
Advanced Studies in Pure Mathematics 49, 2007 
Probability and Number Theory - Kanazawa 2005 
pp. 171-184 

On simultaneous Diophantine approximation to 
periodic points related to modified Jacobi-Perron 

algorithm 

Shunji Ito and Shin-ichi Yasutomi 

Abstract. 

For each ( n, {3) which is a periodic point related to modified Jacobi
Ferron algorithm and IQ(n) has a complex embedding, we claim the 
following facts: the limit set of {(y'Qn(qnn- Pn), y'Qn(qn/3- rn)ln = 
1,2, ... } is a finite union of similar ellipses, where (Pn,qn,rn) is the 
n-th convergent (Pn/qn, rn/qn) of (n, {3) by the modified Jacobi-Perron 
algorithm but for some (n, {3) the ellipse given above is not the nearest 
ellipse in the limit set of { ( y'Q(qn- p), y'Q(qf3- r) lq E Z, q > 0} which 
is a union of similar ellipses. 

§1. Introduction 

We denote by C, JR., Q and Z the set of all complex numbers, the 
set of all real numbers, the set of all rational numbers and the set of all 
integers respectively. Let (31, (32, ... , f3n E JR. be linearly independent over 
Q. Then, it is well known that there exist infinitely many q E Z(q > 0) 
such that q:.llqf3ill < 1 for any integer i with 1 :::; i :::; n. We consider 
the limit set of points: 

which is denoted by lim(/31. fJ2, ... , f3n), where llxll = x - m and m is 
the nearest integer to x E R For n = 1, using the continued fraction 
expansion of (31, we know the nearest point in lim(/31) to the origin, that 
is, let "( = limsupq2m+1llq2m+lf3111 and "(1 = liminf q2mllq2mfJ1II, then 

m-+oo m-+oo 

lim(/31) n ["f,"f'] ={"(,"('},where (Pm,qm) is them-convergent of fJ1-
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W. Adams [1] determined the lim(,8I. ,82) for specific ,81. ,82 by using 
algebraic number theory. 

Theorem(W. Adams[1]). Let 1, ,81. ,82 be a basis for a real cubic 
number field. Let us define matrix A by 

(1) ( 
1 ,81 

A= 1 ,8? 
1 ,8? 

where Tt, 72 are non trivial embeddings of <Q(,8l) into C. Let us define a 
quadratic form F(x, y) by 

where 

Let 

N+(M) = {N(a) I a EM, a> 0}, 

where N(a) = aa71a72 . 
Then, we have 

lim(,81,,82)= U {(x,y)IF(x,y)=c}. 
cEN+(.M) 

By Theorem of W.Adams, if 1, ,81, ,82 is a basis for a real cubic 
number field and Q(,81) has a complex embedding, lim(,81, ,82) is a union 
of similar ellipses whose center are at the origin. If the modified Jacobi
Ferron algorithm ([7],[10]) admits (,81, ,82) as a fixed point, it computes 
the nearest ellipse in lim(,81, ,82) to the origin ([5]). 

Furthermore, in [5] it is conjectured that the modified Jacobi-Perron 
algorithm gives the nearest ellipse for each (,81, ,82) which is purely peri
odic point by the modified Jacobi-Perron algorithm and has a complex 
embedding. In this paper, we show that for such (,81, ,82) the limit set 
of {(JQn"(qn,81- Pn), JQn"(qn,82- rn)ln = 1, 2, ... } is a finite union of 
similar ellipses, where (Pn,Qn,rn) is the n-th convergent (Pn/Qn,rn/Qn) 
of (,81, ,82) by the modified Jacobi-Perron algorithm. We also prove that, 
for some case, the nearest ellipse to the origin among them is not equal to 
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the nearest ellipse to the origin in lim(,B1 , ,82). Therefore, the conjecture 
( [5]) is not true. 

Some closely related results appear in [2, 3]. 

Acknowledgement. The authors are grateful to the referee for helpful 
comments. 

§2. Modified Jacobi-Perron algorithm 

Let us define an algorithm called modified Jacobi-Perron algorithm, 
which is introduced by Podsypanin [10] as follows: Let X be the domain 
given by {(x,y) E [0, 1] x [0, 1)11,x,y are linearly independent over Q} 
and let us define the transformation T on X by 

! (~, ~- [~]) 
T(x, y) = 

(~-[~].~) 

if (x,y) E Xo 

(2) 

if (x,y) E X1 

where Xo = {(x,y) E Xlx > y} and X1 = {(x,y) E Xlx < y}. We 
define the integer valued functions a( , ) and c:( , ) on X 2 by 

a(x,y) ~ l ::: 
c:(x,y)={~ 

if (x,y) E Xo 

if (x, y) E X1, 

if (x,y) E Xo 
if (x, y) E X1. 

We have for each (a, ,B) EX a sequence of digits (an(a, ,B), En(a, ,B)) := 

(a(Tn- 1(a, ,B), c:(Tn- 1(a, ,B)) for n E Z with n > 0. For simplicity, 
an(a, ,B) and En(a, ,B) are denoted by an and En respectively. 

The triple (X,T,a(a,,B),c:(a,,B)) is called modified Jacobi-Penon 
algorithm. We denote (an, ,Bn) by Tn(a, ,B). For the modified Jacobi
Perron algorithm, we introduce a transformation (X, T) which is called 
a natural extension of the modified Jacobi-Perron algorithm as follows: 
let X = X x X and let us define the transformation T on X by 

(3) T(x, y, s, t) = (T(x, y), T~1 ,, 1 (s, t)), 
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where for a> 0, E E {0, 1} and (u, v) E JR2 with u, v:;::: 0, 

(4) 

(X, T) was first introduced in [7]. 
For (a, {3, ,, 8) E X we denote (an, f3n, /'n, 8n) by rn(a, {3, ,, 8). We 

define On and TJn for n = 1, 2, ... by 

Let us define the family of matrices as follows: for each (a, E) with 
aEN,~:E{0,1} 

(~ 
0 

~) 0 

1 

if E = 0, 

(5) A(a,e) = 

(~ 
1 

r) 0 

0 

if~:=l. 

We define Mn (a, {3) by. 

(
qn(a,{3) q~(a,{3) q~(a,{3)) 

(6) Mn(a, {3) = Pn(a, {3) p~(a, {3) p~(a, {3) = IJ A(a;,e;)· 

rn(a,{3) r~(a,{3) r~(a,{3) l~i~n 

Then, we have the following formulae. 
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From Lemma 1 we see easily following formulae. 

Lemma 2 ([7]). For n E Z with n > 0, 

175 

Then roughly speaking ( Pn (a,,B) r, (a,,B)) gives a simultaneous ap-
, ' q,. (a, ,B)' q, (a, ,B) 

proximation of (a, !3) (for example, see [4]). 

§3. Periodic points 

In this section, we assume that (a, !3) E X satisfies ym (a, !3) = 
(a, !3) for some integer m > 0. On the assumption, a is a cubic number 
and Q(a) has a complex embedding. Let To be the trivial embedding of 
Q(a) into R Let T1 , T2 be non trivial embeddings of Q(a) into C and 
T1 =J T2. We note that u7 ' = u72 for any u E Q(a), where xis the com
plex conjugate of X. We set 'Y = I11<i<m Bi(a, /3). From Lemma 2 we 
have Mm(a,j3)(1,a,f3)t = 'Y- 1 (1,a,f3)t~ We denote Mm(a,j3),8n(a,f3) 
and 77n(a, /3, "(, 8) by M, Bn and 77n respectively. We have following 
Lemma. 

Lemma 3. 

(1) 'Yro'Yr''Yr2 = 'YI"fr'l2 = 1, 
(2) 'Y- 1 > 1, 
(3) 'Y- 1 = rrl<i<m 7]i, 

(4) Q(a) = Q(/3) = Q('Y). 

Proof. The term "(70 "(71 "(72 is the coefficient term in the characteris
tic polynomial of M ; since .M is the product of matrices of determinant 
1 according to (5) and (6), we have assertion (1). We can prove the rest 
of the assertions easily. 0 

Lemma 4. Let ( u, v, w )t be a non trivial eigenvector related to 
M:n_ (a, /3) and the eigenvalue 'Y- 1 . Then, u =J 0 and ( ~, ~) E X and 
Q(a) = Q(~) = Q(~). 
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Proof. Since 1'- 1 is the dominant eigenvalue of Mt, it is not difficult 
to see that u, v, w 2: 0 or u, v, w:::; 0 by using Perron-Frobenius Theorem. 
We assume that u, v, w 2: 0 without loss of generality. We set ( Cij) = Mt. 
Then, we see easily c12 > 0 or c13 > 0. Therefore, if u = 0, then v = 0 
or w = 0, which contradicts that 1' is the cubic number. Hence, we 
have u =f 0. Since (1, ~' :!fi:) is an eigenvector related to Mt and the 
eigenvalue 1'-1, we see that ~' :!fl: E Ql(a). On the setting *a = ~ and 
* j3 = :!fi:, since Mt(1, *a7 ', * /37 ' )t = (1'- 1 t' (1, *a7 ', * /37 ' )t fori = 1, 2, 3, 
we see that (1, *a7 ', * /37 ' )t for i = 1, 2, 3 are linearly independent on 
C. Therefore, 1, *a, */3 are linearly independent on Ql. On the other 
hand, from the fact that (1,* a, *!3) is the eigenvector of Aft with the 
eigenvalue 1'- 1 we see that *a, * j3 E Ql('T'). By using Lemma 3 we have 
Ql(a) = Ql( *a)= Ql( */3). 

We set (1, *a(O), *f3(0))t = (1, *a, *f3)t. For each positive integer 
k, we set c(k)(1, *a(k), *j3(k))t = fL::;i::;kA(ak+ 1 _,,Ek+l-i)(1, *a, *j3)t. 
Then, it is not difficult to see that *a( k) and * !3( k) are positive and 
1, *a(k) and *j3(k) are linearly independent on Ql for each integer k, 
which implies that Ql(a) = Ql(*a(k)) = Ql(*j3(k)). By using (4) and 
(5) we have T~k+l,Ek+ 1 (*a(k), *j3(k)) = (*a(k + 1), *j3(k + 1)) for each 
k. From the fact that ( 1, *a, * !3) is the eigenvector related to Mt, we 
see that ( *a(k), * j3(k)) = ( *a(k + m), * f3(k + m)) for each k 2: 0. By 
(5) and *a(k), *f3(k) > 0 we see that if max{ *a(k), *j3(k)} < 1, then 
max{ *a(k + 1), *j3(k + 1)} < 1 and if max{ *a(k), *f3(k)} > 1, then 
max{ *a(k), *f3(k)} > max{ *a(k + 1), *f3(k + 1)}. Therefore, we see 
that max{ *a(m), *j3(m)} < max{1, *a(O), */3(0)} holds. Finally, since 
(*a(O), */3(0)) = (*a(m), *j3(m)), we have max{*a(m), *j3(m)} < 1, 
which implies that max{ *a(k), *j3(k)} < 1 holds for any k 2:0. 0 

(1, *a, * f3)t is denoted the non trivial eigenvector related to A1;,. (a, !3) 
and the eigenvalue 1'- 1 . Then, we have the following lemma. 

Lemma 5. For any positive integer n, 

where (an, f3n, *an, * f3n) 
* f3nf3n · 

1 

Proof. We set M(n) = fL<i<m A(a,+,,E,+i)· Then, it is easily 
seen that M(n)(1, an, f3n)t = 1'- 1 (i,-an, f3n)t and M(n)(1, *an, * f3n)t = 
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G 
*a~o ·~~") c 1 

a~') *o:~1 * {3Tt QTO (}:T1 
* {3~2 !3?:) 

n 
*a~z {3~1 {3~2 

G 
*a~o 'W") (' 1 

a~) *a~~ * {3~1 M ( n) - 1M ( n) o:~" 0:T1 n 
*a~2 * (3~2 (3~0 {3~1 {3~2 

c (1 *o:nf0 (>'~n)'") ( (1-'r" b-1r1 (>-')~ ) 
''(1 b *o:nf1 ('"y*f3nf1 b-10:nf" (1-1o:n)~1 b-1o:nf2 . 
''(2 (1 • O:n)T2 (1 * f3nf2 b-1 f3nf" (1-1f3nf1 (1-1f3nf2 

Form above formula and the fact that '"'(i =I "!Tj with i =I j we have 
Lemma. 0 

For each n E Z with n ~ 0, Pn is defined by {(x, y, z) E JR3 Ix + 
*o:ny + *f3nz = 0} and Ln is defined by {t(1,o:n,f3n) E 1R3It E lR}. 

We define Pn(x, y, z) for each n E Z with n ~ 0 and (x, y, z) E JR3 by 
Pn(x, y, z) = lx+( *o:nf1y+( *f3nf1zl. Then, we have following Lemma. 

Lemma 6. 

For any u E Pn with u =I 0, Pn(u) > 0. (1) 
(2) 
(3) 

For any wE 1R3 and any v E Ln Pn(w + v) = Pn(w). 
For any wE 1R3 Pn(w) = I7J~1+ 1 1Pn+1(A(- 1 )w). 

an+l,fn+l 

Proof. First, we assume that Pn(u') = 0 for some u' = (u~, u~, u~) E 

Pn· Then, we see that lu~ + ( *o:n)T'u~ + ( * f3nf'u~ I = 0 for i = 0, 1, 2. 
Therefore, we have u~ = u~ = u~ = 0 and we have (1). Secondly, let 
w = (wx,Wy,wz) and v = t(1,o:n,f3n) E Ln. Then, using Lemma 5 we 
have 

Pn(w + v) 

= l(wx +t) + (*o:nr1 (Wy +to:n) + (*f3nP(wz +tf3n)l 

= lwx + ( *o:nr1 wy + ( *f3nr1 wz + t(1 + ( *o:nr1o:n + ( *f3nr1f3n)l 

= Pn(w). 
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Therefore, we have (2). For the proof of (3), let w = (wx, Wy, w 2 ), then, 
we have 

Pn(w) =lwx + (*o:nr'wy + (*Onr'wzl 

(1, ('an)'', ( • !W') (::) 

0 

By Lemma 6 we remark that lx *o:71 + y * ,871 12 is a positive definite 
quadratic form. 

Lemma 7. For each n E Z with n > 0, we have po(qn,Pn, rn) 

I IL:o:i:o:n 11T'I· 

Proof. By Lemma 6 and an easy recurrence, we have 

Po(qn,Pn, rn) =Po( II A(a;,,.i)el) 
l:'::i:'::n 

=l11r'P1( II Ara,,,;J)el)l 
2:0:i:'::n 

=I II 11T' I, 
l:'::i:'::n 

0 

Let 7rn be the projection map to Pn along Ln and 1r be the projection 
map to {(x, y, z) E 1R.3 Ix = 0} along Lo. 

Lemma 8. For each n E Z with n > 0, we have I(Pn- qno:) *o:71 + 
(rn- qn,B) *,87 '1 =I IT1:o;i:o:n 11T'I· 
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Proof. SinceJr(qn,Pn,rn) = (O,pn-qna,rn-qnf3), by using Lemma 
6 we have 

Po(qn,Pn,rn) = Po(O,pn- qna,rn- qnf3) 

= I(Pn- qna) *aT' + (rn- qnf3) * (37 '1· 

Therefore, using Lemma 7 we obtain Lemma 8. D 

Lemma 9. There exists a positive constant C1 (a, (3) such that for 
any n E Z with n 2': 0 

Proof. We set C1(a,(3) = fl 1:s;i:s;mmax{l,I1Jj'l}· Using the fact 
that v'f = I [ll<i<m 11}' I and 1JJ+m = 1}j for each j > 0, we have 

D 

From the fact that lx*a71 +y*f37 '1 2 is a positive definite quadratic 
form and by Lemma 9 we have the following lemma. 

Lemma 10. There exists a positive constant C2 (a, (3) such that for 
any n E Z with n 2': 0 

We remark that the above formulae hold for each periodic point 
(a, (3) related to Jacobi-Perron algorithm (see [9]). 

Lemma 11. For each n 2': 1, qn + *apn + *f3rn = fl 1:s;i:<:;n 1Ji holds. 
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Proof. It is easy to see that 

Qn + •apn + ·~rn ~ (1 •a ·~) G:) 
= (1 *o: * (3) II A(a,,E;) (~) 

l:S::i:S::n 0 

= II 1Ji(l *o: *(3) (~) 
l:S::i:S::n 0 

= II 1Ji· 
l:S::i:S::n 

0 

By Lemma 5 we see that Un, Vn EPn. We set (''{' )-1 = ,JYe21riB 

withO::::: e < 1. FromthefactthatM(l,o:71 ,(371 )t = (1'7 ')- 1(l,o:71 ,(37 ')t 
and M(l,o:r2,(3r2)t = br2)-1(l,o:r2,(3r2)t we have 

(7) M( ) ( ) ( fi cos 21re fi sin 21re) 
, Un, Vn = Un, Vn -,Jrsin27re ,Jrcos21re · 

Lemma 12. e is irrational. 

Proof. We suppose that e is rational. We set e = f, where k, l E Z 
and l > 0. From (7) we see that ('·(' )1, ( '"'(2 ) 1 E R Since ('·(' )1 E 
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QJ(I'r1 ) n IR, we see (''(1 ) 1 E QJ. Therefore, ·yl E QJ. By using Lemma 3 
we see that 11 is the unit in QJ(I'). Therefore, we have 1 1 = ±1. But it 
contradicts that 0 < '"Y < 1. D 

Theorem 13. For each 0 ::; k ::; m- 1, the limit set of { ytq;;,(Pn -
qncx, rn - qn,6) In = k mod m} as n----+ oo is the following ellipse 

(8) {(x )EIR211x*aTt+ *,6Ttl2= ITI<i<kn(TJi)} 
,y y 1+a*a+,6*,6' 

which is denoted by E(k). 

Proof. We see that lx *aT1 + y *,6T1 12 is a positive definite quadratic 
form, which is noticed as the remark following Lemma 6. Therefore, the 
set (8) is an ellipse. From Lemma 8 and 11 we have 

Therefore, by using Lemma 10 we have 

n ----+ oo 

Thus, the limit set of { ytq;;,(Pn -qncx, r n -qn,6) In = k mod m} as n ----+ oo 
is included in E(k). We define ck, dk, ek by 



182 S. Ito and S. Yasutomi 

We see easily that ck =f. 0 or dk =f. 0. Then, for n = ml + k we have 

Therefore, we have 

Hsin27r8 

H cos27f8 
0 

which yields Theorem 13 by using Lemma 12. 

Similarly, we have the following corollary. 

0 

Corollary 14. Let ji (1 ::; i ::; 3) be non negative integers and 
ji > 0 for some i. For ji (1 ::; i ::; 3) and any positive integer n, we 
define p~, q~ and r~ by 

Then, for each 0 ::; k ::; m - 1 the limit set of { Vii::(P~ - q~a, r~ -
q~{J) In = k mod m} as n --> oo is the following ellipse 

(9) 
n(J. + *a J. + *{3 J. ) f1 n(n·) 

{( ) m211 * r1 *{JT'I2 = 1 k 2 k 3 l<i<k .,, } 
X, y E ~ X a + y {3 {3 . 

1 +a*a+ * 
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In [5] we conjecture that the modified Jacobi-Ferron algorithm gives 
the best simultaneous approximation to the points ((31 , (32 ) such that 
1, fJ1, fJ2 is a basis for a real cubic number field, Q((31) has a complex 
embedding and ((31 , (32 ) is a purely periodic point by the modified Jacobi
Ferron algorithm. But we have a following counter example. 

Counter Example. Let 'Y be the real root of x3 + 8x2 + 16x-
1. Then, Q('Y) has a complex embedding. Let o: = 1'!3 and (3 = 

'Y· (a, (3) is the purely periodic point by the modified Jacobi-Ferron 
algorithm and the digits are given as follows: (at, €1) = (1, 0), (a2, €2) = 
(1, 1), (a3, €3) = (2, 0), (a4, €4) = (3, 0) and (an+4• fnH) = (an, En) for 
each n E Z with n > 0. 

Then, we have the following table. 

n 0 1 2 3 
*an ~')' ~7 ~ 'Y 1--y 2 
* f3n __'}'·:h .!..=.2 ...!.=..1.. ~5 -y_+1 :J'Y+6 
'f/n '"'L:t.l 2 ~ 

1--y -r+1 2 
n(rJn) f2 * J 

Let p = 3 + 2 *n0 . For any positive integer n we define p~, q~ and 
r~ by 

(:~) = II A(a;,E;) (~) · 
rn 1$t$n 0 

Then, we have n(p) = ~- Since n(p) < min{f]1<i<k n(rJi)li = 1, 2, 3}, 
by using Theorem 13 and Corollary 14 we see that the ellipse defined 
from {p~, q~, r~}n=1 mod 4 as in Corollary 14 is nearer to the origin than 
the ellipses defined from {Pn, Qn, rn} as in Theorem 13. We remark that 

P4J = P4J+l + P4J+2• q4J = q4J+l + q4J+2 and r4j = r4J+l + r4J+2 for 
each j E Z with j ;::: 0. In our paper [6] in preparation we will show 
that under some conditions for (a, (3) the nearest ellipses to the origin 
in lim( a, (3) are given as intermediate convergents of modified Jacobi
Ferron algorithm. 
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