
other hand {u(s,t) = s- 1(u(· + s)- u(·)) : 0 <lsi::; 1} is a bounded 
set in S(IR), and so a bounded set in B(IR). Therefore we have 

(4.33) sup sup I r u(s, t) J.Lg,n,a(dt)l ::; C2(u), 
aE!Rs:O<Isl::;l }IR 

where C2(u) > 0 is also a constant depending on u but not on a and n. 
Let· {pj} be a sequence of probability measures on lR which converges 

to 6(0) (the unit mass at the origin) weakly as j -> oo such that PJ E 

V(IR) for each j. Choose any 6 E (0, 1). We consider 

ll u(t)(pj * J.Lg,n,a)(dt) -l u(t)J.Lg,n,a(dt)l 

( 4.34) 
::; 1 PJ(ds) I r (u(t + s)- u(t)) J.Lg,n,a(dt)l 

lsl<8 }R 

+ 1 Pj(ds) I r (u(t + s)- u(t)) J.Lg,n,a(dt)l 
lsl<":8 }R 

=ln(6) + IIn(6). 

By (4.32) we have 

IIn(6)1 ::; 1 PJ(ds)lsll r u(s, t) J.Lg,n,a(dt)l ::; C2(u)6. 
lsl<8 }IR · 
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Next by ( 4.33) we have 

Thus we have 

(4.35) 

On the other hand ( 4.24) and ( 4.30) yield that for fixed j, we obtain 

11 1 "2 I (4.36) sup u(t)(p1 * f.lg,n,a)(dt)- u(O)p1(0) ~e-2""tn ---> 0 
aE~ ~ y2nv(f) 

Hence in virtue of (4.35), (4.36), we conclude that 

lim sup sup lvn r u(a + !(n))gdwB- u(O) ~e-2 "~'~!) I 
n->oo aE~ J 6.B 2nv(f) 

< C2(u)b + 2Cl(u)pj(lsl 2: b). 

Letting j ---> oo, we see that the left hand side in the above is bounded 
by C2 (u)b. Since bE (0, 1) is arbitrary, the proof of Theorem 1.2 is now 
complete. 

Remark Since the metrics 8(x, y) and lx- Yl1 are equivalent on 
b.B by Remark at the end of the previous section, the totality Lip(b.8 ) 

of Lipschitz continuous functions with repect to the Euclidean metric on 
b.B coincides with Fe(b.B) and its Banach norm llgiiLip = Lip(g)+llglloo 
is equivalent to llglle. Thus all the results in this section are valid if the 
space (Fe(b.B), II · lie) is replaced by (Lip(b.s), II · IILip)· We employ 
Fe(b.B) just for the sake of convenience. 
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