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The ramifications of a shift by 2 

Peter Elliott 

Abstract. 

Harmonic analysis and the elementary geometry of Hilbert spaces 
enable the representation of rationals by quotients of doubly-shifted 
primes. These representations offer an approach to lower bounds on 
the gaps between successive primes. 

§1. Introduction 

If F is a free abelian group, A its subgroup generated by a sequence 
of elements a 1, a 2 , ... , and B its subgroup generated by the sequence 
ai+1aj 1, j = 1, 2, ... , then what is the relation of the quotient group 
F/B to FjA? 

For example, elementary group theory shows that F / B is finite if 
and only if F /A and A/ B are finite. Here A/ B is finitely generated, so 
will be the direct sum of its finite torsion group and of a free group of 
rank at most 2. In particular, it will be finite if and only if there is a 
positive integer m so that a'{" and ar belongs to B. 

Whilst every denumerable abelian group has a presentation in the 
form F /A, there may be differing choices for the elements ai. Whether 
some power of a1 belongs to B need not be at all evident. 

The following result shows that with an appropriate choice of the aj 

the initial question becomes number-theoretically interesting. 
Let Pl < pz < · · · be the rational primes. 

Theorem 1. There is a positive integer k, so that given any further 
positive integer t, each positive rational r has a representation 

rk =IT (Pi+2 + 1)d; 
jEI Pj + 1 
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where I is a finite set of integers, the exponents d1 are integers, possibly 
negative, and every prime exceeds t. 

I shall show the theorem to be valid for some k not exceeding 8. 
Taking logarithms, 

( PJ+2 + 1) klogr::::: n(r,t)m.axlog ' 
dj>D Pj + 1 

where D(r, t) denotes the sum of the positive d1. Since log(1 + y) < y 
for positive y, 

--<max . klogr (Pi+2- Pi) 
D(r, t) - p;>t Pi 

Typically y = (Pi + 1)-1 (Pi+2 -Pi), which the prime number theorem 
shows to approach zero as Pi becomes unbounded. Our replacement of 
log(1 + y) by y is not too wasteful. 

In particular, an upper bound on D(r, t) gives a lower bound on gaps 
between primes. 

A conjecture of Dickson from 1904, [1], would imply that every posi
tive rational has a representation in the form (q+1)- 1 (p+1) with primes 
p, q. For example, if we consider the possible primality of 19(q + 1)- 1 
as q runs through the sequence of primes, then the first occurrence gives 
19 = (5 + 1)-1 (113 + 1). Employing telescopes 

p + 1 _ ( Pi + 1 ) (Pi-2 + 1) ... 
1 - Pi-2 + 1 Pj-4 + 1 ' 

together with 

- (5+1)-1 (17+1) 2+1- -- ---
2+1 11+1 ' 

( 5+1) 2 
3+1= --

2+1 ' 

we obtain a representation of the type asserted in the theorem where 
r = 19, k = 1, t = 1 and L Jd1J = 19. 

The next occurrence gives 19 = ( 7 + 1) - 1 ( 151 + 1), and the interval 
(7, 151) contains 31 primes, enabling a single telescope to reach from 151 
+ 1 to 7 + 1. There is a corresponding representation for 19 of the type 
in the theorem with k = 1, t = 1 every d1 2: 0 and L d1 = 16. 

However, trial and error discovers 

19= (11+1) 2 (13+1) (17+1) (19+1) (37+1) 
5 + 1 7 + 1 11 + 1 13 + 1 29 + 1 

where every exponent is positive and there are only six terms. 
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From a number-theoretical point of view it is desirable to obtain 
product representations of the type in the theorem that use as few terms 
as possible. Once the restriction PJ > t is required, simple telescoping 
is not adequate to the situation. 

I approach the theorem group theoretically. Let Q* be the multi
plicative group of positive rationals, ft the subgroup of it generated by 
the ratios of shifted primes (Pj + 1)-1 (pJ+2 + 1), where each PJ exceeds 
t. In the notation of the introduction, F is Q* and the role of the ai is 
played by the PJ + 1 with PJ > t. The validity of the theorem with k = 1 
would then amount to the assertion that the quotient groups Q* /ft are 
all trivial. 

Consider a typical group G = Q* /ft. We may compose each char
acter on G with the canonical homomorphism Q* --'> Q* /f t and ob
tain a function g with values in the unit circle of the complex plane, 
satisfying g(ab) = g(a)g(b) for every pair of positive rationals a, b and 
g((PJ + 1)-1(pJ+2 + 1)) = 1 if PJ > t. This last asserts that for primes 
p > t, g(p + 1) is periodic, of period at most 2. 

Given k characters on G, with extensions, g1 , ... , 9k, the points 
(g1 (p + 1), ... , 9k (p + 1)) in c_k are ultimately periodic. If ( c1, ... , Ck) is 
a further point in c_k, then the inner-product 

C191(P + 1) + · · · + Ck9k(P + 1) 

is also ultimately periodic, period at most 2. 
To continue, we pursue upper and lower bounds on a collection of 

partially known inner products. 

§2. Upper bound 

Lemma 1. The inequality 

k 

L L Cj9j(P + 1) 
p+l'Sx j=l 

with 

k 44d 1 --
>. = 4 + max L max "--(d) 2 - L 9£(n)gj(n)x(n) 

l'S£"Sk J=l x(mod d) '+' X n<x 
j#£ -

holds uniformly for x 2': 3, 9j multiplicative functions with values in the 
complex unit disc, complex Cj, j = 1, ... , k, The inner maximum runs 
over Dirichlet characters to squarefree moduli. 
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Lemma 1 is Theorem 3 of [2]. A version with the constant 4 replaced 
by another, strictly less than 4, may be derived from Lemma 15 of the 
same reference. No doubt the constant should be 1, and that would 
improve the bound k:::; 8 attached to the theorem to k:::; 2. 

Lemma 1 relates the values of a multiplicative function 9 on the 
shifted primes to the values on the natural numbers of the multiplicative 
functions obtained by braiding 9 with varous Dirichlet characters. 

In turn we may relate the values of a multiplicative function on the 
natural numbers to its values on the primes themselves by a result of 
Halasz, cf. [3], Lemma 6.10. 

Lemma 2. The inequality 

x-1 '""9(n) « r-l/4 + exp (-! min '""!(1- Re9(P)PiT)) 
L....t 4 lri:"'T L....t p 
n:"'x p:"'x 

holds uniformly for all multiplicative functions 9 with values in the com
plex unit disc, real x ~ 2 and T ~ 2. Here T is confined to real values. 

§3. Lower bound 

I assume that I:~=l lc1 12 = 1, and introduce a renormalisation 

1 
.jk(91(p+ 1), ... ,9k(P+ 1)). 

Lemma 3. For any r points w1 of unit length in a Hilbert space, 
there is a further unit point z such that 

j = 1, ... ,r. 

The space may be real or complex 

The lower bound in this result is not best possible. 
As a sample argument consider r points in the real space )Rt. Let 

Y1, ... , Yt be independent random variables, each normally distributed, 
mean zero and variance 1. If w1 = (s1, •.. , St) in a unit point in JRt, then 
s1Y1 + · · · + StYt is also normally distributed, mean zero, variance 

For any real () ~ 0, 

t 

L var(sil'j) = si + ... + si = 1. 
j=l 
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Arguing simply, for any w > 0, 

P(Y,' + · · · + Y,' > w) <0 w-' E (t Yj') ~ w-'t. 

If r8(2/n) 112 + w- 1t < 1, then the unit vector 

satisfies 

Bearing in mind that the unit sphere in !Rt is compact in the usual 
topology, we see that our best choices are()= r- 1 (n/2) 112(1- w- 1t) 
and w = 3t. The minimum is then at least (2n) 112 (3rt112 )- 1 . 

It transpires that within a constant multiple a natural form for the 
lower bound is (rt112 )- 1 when the space is real, (tr112)- 1 when the space 
is complex. 

If r = 2, then the best possible lower bound is 1/ J2, whether the 
space is real or complex. In our application there are complex numbers 
cj, j = 1, ... , k, 2:::~= 1 lcJI 2 = 1, so that for all primes p > t, 

k 

L Cjgj(P + 1) 2 (k/2) 112 . 

j=1 

If k > 8, then Lemmas 1 and 2 guarantee the existence of j, £, 1 :::; j < 
£ :::; k, a Dirichlet character Xc5 to a squarefree modulus 5, and a real T, 

so that the series 

taken over the primes, converges. 

Lemma 4 (Proximity Lemma). If on the shifted primes p + 1 the 
unimodular multiplicative function g assumes finitely many values, and 
if the series I;p- 1 (1 - Reg(p)pi7 Xc5(P)) converges, then g(2mb)Xc5(t) 
belongs to the set of values g(p+ 1) of infinite multiplicity, uniformly for 
(t, b) = 1 and all positive integers m 

A proof of this result may be adapted from that for Lemma 13 of 
[2], there concerned with the case that g(p + 1) = 1 holds for all but 
finitely many primes. I confine myself to two remarks. 
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If x8 has order h, then the inequality 1-Re wh :::; h2 (1- Re w), valid 
for lwl :::; 1, shows that the series LP- 1(1-Reg(p)hpiTh) converges. The 
initial argument of [2], Lemma 13, using a sieve to localise primes p for 
which p + 1 has a bounded number of factors, then shows that for any 
real o:, g(2)2iT exp(27rio:T) belongs to the finite value set of the g(p + 1 ). 
This is only feasible if T = 0. 

Refinement of the argument employs the asymptotic uniform distri
bution of the primes in reduced residue classes. 

As an application, suppose that g(p + 1) assumes at most d values. 
Choosing t = 1 in Lemma 4 we see that the powers g( m )1, j = 1, ... , d+ 1 
cannot be distinct. Each g(m) is a root of unity, of order at most d. 

As a corollary, the values of g on the positive integers form a group. 
As a further corollary the set of g(p+ 1 )-values of infinite multiplicity 

also form a group, W, say. 
In our case W has order at most 2. If W has order 2, then g(p + 1) 

must ultimately assume values +1, -1, +1, -1, .... In particular, 

1 
1 = 21r(x) + 0(1), X~ 2, 

P'S:-'l: 
g(p+1)=y 

holds for y = 1, -1. An estimation of this accuracy is scarcely credible! 

Lemma 5. Let g be a unimodular completely multiplicative function 
for which the series 

2:: p-1 

g(p)-fx;; (p) 

converges. Then 

}!_.~ 7r(x)-1 Lg(p + 1) 
p:<:;x 

exists and is non-zero. 

The limit may be evaluated as an Euler product involving the Dirich
let character X8. If g is assumed only to be multiplicative, g( ab) = 
g(a)g(b) when (a, b) = 1, then the limit can be zero. 

In our case, W can have exact order 2 only if g has mean-value zero 
on the shifted primes, a possibility excluded by Lemma 5. The extended 
characters g1, 9fl on Q* coincide. 

The group dual to G is finite, of order at most 8. The second dual 
of G and, since G can be embedded in it, G itself are finite. All three 
groups are isomorphic, of order at most 8. 
Proof of the theorem. As t increases, the subgroups ft form a decreasing 
chain, ordered by inclusion. For s > t there is a natural homomorphism 
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from Q* ;r s onto Q* ;rt, and (Q* ;r s)/(rtfr s) is isomorphic to Q* ;rt. 
In particular 

s-1 
IQ* ;rsl = IQ* ;rtl II 1ri;rH1I· 

j=t 

Since the orders IQ* ;rsl are uniformly bounded, from some value oft 
onwards the ri coincide and the groups Q* ;rt are isomorphic. 

The common group, which I denote by G00 , is again of order at most 
8. The assertion of the theorem is valid with k = IGool· 

§4. Further results 

It is natural to seek an analog of the theorem employing ratios (Pi + 
1)-1 (PJ+3 + 1) with a shift by 3. 

The k- tuples (91 (p + 1), ... , 9k (p + 1)), ultimately periodic, may 
have a period of 1 or 3. Lemma 3 will then provide Cj, j = 1, ... , k, 
2::7=1 lcil 2 = 1, for which the uniform but not necessarily best possible, 
lower bound 

holds. 

k 

L Cj9j(P + 1) ~ k1/ 2 /(3V3) 
j=1 

If k > 108, then we gain a pair of extended characters 9i, ge, 1 :::; 
j < f < k, and a real T for which the function n ~----> gj(n)ge(n)nir is in 
an appropriate sense close to a Dirichlet character. 

The proximity Lemma gives for the group W, of ultimate values 
attached to the (gjge)(p + 1), a bound IWI :::; 3. 

If IWI = 3, then W consists of 1, p, p2 , with a cube root of unity p, 
p -1- 1. The periodic values of (gjge)(p + 1) sum to zero and an appeal 
to Lemma 5 will yield the desired contradiction. 

There remains the possibility that IWI = 2, so that the (gjge)(p+ 1) 
ultimately assume one of the periodic patterns 1, -1, -1 or 1, 1, -1, with 
a corresponding mean-value ±1/3. 

I conjecture that if g(p + 1) assumes finitely many values, then for 
any y, an estimate 

L 1 = A1r(x) + 0(1), x ~ 2, 
p:$:x 

g(p+l)=y 

with A -1- 0, 1, is impossible. 
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It seems that it is the irregularities in the distribution of primes in 
residue classes that force finer structure upon the g(p+ 1), and thus the 
groups generated by ratios of shifted primes. 

Lacking a suitable variant of Lemma 5, we operate with the subgroup 
of squares in G, rather than with G itself. In this way we conclude the 
existence of an integer K, K ::; 216, for which the analog of the theorem 
holds with representations of the form 

rK =IT (PJ+3 + 1)d;, 
jEJ Pj + 1 

but we have not proved the corresponding groups Q* /f t to be finite. 
It seems likely that if we replace the ratios (p1 + 1) -l (pJ+2 + 1) by 

(p1 + 1)-1 (PJ+m + 1), for any fixed m ~ 1 then the corresponding groups 
Q* /f t are all trivial. 

All inequalities in this account may be made explicit. 
It might be mentioned that in pursuit of a lower bound for gaps 

between primes we may not only choose the represented rational r, but 
consider product representations using shifted primes p1 +a, where a is 
allowed to vary. 

The method of this paper is quite general and may be applied to 
study products and gaps formed by any sequence b1, j = 1, 2, ... for 
which the values g(b1) for characters g on Q*, or some other appropriate 
group, exhibit suitable cancellation. 

The foregoing account closely follows the lecture, under the same 
title, that I gave at the International Conference on Probability and 
Number Theory, held in Kanazawa, Japan, June 20-24, 2005. 

With great pleasure I thank the organizers of the conference for their 
kind invitation to speak and for their financial support. 
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