On simultaneous Diophantine approximation to periodic points related to modified Jacobi-Perron algorithm

Shunji Ito and Shin-ichi Yasutomi

Abstract

. For each (α, β) which is a periodic point related to modified JacobiPerron algorithm and $\mathbb{Q}(\alpha)$ has a complex embedding, we claim the following facts: the limit set of $\left\{\left(\sqrt{q_{n}}\left(q_{n} \alpha-p_{n}\right), \sqrt{q_{n}}\left(q_{n} \beta-r_{n}\right) \mid n=\right.\right.$ $1,2, \ldots\}$ is a finite union of similar ellipses, where $\left(p_{n}, q_{n}, r_{n}\right)$ is the n-th convergent $\left(p_{n} / q_{n}, r_{n} / q_{n}\right)$ of (α, β) by the modified Jacobi-Perron algorithm but for some (α, β) the ellipse given above is not the nearest ellipse in the limit set of $\{(\sqrt{q}(q \alpha-p), \sqrt{q}(q \beta-r) \mid q \in \mathbb{Z}, q>0\}$ which is a union of similar ellipses.

§1. Introduction

We denote by $\mathbb{C}, \mathbb{R}, \mathbb{Q}$ and \mathbb{Z} the set of all complex numbers, the set of all real numbers, the set of all rational numbers and the set of all integers respectively. Let $\beta_{1}, \beta_{2}, \ldots, \beta_{n} \in \mathbb{R}$ be linearly independent over \mathbb{Q}. Then, it is well known that there exist infinitely many $q \in \mathbb{Z}(q>0)$ such that $q^{\frac{1}{n}}\left\|q \beta_{i}\right\|<1$ for any integer i with $1 \leq i \leq n$. We consider the limit set of points:

$$
\left\{\left.\left(q^{\frac{1}{n}}\left\|q \beta_{1}\right\|, \ldots, q^{\frac{1}{n}}\left\|q \beta_{n}\right\|\right) \right\rvert\, q \in \mathbb{Z}, q>0\right\}
$$

which is denoted by $\lim \left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$, where $\|x\|=x-m$ and m is the nearest integer to $x \in \mathbb{R}$. For $n=1$, using the continued fraction expansion of β_{1}, we know the nearest point in $\lim \left(\beta_{1}\right)$ to the origin, that is, let $\gamma=\limsup _{m \rightarrow \infty} q_{2 m+1}\left\|q_{2 m+1} \beta_{1}\right\|$ and $\gamma^{\prime}=\liminf _{m \rightarrow \infty} q_{2 m}\left\|q_{2 m} \beta_{1}\right\|$, then $\lim \left(\beta_{1}\right) \cap\left[\gamma, \gamma^{\prime}\right]=\left\{\gamma, \gamma^{\prime}\right\}$, where $\left(p_{m}, q_{m}\right)$ is the m-convergent of β_{1}.
W. Adams [1] determined the $\lim \left(\beta_{1}, \beta_{2}\right)$ for specific β_{1}, β_{2} by using algebraic number theory.

Theorem(W. Adams[1]). Let $1, \beta_{1}, \beta_{2}$ be a basis for a real cubic number field. Let us define matrix A by

$$
A=\left(\begin{array}{ccc}
1 & \beta_{1} & \beta_{2} \tag{1}\\
1 & \beta_{1}^{\tau_{1}} & \beta_{2}^{\tau_{1}} \\
1 & \beta_{1}^{\tau_{2}} & \beta_{2}^{\tau_{2}}
\end{array}\right)
$$

where τ_{1}, τ_{2} are non trivial embeddings of $\mathbb{Q}\left(\beta_{1}\right)$ into \mathbb{C}. Let us define a quadratic form $F(x, y)$ by

$$
F(x, y)=\left(\alpha_{1}^{\tau_{1}} x+\alpha_{2}^{\tau_{1}} y\right)\left(\alpha_{1}^{\tau_{2}} x+\alpha_{2}^{\tau_{2}} y\right)
$$

where

$$
\left({ }^{t} A\right)^{-1}=\left(\begin{array}{ccc}
\alpha_{0} & \alpha_{1} & \alpha_{2} \\
\alpha_{0}^{\tau_{1}} & \alpha_{1}^{\tau_{1}} & \alpha_{2}^{\tau_{1}} \\
\alpha_{0}^{\tau_{2}} & \alpha_{1}^{\tau_{2}} & \alpha_{2}^{\tau_{2}}
\end{array}\right)
$$

Let

$$
\begin{aligned}
M & =\mathbb{Z} \alpha_{0} \oplus \mathbb{Z} \alpha_{1} \oplus \mathbb{Z} \alpha_{2} \\
N^{+}(M) & =\{N(\alpha) \mid \alpha \in M, \alpha>0\}
\end{aligned}
$$

where $N(\alpha)=\alpha \alpha^{\tau_{1}} \alpha^{\tau_{2}}$.
Then, we have

$$
\lim \left(\beta_{1}, \beta_{2}\right)=\bigcup_{c \in N^{+}(M)}\{(x, y) \mid F(x, y)=c\} .
$$

By Theorem of W.Adams, if $1, \beta_{1}, \beta_{2}$ is a basis for a real cubic number field and $\mathbb{Q}\left(\beta_{1}\right)$ has a complex embedding, $\lim \left(\beta_{1}, \beta_{2}\right)$ is a union of similar ellipses whose center are at the origin. If the modified JacobiPerron algorithm ([7],[10]) admits $\left(\beta_{1}, \beta_{2}\right)$ as a fixed point, it computes the nearest ellipse in $\lim \left(\beta_{1}, \beta_{2}\right)$ to the origin ([5]).

Furthermore, in [5] it is conjectured that the modified Jacobi-Perron algorithm gives the nearest ellipse for each $\left(\beta_{1}, \beta_{2}\right)$ which is purely periodic point by the modified Jacobi-Perron algorithm and has a complex embedding. In this paper, we show that for such $\left(\beta_{1}, \beta_{2}\right)$ the limit set of $\left\{\left(\sqrt{q_{n}}\left(q_{n} \beta_{1}-p_{n}\right), \sqrt{q_{n}}\left(q_{n} \beta_{2}-r_{n}\right) \mid n=1,2, \ldots\right\}\right.$ is a finite union of similar ellipses, where $\left(p_{n}, q_{n}, r_{n}\right)$ is the n-th convergent $\left(p_{n} / q_{n}, r_{n} / q_{n}\right)$ of $\left(\beta_{1}, \beta_{2}\right)$ by the modified Jacobi-Perron algorithm. We also prove that, for some case, the nearest ellipse to the origin among them is not equal to
the nearest ellipse to the origin in $\lim \left(\beta_{1}, \beta_{2}\right)$. Therefore, the conjecture ([5]) is not true.

Some closely related results appear in [2,3].
Acknowledgement. The authors are grateful to the referee for helpful comments.

§2. Modified Jacobi-Perron algorithm

Let us define an algorithm called modified Jacobi-Perron algorithm, which is introduced by Podsypanin [10] as follows: Let X be the domain given by $\{(x, y) \in[0,1] \times[0,1) \mid 1, x, y$ are linearly independent over $\mathbb{Q}\}$ and let us define the transformation T on X by

$$
T(x, y)= \begin{cases}\left(\frac{y}{x}, \frac{1}{x}-\left[\frac{1}{x}\right]\right) & \text { if }(x, y) \in X_{0} \tag{2}\\ \left(\frac{1}{y}-\left[\frac{1}{y}\right], \frac{x}{y}\right) & \text { if }(x, y) \in X_{1}\end{cases}
$$

where $X_{0}=\{(x, y) \in X \mid x>y\}$ and $X_{1}=\{(x, y) \in X \mid x<y\}$. We define the integer valued functions $a($,$) and \epsilon($,$) on X^{2}$ by

$$
\begin{aligned}
& a(x, y)= \begin{cases}{\left[\frac{1}{x}\right]} & \text { if }(x, y) \in X_{0} \\
{\left[\frac{1}{y}\right]} & \text { if }(x, y) \in X_{1}\end{cases} \\
& \epsilon(x, y)= \begin{cases}0 & \text { if }(x, y) \in X_{0} \\
1 & \text { if }(x, y) \in X_{1}\end{cases}
\end{aligned}
$$

We have for each $(\alpha, \beta) \in X$ a sequence of digits $\left(a_{n}(\alpha, \beta), \epsilon_{n}(\alpha, \beta)\right):=$ $\left(a\left(T^{n-1}(\alpha, \beta), \epsilon\left(T^{n-1}(\alpha, \beta)\right)\right.\right.$ for $n \in \mathbb{Z}$ with $n>0$. For simplicity, $a_{n}(\alpha, \beta)$ and $\epsilon_{n}(\alpha, \beta)$ are denoted by a_{n} and ϵ_{n} respectively.

The triple $(X, T, a(\alpha, \beta), \epsilon(\alpha, \beta)$) is called modified Jacobi-Perron algorithm. We denote $\left(\alpha_{n}, \beta_{n}\right)$ by $T^{n}(\alpha, \beta)$. For the modified JacobiPerron algorithm, we introduce a transformation (\bar{X}, \bar{T}) which is called a natural extension of the modified Jacobi-Perron algorithm as follows: let $\bar{X}=X \times X$ and let us define the transformation \bar{T} on \bar{X} by

$$
\begin{equation*}
\bar{T}(x, y, s, t)=\left(T(x, y), T_{a_{1}, \epsilon_{1}}^{\prime}(s, t)\right), \tag{3}
\end{equation*}
$$

where for $a>0, \epsilon \in\{0,1\}$ and $(u, v) \in \mathbb{R}^{2}$ with $u, v \geq 0$,

$$
T_{a_{1}, \epsilon_{1}}^{\prime}(s, t)= \begin{cases}\left(\frac{t}{a_{1}+s}, \frac{1}{a_{1}+s}\right) & \text { if } \epsilon=0 \tag{4}\\ \left(\frac{1}{a_{1}+t}, \frac{s}{a_{1}+t}\right) & \text { if } \epsilon=1\end{cases}
$$

(\bar{X}, \bar{T}) was first introduced in [7].
For $(\alpha, \beta, \gamma, \delta) \in \bar{X}$ we denote $\left(\alpha_{n}, \beta_{n}, \gamma_{n}, \delta_{n}\right)$ by $T^{n}(\alpha, \beta, \gamma, \delta)$. We define θ_{n} and η_{n} for $n=1,2, \ldots$ by

$$
\begin{aligned}
& \theta_{n}(\alpha, \beta)=\max \left\{\alpha_{n-1}, \beta_{n-1}\right\} \\
& \eta_{n}(\alpha, \beta, \gamma, \delta)= \begin{cases}\gamma_{n-1}+a_{n} & \text { if } \epsilon_{n}=0 \\
\delta_{n-1}+a_{n} & \text { if } \epsilon_{n}=1\end{cases}
\end{aligned}
$$

Let us define the family of matrices as follows: for each (a, ϵ) with $a \in \mathbb{N}, \epsilon \in\{0,1\}$

$$
A_{(a, \epsilon)}= \begin{cases}\left(\begin{array}{lll}
a & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad \text { if } \epsilon=0 \tag{5}\\
\left(\begin{array}{lll}
a & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad \text { if } \epsilon=1\end{cases}
$$

We define $M_{n}(\alpha, \beta)$ by
(6) $\quad M_{n}(\alpha, \beta)=\left(\begin{array}{lll}q_{n}(\alpha, \beta) & q_{n}^{\prime}(\alpha, \beta) & q_{n}^{\prime \prime}(\alpha, \beta) \\ p_{n}(\alpha, \beta) & p_{n}^{\prime}(\alpha, \beta) & p_{n}^{\prime \prime}(\alpha, \beta) \\ r_{n}(\alpha, \beta) & r_{n}^{\prime}(\alpha, \beta) & r_{n}^{\prime \prime}(\alpha, \beta)\end{array}\right)=\prod_{1 \leq i \leq n} A_{\left(a_{i}, \epsilon_{i}\right)}$.

Then, we have the following formulae.

Lemma 1 ([7]). For $n \in \mathbb{N}$,

$$
\begin{aligned}
& \left(\begin{array}{c}
1 \\
\alpha_{n-1} \\
\beta_{n-1}
\end{array}\right)=\theta_{n}(\alpha, \beta) A_{\left(a_{n}, \epsilon_{n}\right)}\left(\begin{array}{c}
1 \\
\alpha_{n} \\
\beta_{n}
\end{array}\right) \\
& \left(\begin{array}{c}
1 \\
\gamma_{n} \\
\delta_{n}
\end{array}\right)=\eta_{n}^{-1}(\alpha, \beta, \gamma, \delta) A_{\left(a_{n}, \epsilon_{n}\right)}^{t}\left(\begin{array}{c}
1 \\
\gamma_{n-1} \\
\delta_{n-1}
\end{array}\right)
\end{aligned}
$$

From Lemma 1 we see easily following formulae.
Lemma 2 ([7]). For $n \in \mathbb{Z}$ with $n>0$,

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
\alpha \\
\beta
\end{array}\right)=\prod_{1 \leq i \leq n} \theta_{i}(\alpha, \beta) M_{n}(\alpha, \beta)\left(\begin{array}{c}
1 \\
\alpha_{n} \\
\beta_{n}
\end{array}\right) \\
& \left(\begin{array}{l}
1 \\
\gamma \\
\delta
\end{array}\right)=\prod_{1 \leq i \leq n} \eta_{i}(\alpha, \beta, \gamma, \delta) M_{n}^{t}(\alpha, \beta)^{-1}\left(\begin{array}{c}
1 \\
\gamma_{n} \\
\delta_{n}
\end{array}\right)
\end{aligned}
$$

Then, roughly speaking, $\left(\frac{p_{n}(\alpha, \beta)}{q_{n}(\alpha, \beta)}, \frac{r_{n}(\alpha, \beta)}{q_{n}(\alpha, \beta)}\right)$ gives a simultaneous approximation of (α, β) (for example, see [4]).

§3. Periodic points

In this section, we assume that $(\alpha, \beta) \in X$ satisfies $T^{m}(\alpha, \beta)=$ (α, β) for some integer $m>0$. On the assumption, α is a cubic number and $\mathbb{Q}(\alpha)$ has a complex embedding. Let τ_{0} be the trivial embedding of $\mathbb{Q}(\alpha)$ into \mathbb{R}. Let τ_{1}, τ_{2} be non trivial embeddings of $\mathbb{Q}(\alpha)$ into \mathbb{C} and $\tau_{1} \neq \tau_{2}$. We note that $\overline{u^{\tau_{1}}}=u^{\tau_{2}}$ for any $u \in \mathbb{Q}(\alpha)$, where \bar{x} is the complex conjugate of x. We set $\gamma=\prod_{1 \leq i \leq m} \theta_{i}(\alpha, \beta)$. From Lemma 2 we have $M_{m}(\alpha, \beta)(1, \alpha, \beta)^{t}=\gamma^{-1}(1, \alpha, \beta)^{t}$. We denote $M_{m}(\alpha, \beta), \theta_{n}(\alpha, \beta)$ and $\eta_{n}(\alpha, \beta, \gamma, \delta)$ by M, θ_{n} and η_{n} respectively. We have following Lemma.

Lemma 3.

(1) $\gamma^{\tau_{0}} \gamma^{\tau_{1}} \gamma^{\tau_{2}}=\gamma\left|\gamma^{\tau_{1}}\right|^{2}=1$,
(2) $\gamma^{-1}>1$,
(3) $\gamma^{-1}=\prod_{1 \leq i \leq m} \eta_{i}$,
(4) $\mathbb{Q}(\alpha)=\mathbb{Q}(\beta)=\mathbb{Q}(\gamma)$.

Proof. The term $\gamma^{\tau_{0}} \gamma^{\tau_{1}} \gamma^{\tau_{2}}$ is the coefficient term in the characteristic polynomial of M; since M is the product of matrices of determinant 1 according to (5) and (6), we have assertion (1). We can prove the rest of the assertions easily.

Lemma 4. Let $(u, v, w)^{t}$ be a non trivial eigenvector related to $M_{m}^{t}(\alpha, \beta)$ and the eigenvalue γ^{-1}. Then, $u \neq 0$ and $\left(\frac{v}{u}, \frac{w}{u}\right) \in X$ and $\mathbb{Q}(\alpha)=\mathbb{Q}\left(\frac{v}{u}\right)=\mathbb{Q}\left(\frac{w}{u}\right)$.

Proof. Since γ^{-1} is the dominant eigenvalue of M^{t}, it is not difficult to see that $u, v, w \geq 0$ or $u, v, w \leq 0$ by using Perron-Frobenius Theorem. We assume that $u, v, w \geq 0$ without loss of generality. We set $\left(c_{i j}\right)=M^{t}$. Then, we see easily $c_{12}>0$ or $c_{13}>0$. Therefore, if $u=0$, then $v=0$ or $w=0$, which contradicts that γ is the cubic number. Hence, we have $u \neq 0$. Since ($1, \frac{v}{u}, \frac{w}{u}$) is an eigenvector related to M^{t} and the eigenvalue γ^{-1}, we see that $\frac{v}{u}, \frac{w}{u} \in \mathbb{Q}(\alpha)$. On the setting ${ }^{*} \alpha=\frac{v}{u}$ and ${ }^{*} \beta=\frac{w}{u}$, since $M^{t}\left(1,{ }^{*} \alpha^{\tau_{i}},{ }^{*} \beta^{\tau_{i}}\right)^{t}=\left(\gamma^{-1}\right)^{\tau_{i}}\left(1,{ }^{*} \alpha^{\tau_{i}},{ }^{*} \beta^{\tau_{i}}\right)^{t}$ for $i=1,2,3$, we see that $\left(1,{ }^{*} \alpha^{\tau_{i}},{ }^{*} \beta^{\tau_{i}}\right)^{t}$ for $i=1,2,3$ are linearly independent on \mathbb{C}. Therefore, $1,{ }^{*} \alpha,{ }^{*} \beta$ are linearly independent on \mathbb{Q}. On the other hand, from the fact that $\left(1,{ }^{*} \alpha,{ }^{*} \beta\right)$ is the eigenvector of M^{t} with the eigenvalue γ^{-1} we see that ${ }^{*} \alpha,{ }^{*} \beta \in \mathbb{Q}(\gamma)$. By using Lemma 3 we have $\mathbb{Q}(\alpha)=\mathbb{Q}\left({ }^{*} \alpha\right)=\mathbb{Q}\left({ }^{*} \beta\right)$.

We set $\left(1,{ }^{*} \alpha(0),{ }^{*} \beta(0)\right)^{t}=\left(1,{ }^{*} \alpha,{ }^{*} \beta\right)^{t}$. For each positive integer k, we set $c(k)\left(1,{ }^{*} \alpha(k),{ }^{*} \beta(k)\right)^{t}=\prod_{1 \leq i \leq k} A_{\left(a_{k+1-i}, \epsilon_{k+1-i}\right)}^{t}\left(1,{ }^{*} \alpha,{ }^{*} \beta\right)^{t}$. Then, it is not difficult to see that ${ }^{*} \alpha(k)$ and ${ }^{*} \beta(k)$ are positive and $1,{ }^{*} \alpha(k)$ and ${ }^{*} \beta(k)$ are linearly independent on \mathbb{Q} for each integer k, which implies that $\mathbb{Q}(\alpha)=\mathbb{Q}\left({ }^{*} \alpha(k)\right)=\mathbb{Q}\left({ }^{*} \beta(k)\right)$. By using (4) and (5) we have $T_{a_{k+1}, \epsilon_{k+1}}^{\prime}\left({ }^{*} \alpha(k),{ }^{*} \beta(k)\right)=\left({ }^{*} \alpha(k+1),{ }^{*} \beta(k+1)\right)$ for each k. From the fact that $\left(1,{ }^{*} \alpha,{ }^{*} \beta\right)$ is the eigenvector related to M^{t}, we see that $\left({ }^{*} \alpha(k),{ }^{*} \beta(k)\right)=\left({ }^{*} \alpha(k+m),{ }^{*} \beta(k+m)\right)$ for each $k \geq 0$. By (5) and ${ }^{*} \alpha(k),{ }^{*} \beta(k)>0$ we see that if $\max \left\{{ }^{*} \alpha(k),{ }^{*} \beta(k)\right\}<1$, then $\max \left\{{ }^{*} \alpha(k+1),{ }^{*} \beta(k+1)\right\}<1$ and if $\max \left\{{ }^{*} \alpha(k),{ }^{*} \beta(k)\right\}>1$, then $\max \left\{{ }^{*} \alpha(k),{ }^{*} \beta(k)\right\}>\max \left\{{ }^{*} \alpha(k+1),{ }^{*} \beta(k+1)\right\}$. Therefore, we see that $\max \left\{{ }^{*} \alpha(m),{ }^{*} \beta(m)\right\}<\max \left\{1,{ }^{*} \alpha(0),{ }^{*} \beta(0)\right\}$ holds. Finally, since $\left({ }^{*} \alpha(0),{ }^{*} \beta(0)\right)=\left({ }^{*} \alpha(m),{ }^{*} \beta(m)\right)$, we have $\max \left\{{ }^{*} \alpha(m),{ }^{*} \beta(m)\right\}<1$, which implies that $\max \left\{{ }^{*} \alpha(k),{ }^{*} \beta(k)\right\}<1$ holds for any $k \geq 0$.
$\left(1,{ }^{*} \alpha,{ }^{*} \beta\right)^{t}$ is denoted the non trivial eigenvector related to $M_{m}^{t}(\alpha, \beta)$ and the eigenvalue γ^{-1}. Then, we have the following lemma.

Lemma 5. For any positive integer n,

$$
\left(\begin{array}{ccc}
1 & * \alpha_{n}^{\tau_{0}} & { }^{*} \beta_{n}^{\tau_{0}} \\
1 & { }^{*} \alpha_{n}^{\tau_{1}} & { }^{*} \beta_{n}^{\tau_{1}} \\
1 & { }^{*} \alpha_{n}^{\tau_{2}} & { }^{*} \beta_{n}^{\tau_{2}}
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
\alpha_{n}^{\tau_{0}} & \alpha_{n}^{\tau_{1}} & \alpha_{n}^{\tau_{2}} \\
\beta_{n}^{\tau_{0}} & \beta_{n}^{\tau_{1}} & \beta_{n}^{\tau_{2}}
\end{array}\right)=\left(\begin{array}{ccc}
\delta^{\tau_{0}} & 0 & 0 \\
0 & \delta^{\tau_{1}} & 0 \\
0 & 0 & \delta^{\tau_{2}}
\end{array}\right),
$$

where $\left(\alpha_{n}, \beta_{n},{ }^{*} \alpha_{n},{ }^{*} \beta_{n}\right)=\bar{T}^{n}\left(\alpha, \beta,{ }^{*} \alpha,{ }^{*} \beta\right)$ and $\delta=1+{ }^{*} \alpha_{n} \alpha_{n}+$ ${ }^{*} \beta_{n} \beta_{n}$.

Proof. We set $M(n)=\prod_{1 \leq i \leq m} A_{\left(a_{n+i}, \epsilon_{n+i}\right)}$. Then, it is easily seen that $M(n)\left(1, \alpha_{n}, \beta_{n}\right)^{t}=\gamma^{-1}\left(1, \alpha_{n}, \beta_{n}\right)^{t}$ and $M(n)\left(1,{ }^{*} \alpha_{n},{ }^{*} \beta_{n}\right)^{t}=$
$\gamma^{-1}\left(1,{ }^{*} \alpha_{n},{ }^{*} \beta_{n}\right)^{t}$. Therefore, we have

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & { }^{*} \alpha_{n}^{\tau_{0}} & { }^{*} \beta_{n}^{\tau_{0}} \\
1 & { }^{*} \alpha_{n}^{\tau_{1}} & { }^{*} \beta_{n}^{\tau_{1}} \\
1 & { }^{*} \alpha_{n}^{\tau_{2}} & { }^{*} \beta_{n}^{\tau_{2}}
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
\alpha_{n}^{\tau_{0}} & \alpha_{n}^{\tau_{1}} & \alpha_{n}^{\tau_{2}} \\
\beta_{n}^{\tau_{0}} & \beta_{n}^{\tau_{1}} & \beta_{n}^{\tau_{2}}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & { }^{*} \alpha_{n}^{\tau_{0}} & { }^{*} \beta_{n}^{\tau_{0}} \\
1 & { }^{\tau_{n}} \alpha_{n}^{\tau_{1}} & { }^{*} \beta_{n}^{\tau_{1}} \\
1 & { }^{*} \alpha_{n}^{\tau_{2}} & { }^{*} \beta_{n}^{\tau_{2}}
\end{array}\right) M(n)^{-1} M(n)\left(\begin{array}{ccc}
1 & 1 & 1 \\
\alpha_{n}^{\tau_{0}} & \alpha_{n}^{\tau_{1}} & \alpha_{n}^{\tau_{2}} \\
\beta_{n}^{\tau_{0}} & \beta_{n}^{\tau_{1}} & \beta_{n}^{\tau_{2}}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\gamma^{\tau_{0}} & \left(\gamma^{*} \alpha_{n}\right)^{\tau_{0}} & \left(\gamma^{*} \beta_{n}\right)^{\tau_{0}} \\
\gamma^{\tau_{1}} & \left(\gamma^{*} \alpha_{n}\right)^{\tau_{1}} & \left(\gamma^{*} \beta_{n}\right)^{\tau_{1}} \\
\gamma^{\tau_{2}} & \left(\gamma^{*} \alpha_{n}\right)^{\tau_{2}} & \left(\gamma^{*} \beta_{n}\right)^{\tau_{2}}
\end{array}\right)\left(\begin{array}{ccc}
\left(\gamma^{-1}\right)^{\tau_{0}} & \left(\gamma^{-1}\right)^{\tau_{1}} & \left(\gamma^{-1}\right)^{\tau_{2}} \\
\left(\gamma^{-1} \alpha_{n}\right)^{\tau_{0}} & \left(\gamma^{-1} \alpha_{n}\right)_{n}^{\tau_{1}} & \left(\gamma^{-1} \alpha_{n}\right)^{\tau_{2}} \\
\left(\gamma^{-1} \beta_{n}\right)^{\tau_{0}} & \left(\gamma^{-1} \beta_{n}\right)^{\tau_{1}} & \left(\gamma^{-1} \beta_{n}\right)^{\tau_{2}}
\end{array}\right) .
\end{aligned}
$$

Form above formula and the fact that $\gamma^{\tau_{i}} \neq \gamma^{\tau_{j}}$ with $i \neq j$ we have Lemma.

For each $n \in \mathbb{Z}$ with $n \geq 0, P_{n}$ is defined by $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+\right.$ $\left.{ }^{*} \alpha_{n} y+{ }^{*} \beta_{n} z=0\right\}$ and L_{n} is defined by $\left\{t\left(1, \alpha_{n}, \beta_{n}\right) \in \mathbb{R}^{3} \mid t \in \mathbb{R}\right\}$.

We define $\rho_{n}(x, y, z)$ for each $n \in \mathbb{Z}$ with $n \geq 0$ and $(x, y, z) \in \mathbb{R}^{3}$ by $\rho_{n}(x, y, z)=\left|x+\left({ }^{*} \alpha_{n}\right)^{\tau_{1}} y+\left({ }^{*} \beta_{n}\right)^{\tau_{1}} z\right|$. Then, we have following Lemma.

Lemma 6.

(1) For any $\mathbf{u} \in P_{n}$ with $\mathbf{u} \neq 0, \rho_{n}(\mathbf{u})>0$.
(2) For any $\mathbf{w} \in \mathbb{R}^{3}$ and any $\mathbf{v} \in L_{n} \rho_{n}(\mathbf{w}+\mathbf{v})=\rho_{n}(\mathbf{w})$.
(3) For any $\mathbf{w} \in \mathbb{R}^{3} \rho_{n}(\mathbf{w})=\left|\eta_{n+1}^{\tau_{1}}\right| \rho_{n+1}\left(A_{\left(a_{n+1}, \epsilon_{n+1}\right)}^{-1} \mathbf{w}\right)$.

Proof. First, we assume that $\rho_{n}\left(\mathbf{u}^{\prime}\right)=0$ for some $\mathbf{u}^{\prime}=\left(u_{x}^{\prime}, u_{y}^{\prime}, u_{z}^{\prime}\right) \in$ P_{n}. Then, we see that $\left|u_{x}^{\prime}+\left({ }^{*} \alpha_{n}\right)^{\tau_{i}} u_{y}^{\prime}+\left({ }^{*} \beta_{n}\right)^{\tau_{i}} u_{z}^{\prime}\right|=0$ for $i=0,1,2$. Therefore, we have $u_{x}^{\prime}=u_{y}^{\prime}=u_{z}^{\prime}=0$ and we have (1). Secondly, let $\mathbf{w}=\left(w_{x}, w_{y}, w_{z}\right)$ and $\mathbf{v}=t\left(1, \alpha_{n}, \beta_{n}\right) \in L_{n}$. Then, using Lemma 5 we have

$$
\begin{aligned}
& \rho_{n}(\mathbf{w}+\mathbf{v}) \\
& =\left|\left(w_{x}+t\right)+\left({ }^{*} \alpha_{n}\right)^{\tau_{1}}\left(w_{y}+t \alpha_{n}\right)+\left({ }^{*} \beta_{n}\right)^{\tau_{1}}\left(w_{z}+t \beta_{n}\right)\right| \\
& =\left|w_{x}+\left({ }^{*} \alpha_{n}\right)^{\tau_{1}} w_{y}+\left({ }^{*} \beta_{n}\right)^{\tau_{1}} w_{z}+t\left(1+\left({ }^{*} \alpha_{n}\right)^{\tau_{1}} \alpha_{n}+\left({ }^{*} \beta_{n}\right)^{\tau_{1}} \beta_{n}\right)\right| \\
& =\rho_{n}(\mathbf{w}) .
\end{aligned}
$$

Therefore, we have (2). For the proof of (3), let $\mathbf{w}=\left(w_{x}, w_{y}, w_{z}\right)$, then, we have

$$
\begin{aligned}
\rho_{n}(\mathbf{w})= & \left|w_{x}+\left({ }^{*} \alpha_{n}\right)^{\tau_{i}} w_{y}+\left({ }^{*} \beta_{n}\right)^{\tau_{i}} w_{z}\right| \\
& =\left|\left(1,\left({ }^{*} \alpha_{n}\right)^{\tau_{i}},\left({ }^{*} \beta_{n}\right)^{\tau_{i}}\right)\left(\begin{array}{c}
w_{x} \\
w_{y} \\
w_{z}
\end{array}\right)\right| \\
& =\left|\left(1,\left({ }^{*} \alpha_{n}\right)^{\tau_{i}},\left({ }^{*} \beta_{n}\right)^{\tau_{i}}\right) A_{\left(a_{n+1}, \epsilon_{n+1}\right)} A_{\left(a_{n+1}, \epsilon_{n+1}\right)}^{-1}\left(\begin{array}{c}
w_{x} \\
w_{y} \\
w_{z}
\end{array}\right)\right| \\
& =\left|\eta_{n+1}^{\tau_{1}}\right| \rho_{n+1}\left(A_{\left(a_{n+1}, \epsilon_{n+1}\right)}^{-1} \mathbf{w}\right) .
\end{aligned}
$$

By Lemma 6 we remark that $\left|x^{*} \alpha^{\tau_{1}}+y^{*} \beta^{\tau_{1}}\right|^{2}$ is a positive definite quadratic form.

Lemma 7. For each $n \in \mathbb{Z}$ with $n>0$, we have $\rho_{0}\left(q_{n}, p_{n}, r_{n}\right)=$ $\left|\prod_{1 \leq i \leq n} \eta_{i}^{\tau_{1}}\right|$.

Proof. By Lemma 6 and an easy recurrence, we have

$$
\begin{aligned}
\rho_{0}\left(q_{n}, p_{n}, r_{n}\right) & =\rho_{0}\left(\prod_{1 \leq i \leq n} A_{\left(a_{i}, \epsilon_{i}\right)} \mathbf{e}_{1}\right) \\
& =\left|\eta_{1}^{\tau_{1}} \rho_{1}\left(\prod_{2 \leq i \leq n} A_{\left.\left(a_{i}, \epsilon_{i}\right)\right)} \mathbf{e}_{1}\right)\right| \\
& =\left|\prod_{1 \leq i \leq n} \eta_{i}^{\tau_{1}}\right|,
\end{aligned}
$$

where $\mathbf{e}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
Let π_{n} be the projection map to P_{n} along L_{n} and π be the projection map to $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=0\right\}$ along L_{0}.

Lemma 8. For each $n \in \mathbb{Z}$ with $n>0$, we have $\mid\left(p_{n}-q_{n} \alpha\right)^{*} \alpha^{\tau_{1}}+$ $\left(r_{n}-q_{n} \beta\right)^{*} \beta^{\tau_{1}}\left|=\left|\prod_{1 \leq i \leq n} \eta_{i}^{\tau_{1}}\right|\right.$.

Proof. Since $\pi\left(q_{n}, p_{n}, r_{n}\right)=\left(0, p_{n}-q_{n} \alpha, r_{n}-q_{n} \beta\right)$, by using Lemma 6 we have

$$
\begin{aligned}
\rho_{0}\left(q_{n}, p_{n}, r_{n}\right) & =\rho_{0}\left(0, p_{n}-q_{n} \alpha, r_{n}-q_{n} \beta\right) \\
& =\left|\left(p_{n}-q_{n} \alpha\right)^{*} \alpha^{\tau_{1}}+\left(r_{n}-q_{n} \beta\right)^{*} \beta^{\tau_{1}}\right|
\end{aligned}
$$

Therefore, using Lemma 7 we obtain Lemma 8.

Lemma 9. There exists a positive constant $C_{1}(\alpha, \beta)$ such that for any $n \in \mathbb{Z}$ with $n \geq 0$

$$
\left|\left(p_{n}-q_{n} \alpha\right)^{*} \alpha^{\tau_{1}}+\left(r_{n}-q_{n} \beta\right)^{*} \beta^{\tau_{1}}\right| \leq C_{1}(\alpha, \beta) \gamma^{\frac{n}{2 m}} .
$$

Proof. We set $C_{1}(\alpha, \beta)=\prod_{1 \leq i \leq m} \max \left\{1,\left|\eta_{j}^{\tau_{i}}\right|\right\}$. Using the fact that $\sqrt{\gamma}=\left|\prod_{1 \leq i \leq m} \eta_{j}^{\tau_{1}}\right|$ and $\eta_{j+m}=\eta_{j}$ for each $j>0$, we have

$$
\begin{aligned}
\left|\left(p_{n}-q_{n} \alpha\right)^{*} \alpha^{\tau_{1}}+\left(r_{n}-q_{n} \beta\right)^{*} \beta^{\tau_{1}}\right| & =\left|\prod_{1 \leq i \leq n} \eta_{i}^{\tau_{1}}\right| \\
& \leq C_{1}(\alpha, \beta) \gamma^{\frac{n}{2 m^{m}}}
\end{aligned}
$$

From the fact that $\left|x^{*} \alpha^{\tau_{1}}+y^{*} \beta^{\tau_{1}}\right|^{2}$ is a positive definite quadratic form and by Lemma 9 we have the following lemma.

Lemma 10. There exists a positive constant $C_{2}(\alpha, \beta)$ such that for any $n \in \mathbb{Z}$ with $n \geq 0$

$$
\begin{aligned}
& \left|p_{n}-q_{n} \alpha\right| \leq \frac{C_{2}(\alpha, \beta)}{\sqrt{q_{n}}} \\
& \left|r_{n}-q_{n} \beta\right| \leq \frac{C_{2}(\alpha, \beta)}{\sqrt{q_{n}}}
\end{aligned}
$$

We remark that the above formulae hold for each periodic point (α, β) related to Jacobi-Perron algorithm (see [9]).

Lemma 11. For each $n \geq 1, q_{n}+{ }^{*} \alpha p_{n}+{ }^{*} \beta r_{n}=\prod_{1 \leq i \leq n} \eta_{i}$ holds.

Proof. It is easy to see that

$$
\begin{aligned}
q_{n}+{ }^{*} \alpha p_{n}+{ }^{*} \beta r_{n} & =\left(1{ }^{*} \alpha^{*} \beta\right)\left(\begin{array}{l}
q_{n} \\
p_{n} \\
r_{n}
\end{array}\right) \\
& =\left(1{ }^{*} \alpha^{*} \beta\right) \prod_{1 \leq i \leq n} A_{\left(a_{i}, \epsilon_{i}\right)}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& =\prod_{1 \leq i \leq n} \eta_{i}\left(1^{*} \alpha^{*} \beta\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& =\prod_{1 \leq i \leq n} \eta_{i}
\end{aligned}
$$

We define $\mathbf{u}_{\mathbf{n}}, \mathbf{v}_{\mathbf{n}}$ and $\mathbf{r}_{\mathbf{n}}$ by

$$
\begin{aligned}
& \mathbf{u}_{\mathbf{n}}=\frac{1}{2}\left(\left(\begin{array}{c}
1 \\
\alpha_{1}^{\tau_{1}} \\
\beta_{n}^{\tau_{1}}
\end{array}\right)+\left(\begin{array}{c}
1 \\
\alpha_{n}^{\tau_{2}} \\
\beta_{n}^{\tau_{2}}
\end{array}\right)\right), \\
& \mathbf{v}_{\mathbf{n}}=\frac{1}{2 i}\left(\left(\begin{array}{c}
1 \\
\alpha_{n}^{\tau_{1}} \\
\beta_{n}^{\tau_{1}}
\end{array}\right)-\left(\begin{array}{c}
1 \\
\alpha_{n}^{\tau_{2}} \\
\beta_{n}^{\tau_{2}}
\end{array}\right)\right), \\
& \mathbf{r}_{\mathbf{n}}=\left(\begin{array}{c}
1 \\
\alpha_{n} \\
\beta_{n}
\end{array}\right)
\end{aligned}
$$

By Lemma 5 we see that $\mathbf{u}_{\mathbf{n}}, \mathbf{v}_{\mathbf{n}} \in P_{n}$. We set $\left(\gamma^{\tau_{1}}\right)^{-1}=\sqrt{\gamma} e^{2 \pi i \theta}$ with $0 \leq \theta<1$. From the fact that $M\left(1, \alpha^{\tau_{1}}, \beta^{\tau_{1}}\right)^{t}=\left(\gamma^{\tau_{1}}\right)^{-1}\left(1, \alpha^{\tau_{1}}, \beta^{\tau_{1}}\right)^{t}$ and $M\left(1, \alpha^{\tau_{2}}, \beta^{\tau_{2}}\right)^{t}=\left(\gamma^{\tau_{2}}\right)^{-1}\left(1, \alpha^{\tau_{2}}, \beta^{\tau_{2}}\right)^{t}$ we have

$$
M\left(\mathbf{u}_{\mathbf{n}}, \mathbf{v}_{\mathbf{n}}\right)=\left(\mathbf{u}_{\mathbf{n}}, \mathbf{v}_{\mathbf{n}}\right)\left(\begin{array}{cc}
\sqrt{\gamma} \cos 2 \pi \theta & \sqrt{\gamma} \sin 2 \pi \theta \tag{7}\\
-\sqrt{\gamma} \sin 2 \pi \theta & \sqrt{\gamma} \cos 2 \pi \theta
\end{array}\right) .
$$

Lemma 12. θ is irrational.

Proof. We suppose that θ is rational. We set $\theta=\frac{k}{l}$, where $k, l \in \mathbb{Z}$ and $l>0$. From (7) we see that $\left(\gamma^{\tau_{1}}\right)^{l},\left(\gamma^{\tau_{2}}\right)^{l} \in \mathbb{R}$. Since $\left(\gamma^{\tau_{1}}\right)^{l} \in$
$\mathbb{Q}\left(\gamma^{\tau_{1}}\right) \cap \mathbb{R}$, we see $\left(\gamma^{\tau_{1}}\right)^{l} \in \mathbb{Q}$. Therefore, $\gamma^{l} \in \mathbb{Q}$. By using Lemma 3 we see that γ^{l} is the unit in $\mathbb{Q}(\gamma)$. Therefore, we have $\gamma^{l}= \pm 1$. But it contradicts that $0<\gamma<1$.

Theorem 13. For each $0 \leq k \leq m-1$, the limit set of $\left\{\sqrt{q_{n}}\left(p_{n}-\right.\right.$ $\left.\left.q_{n} \alpha, r_{n}-q_{n} \beta\right) \mid n \equiv k \bmod m\right\}$ as $n \rightarrow \infty$ is the following ellipse

$$
\begin{equation*}
\left\{(x, y) \in \mathbb{R}^{2} \| x^{*} \alpha^{\tau_{1}}+\left.y^{*} \beta^{\tau_{1}}\right|^{2}=\frac{\prod_{1 \leq i \leq k} n\left(\eta_{i}\right)}{1+\alpha^{*} \alpha+\beta^{*} \beta}\right\}, \tag{8}
\end{equation*}
$$

which is denoted by $E(k)$.
Proof. We see that $\left|x^{*} \alpha^{\tau_{1}}+y^{*} \beta^{\tau_{1}}\right|^{2}$ is a positive definite quadratic form, which is noticed as the remark following Lemma 6. Therefore, the set (8) is an ellipse. From Lemma 8 and 11 we have

$$
\begin{aligned}
& \left|\sqrt{q_{n}}\left(p_{n}-q_{n} \alpha\right)^{*} \alpha^{\tau_{1}}+\sqrt{q_{n}}\left(r_{n}-q_{n} \beta\right)^{*} \beta^{\tau_{1}}\right|^{2} \\
& =q_{n}\left|\left(p_{n}-q_{n} \alpha\right)^{*} \alpha^{\tau_{1}}+\left(r_{n}-q_{n} \beta\right)^{*} \beta^{\tau_{1}}\right|^{2} \\
& =\frac{q_{n}}{q_{n}+{ }^{*} \alpha p_{n}+{ }^{*} \beta r_{n}}\left(q_{n}+{ }^{*} \alpha p_{n}+{ }^{*} \beta r_{n}\right)\left|\prod_{1 \leq i \leq n} \eta_{i}^{\tau_{1}}\right|^{2} \\
& =\frac{q_{n}}{q_{n}+{ }^{*} \alpha p_{n}+{ }^{*} \beta r_{n}} \prod_{1 \leq i \leq n} n\left(\eta_{i}\right) .
\end{aligned}
$$

Therefore, by using Lemma 10 we have

$$
\begin{aligned}
& \lim _{n \equiv k}\left|\sqrt{q_{n}}\left(p_{n}-q_{n} \alpha\right)^{*} \alpha^{\tau_{1}}+\sqrt{q_{n}}\left(r_{n}-q_{n} \beta\right)^{*} \beta^{\tau_{1}}\right|^{2} \\
& n \rightarrow \infty \\
& =\frac{1}{1+\alpha^{*} \alpha+\beta^{*} \beta} \prod_{1 \leq i \leq k} n\left(\eta_{i}\right) .
\end{aligned}
$$

Thus, the limit set of $\left\{\sqrt{q_{n}}\left(p_{n}-q_{n} \alpha, r_{n}-q_{n} \beta\right) \mid n \equiv k \bmod m\right\}$ as $n \rightarrow \infty$ is included in $E(k)$. We define c_{k}, d_{k}, e_{k} by

$$
\left(\begin{array}{l}
q_{k} \\
p_{k} \\
r_{k}
\end{array}\right)=c_{k} \mathbf{u}_{0}+d_{k} \mathbf{v}_{0}+e_{k} \mathbf{r}_{0}
$$

We see easily that $c_{k} \neq 0$ or $d_{k} \neq 0$. Then, for $n=m l+k$ we have

$$
\begin{aligned}
\left(\begin{array}{l}
q_{n} \\
p_{n} \\
r_{n}
\end{array}\right) & =\prod_{1 \leq i \leq n} A_{\left(a_{i}, \epsilon_{i}\right)}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& =M^{l}\left(\begin{array}{l}
q_{k} \\
p_{k} \\
r_{k}
\end{array}\right) \\
& =\left(\begin{array}{lll}
\mathbf{u}_{0} & \mathbf{v}_{0} & \mathbf{r}_{0}
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{\gamma^{l}} \cos 2 \pi \theta & \sqrt{\gamma^{l}} \sin 2 \pi \theta & 0 \\
-\sqrt{\gamma^{l}} \sin 2 \pi \theta & \sqrt{\gamma^{l}} \cos 2 \pi \theta & 0 \\
0 & 0 & \frac{1}{\gamma^{l}}
\end{array}\right)\left(\begin{array}{c}
c_{k} \\
d_{k} \\
e_{k}
\end{array}\right)
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\left(\begin{array}{c}
0 \\
p_{n}-q_{n} \alpha \\
r_{n}-q_{n} \beta
\end{array}\right) & =\pi\left(\begin{array}{l}
q_{n} \\
p_{n} \\
r_{n}
\end{array}\right) \\
& =\left(\begin{array}{lll}
\pi\left(\mathbf{u}_{0}\right) & \pi\left(\mathbf{v}_{0}\right)
\end{array}\right)\left(\begin{array}{cc}
\sqrt{\gamma^{l}} \cos 2 \pi \theta & \sqrt{\gamma^{l}} \sin 2 \pi \theta \\
-\sqrt{\gamma^{l}} \sin 2 \pi \theta & \sqrt{\gamma^{l}} \cos 2 \pi \theta
\end{array}\right)\binom{c_{k}}{d_{k}}
\end{aligned}
$$

which yields Theorem 13 by using Lemma 12.
Similarly, we have the following corollary.

Corollary 14. Let $j_{i}(1 \leq i \leq 3)$ be non negative integers and $j_{i}>0$ for some i. For $j_{i}(1 \leq i \leq 3)$ and any positive integer n, we define p_{n}^{*}, q_{n}^{*} and r_{n}^{*} by

$$
\left(\begin{array}{l}
q_{n}^{*} \\
p_{n}^{*} \\
r_{n}^{*}
\end{array}\right)=\prod_{1 \leq i \leq n} A_{\left(a_{i}, \epsilon_{i}\right)}\left(\begin{array}{l}
j_{1} \\
j_{2} \\
j_{3}
\end{array}\right) .
$$

Then, for each $0 \leq k \leq m-1$ the limit set of $\left\{\sqrt{q_{n}^{*}}\left(p_{n}^{*}-q_{n}^{*} \alpha, r_{n}^{*}-\right.\right.$ $\left.\left.q_{n}^{*} \beta\right) \mid n \equiv k \bmod m\right\}$ as $n \rightarrow \infty$ is the following ellipse

$$
\begin{equation*}
\left\{(x, y) \in \mathbb{R}^{2} \| x^{*} \alpha^{\tau_{1}}+\left.y^{*} \beta^{\tau_{1}}\right|^{2}=\frac{n\left(j_{1}+{ }^{*} \alpha_{k} j_{2}+{ }^{*} \beta_{k} j_{3}\right) \prod_{1 \leq i \leq k} n\left(\eta_{i}\right)}{1+\alpha^{*} \alpha+\beta^{*} \beta}\right\} \tag{9}
\end{equation*}
$$

In [5] we conjecture that the modified Jacobi-Perron algorithm gives the best simultaneous approximation to the points $\left(\beta_{1}, \beta_{2}\right)$ such that $1, \beta_{1}, \beta_{2}$ is a basis for a real cubic number field, $\mathbb{Q}\left(\beta_{1}\right)$ has a complex embedding and $\left(\beta_{1}, \beta_{2}\right)$ is a purely periodic point by the modified JacobiPerron algorithm. But we have a following counter example.

Counter Example. Let γ be the real root of $x^{3}+8 x^{2}+16 x-$ 1. Then, $\mathbb{Q}(\gamma)$ has a complex embedding. Let $\alpha=\frac{3}{\gamma+3}$ and $\beta=$ γ. (α, β) is the purely periodic point by the modified Jacobi-Perron algorithm and the digits are given as follows: $\left(a_{1}, \epsilon_{1}\right)=(1,0),\left(a_{2}, \epsilon_{2}\right)=$ $(1,1),\left(a_{3}, \epsilon_{3}\right)=(2,0),\left(a_{4}, \epsilon_{4}\right)=(3,0)$ and $\left(a_{n+4}, \epsilon_{n+4}\right)=\left(a_{n}, \epsilon_{n}\right)$ for each $n \in \mathbb{Z}$ with $n>0$.

Then, we have the following table.

n	0	1	2	3
${ }^{*} \alpha_{n}$	$\frac{2 \gamma}{1-\gamma}$	$\frac{2+\gamma}{2 \alpha+7}$	$\frac{1+\gamma}{2}$	γ
${ }^{*} \beta_{n}$	$\frac{1}{\gamma+3}$	$\frac{\gamma-\gamma \gamma}{\gamma+1}$	$\frac{1-\gamma}{2 \gamma+6}$	$\frac{2}{\gamma+5}$
η_{n}		$\frac{\gamma+1}{1-\gamma}$	$\frac{2}{\gamma+1}$	$\frac{5+\gamma}{2}$
$n\left(\eta_{n}\right)$		$\frac{5}{12}$	$\frac{4}{5}$	$\frac{3}{4}$

Let $\mu=3+2^{*} \alpha_{0}$. For any positive integer n we define p_{n}^{*}, q_{n}^{*} and r_{n}^{*} by

$$
\left(\begin{array}{l}
q_{n}^{*} \\
p_{n}^{*} \\
r_{n}^{*}
\end{array}\right)=\prod_{1 \leq i \leq n} A_{\left(a_{i}, \epsilon_{i}\right)}\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right)
$$

Then, we have $n(\mu)=\frac{1}{6}$. Since $n(\mu)<\min \left\{\prod_{1 \leq i \leq k} n\left(\eta_{i}\right) \mid i=1,2,3\right\}$, by using Theorem 13 and Corollary 14 we see that the ellipse defined from $\left\{p_{n}^{*}, q_{n}^{*}, r_{n}^{*}\right\}_{n \equiv 1 \bmod 4}$ as in Corollary 14 is nearer to the origin than the ellipses defined from $\left\{p_{n}, q_{n}, r_{n}\right\}$ as in Theorem 13. We remark that $p_{4 j}^{*}=p_{4 j+1}^{*}+p_{4 j+2}^{*}, q_{4 j}^{*}=q_{4 j+1}^{*}+q_{4 j+2}^{*}$ and $r_{4 j}^{*}=r_{4 j+1}^{*}+r_{4 j+2}^{*}$ for each $j \in \mathbb{Z}$ with $j \geq 0$. In our paper [6] in preparation we will show that under some conditions for (α, β) the nearest ellipses to the origin in $\lim (\alpha, \beta)$ are given as intermediate convergents of modified JacobiPerron algorithm.

References

[1] W. W. Adams, Simultaneous asymptotic diophantine approximations to a basis of a real cubic number field, J. Number Theory., 1 (1969), 179-194.
[2] N. Chevallier, Best simultaneous Diophantine approximations of some cubic algebraic numbers, J. Théor. Nombres Bordx., 14 (2002), 403-414.
[3] N. Chekhova, P. Hubert and A. Messaoudi, Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci, J. Théor. Nombres Bordx., 13 (2001), 371-394.
[4] T. Fujita, Sh. Ito, M. Keane and M. Ohtsuki, On almost everywhere exponential convergence of modified Jacobi-Perron algorithm: a corrected proof, Ergodic theory an dynamical systems, 16 (1996), 1345-1352.
[5] S. Ito, J. Fujii, H, Higashino and S. Yasutomi, On simultaneous approximation to (α, α^{2}) with $\alpha^{3}+k \alpha-1=0$, J. Number Theory., 1 (2003), 255-283.
[6] S. Ito, M. Furukado and S. Yasutomi, Best simultaneous diophantine approximation of cubic numbers related to modified Jacobi-Perron algorithm, in preparation.
[7] S. Ito and M. Ohtsuki, Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math., 16 (1993), 441-472.
[8] Sh. Ito and M. Ohtsuki, Paralleogram tilings and Jacobi-Perron algorithm, Tokyo J. Math., 17 (1994), 33-58.
[9] O. Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Ann., 64 (1907), 1-76.
[10] E. V. Podsypanin, A generalization of continued fraction algorithm that is related to the ViggoBrun algorithm. (Russian), Studies in Number Theory (LOMI), 4., Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov, 67 (1977), 184-194.

Shunji Ito
Department of Information and Systems Engineering
Faculty of Engineering
Kanazawa University
Kanazawa, Ishikawa, 920-8667
Japan
E-mail address: ito@t.kanazawa-u.ac.jp
Shin-ichi Yasutomi
General Education
Suzuka College of Technology
Shiroko, Suzuka, Mie, 510-0294
Japan
E-mail address: yasutomi@genl.suzuka-ct.ac.jp

