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Abstract. 

Considered is a reaction-diffusion system consisting of an activator 
and an inhibitor which was proposed by Gierer and Meinhardt to model 
biological pattern formation. We prove that the initial-boundary value 
problem for the activator-inhibitor system has a unique solution for 
all t > 0 if the production rate of the activator is well-controlled by 
the inhibitor. Moreover, we prove that the solution stays in a bounded 
region if the source term for the activator becomes positive somewhere. 
We consider also how the source term for the activator affects the shape 
of stationary solutions in one spatial dimension. 

§1. Introduction and Statement of Results 

In the celebrated paper [14], A. M. Turing found that the reaction 
between two chemicals with different diffusion rates may cause the desta
bilization of the spatially homogeneous state, thus leading to the forma
tion of nontrivial spatial structure. Developing Turing's idea, A. Gierer 
and H. Meinhardt ([2]) proposed a system consisting of a slowly diffus
ing activator and a rapidly diffusing inhibitor. They assumed that a 
change in cells or tissue takes place in the region where the activator 
concentration is high. Suppose that the activator and the inhibitor fill 
a bounded domain n in JR.N with smooth boundary an and that there 
is no flux through the boundary. Let A(x, t) and H(x, t) denote the 
respective concentrations of the activator and the inhibitor at position 
X En and timet;;:: 0. Let v denote the unit outer normal vector to an 
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and Ll = I:f=l a2 I ax; be the Laplace operator in R.N. In this paper 
we consider the following activator-inhibitor system proposed by Gierer 
and Meinhardt: 

aA AP 
(1.1) - = c2 LlA - A + - + a (x) for X E f!, t > 0, at Hq a 

(1.2) 
aH Ar 

Tat = DLlH- H + Hs + ah(x) for X E f!, t > 0, 

(1.3) aA = aH = 0 
av av 

for X E af!, t > 0, 

(1.4) A(x, 0) = Ao(x), H(x, 0) = Ho(x) for XE f!. 

Here, c, D and T are positive constants; 

(1.5) 

and concerning the initial data we assume 

(1.6) Ao, HoE c2+.B(n), aAo I = aHo I = 0, 
av an av an 

and Ao(x) > 0, Ho(x) > 0 on fi, 

where 0 < j3 < 1. Moreover, the exponents (p, q, r, s) are assumed to 
satisfy 

(1.7) 
p -1 r 

p > 1, q > 0, r > 0, s ~ 0, and 0 < -- < --. 
q s + 1 

From a mathematical point of view, one of the fundamental ques~ 
tions is whether the initial-boundary value problem has a solution for 
all t > 0 or not. There have appeared several results on this question 
(see, e.g., [11], [6], [15], [5]). In particular, under the assumption that 
minxETiaa(x) > 0 and (p- 1)/r < 2/(N + 2), Masuda and Takahashi 
[6] proved not only that the solution exists for all t > 0 but also that, 
as t - +oo, the set {(A(x, t), H(x, t)) E R.2 I x E f!} is confined in a 
fixed rectangle which is independent of the initial data. On the other 
hand, Li, Chen and Qin [5] proved that the solution exists for all t > 0 
if minxETiaa(x) > 0 and p -1 < r. 

This paper has two purposes. One is to study the initial-boundary 
value problem (1.1)-(1.4) in the case minxETiaa(x) = 0. The following 
Theorems 1.1-1.3 complement the results by [6] and [5], and give us a 
complete understanding of the global existence and the boundedness of 
solutions in the case p- 1 < r. The other is to study the effect of aa(x) 
upon the steady-state patterns. We shall consider this problem in the 
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simplest situation, i.e., the one-dimensional shadow system (1.14)-(1.16) 
below. 

We now state our results on the global existence of solutions of the 
initial-boundary value problem. 

Theorem 1.1. Assume, in addition to (1. 7), that 

(1.8) p-1<r 

and, in addition to ( 1. 5), that 

(1.9) rna~ O'a(x) > 0. 
xED 

Then the initial-boundary value problem (1.1)-(1.4) has a unique solu
tion for all t > 0. Moreover, there exist positive constants ma, Ma, mh, 
Mh, independent of the initial data (Ao(x), Ho(x)), such that 

{ 
ma ~ liminf mi!! A(x, t) ~lim sup rna~ A(x, t) ~ Ma, 

t->oo xED t->oo xED 

mh ~ liminf mi_!! H(x,t) ~ limsup rna~ H(x,t) ~ Mh. 
t->oo xED t->oo xED 

(1.10) 

Theorem 1.2. Assume that (1.8) is satisfied in addition to (1. 7). 
Moreover, suppose that 

(1.11) O'a(x) = 0 and rna~ O'h(x) > 0. 
xED 

Then the initial-boundary value problem (1.1)-(1.4) has a unique solu
tion for all t > 0. Moreover, there are positive constants Ma, mh and 
Mh which are independent of the initial data (Ao(x), Ho(x)) such that 

(1.12) l e-t mi_!! A 0 (x) ~ A(x, t) for all x E fi, t > 0, 
xED 

and lim sup rna~ A(x, t) ~ Ma, 
t->+oo xED 

mh ~ liminf mi_!!H(x,t) ~ limsup rna~ H(x,t) ~ Mh. 
t->+oo xED t->+oo xED 

Theorem 1.3. Assume, in addition to (1. 7), that (1.8) is satisfied. 
Moreover, let 

O'a(x) = 0 and O'h(x) = 0. 

Then the initial-boundary value problem (1.1)-(1.4) has a unique so
lution for all t > 0. Moreover, there are positive constants A and p 
which are dependent only on p, q, r, s and r, and a positive constant C 
depending on Ao(x) and Ho(x) such that 
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(1.13) 
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{ 
e-tmiQAo(x) ~ A(x,t) ~ Ce>.t, 

xEO 

e-t/T miQHo(x) ~ H(x, t) ~ Ce~-'T 
xEO 

for all t > 0 and X E fi". 

Some remarks on the theorems above are in order. First, we call 
the ratio PA = (p- 1)/r the net self-activation index since it compares 
how strongly the activator activates the production of itself with how 
strongly it activates that of the inhibitor. On the other hand, we call 
PI = qj(s + 1) the net cross-inhibition index. All the three theorems 
above assume that PA be less than one, which is important to rule out 
the occurrence of finite time blow-up of solutions. Indeed, it has been 
shown in [5] and [7] that if PA > 1, then there exist solutions of (1.1)
(1.4) with aa(x) = ah(x) = 0 which blow up in finite time. 

Second, Wu and Li [15] proved that if aa(x) = 0 and ah(x) = 0 
and if T > qj(p- 1), then there are solutions of (1.1)-(1.4) such that 
(A(x, t), H(x, t)) ----+ (0, 0) uniformly on f2 as t ----+ +oo. We call such 
a phenomenon the collapse of patterns. Theorem 1.1 implies patterns 
never collapse as long as a a ( x) is nontrivial. 

Third, in [7] it is proved that if PA ~ 1 and PI ~ 1 then some 
solutions of (1.1)-(1.4) with aa(x) = ah(x) = 0 exist for all t > 0, but 
they are unbounded. By virtue of Theorem 1.1 all solutions are bounded 
if a a ( x) is nontrivial. 

Next we study the effect of aa(x) on the shape of stationary solu
tions in one space dimension. Here we restrict ourselves to the simplest 
situation, i.e., the limiting system obtained by letting D ----+ +oo, which 
is called the shadow system for (1.1)-(1.4). By dividing both sides of 
(1.2) by D and then letting D----+ +oo, we see that .!J.H----+ 0 as a formal 
limit. Thanks to the boundary condition this implies that in the limit H 
is independent of x. To determine this constant we integrate (1.2) over 
D, which leads to T-1£ J0 H dx =- fo H dx+ J0 Ar / Hs dx+ J0 ah(x) dx. 
Letting H(x, t) ----+ ~(t), we obtain the equation for ~(t). Therefore, as
suming that ah(x) = 0, we are led to the shadow system in the case of 
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spatial dimension one: 

(1.14) 
8A 282A AP 
- = E -- - A + - + u for 0 < x < R, t > 0, at 8x2 ~q a 

(1.15) d~ 1 1€ 
T- = -~ +- Ardx fort> 0, 

dt c~s 0 

(1.16) 
8A DA ox (0, t) = ox (R, t) = 0 for t > 0. 

In order to state our results we need some preparation. Let w(y) be 
the solution of the following boundary value problem: 

{ 
w" - w + wP = 0, and w > 0 for 0 < y < +oo, 

(1.17) w'(O) = 0, lim w(y) = 0. 
y--->+oo 

It is well-known that the solution w is unique and decays exponentially 
as y----+ +oo: sup0<y<oo w(y)eY < +oo. Let ¢I(y) be a solution of 

{ 
¢7- ¢1 + pwP- 1¢ 1 + pwP- 1 = 0 for 0 < y < +oo, 

(1.18) ¢~(0) = 0, lim ¢1(Y) = 0. 
y--->+oo 

This problem is known to have a unique solution (see, e.g., pp. 330-331 
of [8]). The following theorem generalizes Theorem 1 of [13] which treats 
the case where u a is a constant, and tells us how the term u a ( x) affects 
the shape of stationary solutions. 

Theorem 1.4. There exists an Eo > 0 such that for each E E (0, Eo) 
the shadow system has a pair of stationary solutions (Az,c:(x), ~z,c:) and 
( Ar,c: (X), ~r,c:) satisfying 

(1.19) Az,c:(x) = ~~~[qr-(p- 1 )(s+l)]{w(x/E) + o(1)} 

+ ua(x) + ua(0)¢1(x/E) + o(1), 

{ (
1 roo ) }(p-1)/[qr-(p-1)(s+1)] 

(1.20) ~l,c: = E y Jo w(z)" dz + o(1) , 

(1.21) Ar,c:(x) = ~i(c:[qr-(p- 1 )(s+l)l{w((C- x)/E) + o(1)} 

+ ua(x) + Ua(l)¢1((£- x)/E) + o(1), 

- { (1 roo r ) }(p-1)/[qr-(p-1)(s+1)] 
(1.22) ~r,c:- E y Jo w(z) dz + o(1) , 

as E 1 0. Here, the terms o(1) in (1.19) and (1.21) are uniform in 
X E [O,R]. 
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Precisely speaking, we should notice that O" a ( x) is not smooth in gen
eral, and hence the term O"a(x) in (1.19) and (1.21) should be replaced 
with E 6 (x) which is a unique solution of a boundary value problem (3.14) 
below. We can prove that Ec:(x) converges to O"a(x) uniformly on [0, 1:'] 
as E 1 0 (see Lemma 3.3). We now turn to the question of the stabil
ity of (Az,c:(x),~z,c:) and (Ar,c:(x),~r,c:)· A stationary solution (A*(x),~*) 
of the shadow system (1.14)-(1.16) is said to be stable if, given any 
neighborhood U, one can find a neighborhood V of (A* ( x), ~*) such that 
the solution (A(x, t), ~(t)) of the initial-boundary value problem stays 
in U for all t ;:? 0 whenever the initial data (A0 (x), ~0 ) is chosen in V. 
If it is not stable, we call the stationary solution (A* ( x), ~*) unstable. 
Moreover, a stationary solution (A*(x), ~*)of (1.14)-(1.16) is said to be 
asymptotically stable if the solution of the initial-boundary value prob
lem tends to (A* ( x), ~*) as t ----+ +oo provided that the initial data is 
sufficiently close to (A* ( x), ~*). As for the stability of these stationary 
solutions we have the following two results. Let a = qr / (p- 1) - ( s + 1). 
Note that a> 0 by (1.7). 

Theorem 1.5. Let r = 2 and 1 < p < 5. For each a E (0, a 0 ) 

where ao is a sufficiently small number, one can choose an E 1 > 0 so 
that for 0 < E < E1, there exist 7r > 0 and 7z > 0 such that 

(i) if 0 < 7 < 7z, then (Az,c:(x), ~z,c:) is asymptotically stable; and 
ifO < 7 < 7r, then (Ar,c:(x),~r,c:) is asymptotically stable; 

(ii) (Az,c:(x),6,c:) is unstable if7 > 7z and (Ar,c:(x),~r,c:) is unstable 
if7 > 7r· 

Theorem 1.6. Let 1 < p < 5 and r = p + 1. Assume that a is 
sufficiently small. Then for each E > 0 sufficiently small there exist 
positive constants 0 < 7z,r < 71,r and 0 < 7z,z < 71,1, depending on 
(p,q,s) and E, such that 

(i) if 7z,z < 7 < 71,!, then (Az,c:(x), ~l,c:) is asymptotically stable; 
and if 7z,r < 7 < 71,r, then (Ar,c:(x), ~r,c:) is asymptotically 
stable; 

(ii) (Az,c:(x), 6,c:) is unstable if 7 > 71,1 and (Ar,c:(x), ~r,c:) is unsta
ble if 7 > 71,r· 

To sum up, stable steady-state solutions has a very large spike at 
one of the end points of the interval superimposed onto the distribution 
of the basic production term O"a(x). In the case of the shadow system, 
therefore, the boundary spike is the major part and the contribution of 
O" a ( x) is relatively small as far as resulting patterns are concerned. Its 
principal role seems to stabilize the system and avoid the collapse of 
patterns. 
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We close this section by making a few remarks. (i) While preparing 
the manuscript we learned that Jiang (4] obtained independently some 
results similar to ours on the global existence and boundedness of so
lutions of the initial-boundary value problem. (ii) Zhang and Li (16] 
considered global-in-time solutions and blow-up solutions of the initial
boundary value problem for (1.1)-(1.2) under the Robin boundary con
dition. (iii) The assumptions r = 2 and r = p + 1 in Theorems 1.5 
and 1.6 have been made for technical reasons (see, e.g., (9] and (10]) 
and should be relaxed considerably. We suspect that in Theorem 1.6, 
(A1, 10 (x), ~l,c) is stable whenever 0 < T < 71,1 and (Ar, 10 (x), ~r, 10 ) is sta
ble if 0 < T < Tr,l· (iv) Our results on the steady-state solutions of 
the shadow system imply that the distribution of the source term aa(x) 
does not affect very much the patterns generated by (1.14)-(1.16); in 
particular, the major concentration occurs at one of the end points of 
the interval. This is an important observation from a biological view 
point. However, the situation changes drastically when we replace the 
term AP/Hq in (1.1) with Pa(x)AP/Hq, i.e., if we consider the spatially 
inhomogeneous reaction rate. The details of the results will appear in a 
forthcoming paper. 

§2. Initial-Boundary Value Problem. 

2 .1. Proof of Theorem 1.1. 

In this section we sketch the proof of Theorem 1.1, which follows 
closely the approach developed by Li, Chen and Qin (5]. 

Step 1. We derive lower bounds for A(x, t) and H(x, t). For this 
purpose, the following observation is crucial. 

Lemma 2.1. Assume that (1.9} is satisfied. Then, for each positive 
number 8, there is a positive constant m( 8) such that the unique solution 
a(x, t) of the initial-boundary value problem 

(2.1) 
a a 
at = c2 ..1a- a+ aa(x) for (x, t) E Q X (0, oo) 

(2.2) 
aa 
av = 0 for (x, t) E an X (0, oo) 

(2.3) a(x, 0) = 0 for X E Q 

satisfies 

(2.4) a(x, t) ~ m(8) for all X E f!, t ~ 8. 

The constant m(8) depends only on 8, c, n and aa(x). 
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Proof Let G(x, y, t) be the fundamental solution of the following 
linear parabolic equation subject to the homogeneous Neumann bound
ary conditions: 

{ 
au at =c2Llu-u for(x,t)Enx(O,oo), 

au 
Bv = 0 for (x, t) E an X (0, oo). 

Then the solution a of the problem (2.1)-(2.3) is expressed by the for
mula 

(2.5) a(x, t) =lot ds k G(x, y, t- s)CJa(y)dy. 

Since CJa(x) ~ 0 and (1.9) is satisfied, we see that a(x, t) > 0 for all 
X En whenever t > 0 because of the positivity of G(x, y, t). 

Moreover, by the standard theory of linear parabolic equations (see, 
e.g., §18 of [3] for a classical approach or Theorem 13.1 of [1] for an 
abstract setting), we know that a(x, t) converges to a stationary solution 
of (2.1)-(2.3) uniformly on D as t ---+ oo. By invoking the maximum 
principle one can prove easily that the stationary solution is unique and 
positive on D. Therefore, the assertion of the lemma is an immediate 
consequence of the continuity of the solution a(x, t). q.e.d. 

As a corollary to this lemma one obtains the following 

Lemma 2.2. Assume that (1.9) is satisfied. Then, there is a pos
itive constant m 1 such that the unique solution at ( x, t) of the initial
boundary value problem 

(2.6) Bat 2 at= c Llat- at+ CJa(x) for (x, t) En X (0, oo), 

(2.7) 
Bat 
Bv = 0 for (x,t) E an X (O,oo), 

(2.8) at (X' 0) = Ao (X) for X E n 
satisfies 

(2.9) at(x,t) ~ m1 for all XED, t ~ 0. 

The constant m 1 depends only on A 0 (x), c, n and CJa(x). Moreover, 

(2.10) liminf mi~at(x, t) ~ mz 
t--+oo xE!l 

for some positive constant m 2 independent of the initial data A 0 . 
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Proof. Indeed, az(x, t) is given by the following formula: 

az(x, t) = fo G(x, y, t)Ao(y)dy + 1t ds fo G(x, y, t- s)aa(y)dy 

= fo G(x, y, t)Ao(y)dy + a(x, t), 

where a(x, t) is the solution of (2.1)-(2.3). By making use of the maxi
mum principle it is easy to see that 

{ G(x, y, t)A0 (y)dy ~ e-t mi!! Ao(x). Jn xEO 

Hence, az(x,t) ~ e-tminxEITAo(x) + a(x,t) ~ e-tminxEITAo(x) 
for, say, 0 ~ t ~ 1 (note that minxEIT Ao(x) > 0 by (1.6)). Now (2.9) 
follows from this estimate and (2.4). Recall that az(x, t) converges to the 
stationary solution of (2.6)-(2.7) uniformly on n as t --+ +oo (see the 
final paragraph of the proof of Lemma 2.1), which implies (2.10). q.e.d. 

Put 

(2.11) Az(t) = mi!!az(x, t) 
xEO 

and let h1(t) be the solution of the initial value problem for the following 
ordinary differential equation: 

(2.12) 

(2.13) 

T dhz = -hz + Az(t)r for t > 0, 
dt h! 

hz(O) = mi!!:Ho(x). 
xEO 

By the standard comparison theorem, we obtain the following 

Lemma 2.3. Let (A(x, t), H(x, t)) solve the initial-boundary value 
problem {1.1}-{1.4). Then 

(2.14) 

(2.15) 

A(x, t) ~ az(x, t), 

H(x, t) ~ hz(t), 

for all X En and t ~ 0. Here, az(x, t) is the solution of {2.6}-{2.8) and 
hz(t) is the solution of (2.12)-(2.13). 

To bound az and hz from below, the following observation is useful. 
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Lemma 2.4. Suppose that (1.9) is satisfied. Let al and hl be the 
solutions of (2.6)-(2.8) and (2.12)-(2.13), respectively. Then 

al(x, t) -7 a.(x) uniformly on n, 
h1(t)-+ h. 

as t-+ +oo, where a.(x) is the unique stationary solution of (2.6)-(2. 7) 
and h.= (minxEITa.(x)tf(s+l) is a positive number. 

Proof As was pointed out in the proof of Lemma 2.1, the assertion 
for al is a standard fact. To prove the assertion for h1, we observe that 
Al ( t) -+ minxEIT a. ( x) as t -+ +oo and this is sufficient to conclude that 
hl(t)s+l-+ minxEITa.(xt. Hence the proof is complete. q.e.d. 

Therefore, there exists a positive constant m 3 such that 

(2.16) H(x, t) ~ h1(t) ~ m3 for all x E !1, t ~ 0, 

and an m4 > 0 independent of ( Ao ( x), H o ( x)) such that 

(2.17) liminfminH(x, t) ~ m4. 
t->+oo xEIT 

Step 2. The following lemma is due to Li, Chen and Qin [5]. We state 
the assertion in a slightly different way to accomodate our formulation. 

Lemma 2.5. Suppose that (1.8) is satisfied. Let (A(x,t), H(x,t)) be 
a solution of the initial-boundary value problem (1.1)-(1.4). Let M > 
2, m > 0 be constants satisfying 

(2.18) TmM(c2 + D/T)2 2(M ) d M 2m 0 
-----,--,~----.,..:-----'- ~ E - 1 an - - > . 

4D(m + 1) T 

Then for each BE (0, 1) satisfying both the conditions 

(2.19) P- 1 < e < _P_ 
r r + 1 

d __ Mq-m(p-1)+[mr-M(s+1)]B 0 
an "'.- ( ) > , Br- p- 1 

the following estimate holds: 

(2.20) -dx:;:::: _o_dxe-(M-2m/r)t 1 AM 1 AM 
n Hm "' n H{!' 

+ C t e-(M-2m/r)(t-t') { dx dt' 
1 } 0 Jn H(x, t')"' 

+ C t e-(M-2m/r)(t-t') { dx dt' 
2 Jo Jn H(x, t')m ' 
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where c1 and c2 are positive constants defined as follows: 

Co ={CaM(T/(chm))9 } 1/(1- 9l, 

C1 ={C0 (2T/m)1 - 91 } 1/ 91 with fh =(Or- (p -1))/(M(1- 0)), 

C2 =MM (27/m)A1- 1IIaaiiL""(0)· 

We note that for each M > 2 and 'Y > 0 there is an 0 < m 0 ~ oo 
such that m/(m + 1) < "f(M- 1)/M if 0 < m < m 0 . Hence, we can 
always choose a pair (M, m) satisfying (2.18). 

Step 3. We are now ready to derive an upper bound on A(x, t). 
Let Ae: = I- c:2Ll be a closed linear operator on LP(O.) with domain 
D(Ae:) = {u E W2·P(O.) I 8uj8v = 0 on 80.}, where we assume P > 
N. Then the fractional power Ae: 112 is defined and it is known that 

D (A/12) C W 1·P(O.) c c.B(f2),0 < f3 < 1. Let e-tA, denote the 

analytic semigroup generated by -Ae:· Recall that the following estimate 
holds: 

(2.21) IIAe: 1/ 2e-tA. IIB(LPO)) ~ Cc112e-8t fort> 0, 

where C and 8 are positive constant depending only on 0., c:, and P; 
B(X) stands for the Banach space of all bounded linear operators on a 
Banach space X equipped with the operator norm. 

With these preparations, we see that (1.1) is converted into the 
integral equation for A(t) =A(·, t) in LP(O.) 

(2.22) A(t) = e-tA. A + t e-(t-t')A. ( AP(t') +a ) dt'. 
0 Jo Hq(t') a 

From this we have 

(2.23) 

IIA(t)IIL""(O) ~ CIIAe: 112 A(t)IILP(O) 

~ Clle-tA,A/12Aoii£P(O) 

+ c rt (t- t')-1/2e-li(t-t') II AP(t:) + O"all dt'. 
Jo Hq(t ) £P(O) 

Let M and m be positive numbers satisfying M > Pp, M q > mp and 
(2.18). Since 

1 (AP)P 1 AM 1 dx - dx~ -dx+ · -.-
o Hq "" o Hm o H'fl 



760 K. Suzuki and I. Takagi 

with rJ = P(Mq-mp)f(M -pP), it follows from Lemma 2.5 and (2.17) 
that 

limsup { (HAP)P dx ~ K 
t--++oo Jn q 

for some positive constant K independent of the initial data (A0 , H 0 ). 

By virtue of (2.23) this in turn yields that 

(2.24) lim sup IIA(t)IIL=(n) ~ K1 
t--++oo 

for some positive constant K 1 independent of (A0 , H 0 ). 

Next, let AD =I- DL). be a closed linear operator on LP(O) with 
domain V(AD) = {u E W 2•p(O) I au;av = 0 on an}. Then 

(2.25) H(t) = e-tr-lAD R +! rt e-(t-t')r-lAD { AT(t') +a } dt'. 
0 T Jo H 8 (t') h 

Since AD satisfies an estimate similar to (2.21) we obtain easily by mak
ing use of (2.17) and (2.24) that 

(2.26) lim sup IIH(t)IIL""(rl) ~ Kz 
t--++oo 

for some positive constant Kz also independent of (A0 , H 0 ). Therefore, 
the proof of the theorem is now complete. q.e.d. 

2.2. Proof of Theorem 1.2. 

The proof is carried out along the same line as that of Theorem 1.1. 
Step 1. First we give a lower bound on A(x, t). 

Lemma 2.6. Suppose that (A(x, t), H(x, t)) is a solution of the 
initial-boundary value problem (1.1)-(1.4). Then 

A(x, t);;::: mi_!!Ao(x)e-t 
xEO 

for all X E fi" and t?: 0. 

Proof. By the maximum principle, it is easy to see that A(x, t) ;;::: 
a* ( t), where a* ( t) is the solution of the initial value problem 

(2.27) 
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Since a* ( t) = e -t mi!_! A0 ( x), we have the conclution of the lemma. 
xEn 

q.e.d. 

Step 2. Next, we derive a lower bound on H(x, t). 

Lemma 2.7. Assume that (A(x,t),H(x,t)) is a solution of the 
initial-boundary value problem (1.1)-(1.4). Then there are positive con
stants m 5 and m6 such that 

(2.28) 

(2.29) 

H(x, t) ~ ffi5 for all X En, t ~ 0, 

liminf minH(x, t) ~ m6. 
t->+oo xEO 

Here, m5 depends on (Ao, Ho), while m6 is independent of (A0 , H0 ). 

Proof. 
lem 

Let h(x, t) be a solution of the initial-boundary value prob-

ah 
Tat = D.dh- h + ah for (x, t) E 0 X (0, oo), 

(2.30) 
ah av = 0 for (x, t) E an X (0, oo), 

h(x, 0) = Ho(x) for X E n. 

Then 

H(x, t) ~ h(x, t) for all x E 0, t ~ 0. 

On the other hand, by Lemma 2.2 we see that 

and 

h(x, t) ~ ffi5 for all X E 0, t ~ 0 

lim inf min h(x, t) ~ m6. 
t->+oo xEO 

These inequalities yield the conclusion of the lemma. q.e.d. 

Step 3. Once we have the lower bounds (2.28) and (2.29) on 
H(x, t), we can apply the same arguments as in Step 3 of the proof of 
Theorem 1.1 to obtain (2.24) and then (2.26). (Recall that Lemma 2.5 
holds true even when aa(x) = 0.) Thus the proof of the theorem is 
complete. q.e.d. 
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2.3. Proof of Theorem 1.3. 

Step 1. We have the following estimates by comparing A(x, t) 
with a*(t) and H(x, t) with h*(t), where a* is the solution of (2.27) and 
h*(t) is the solution of the initial value problem 

(2.31) 

Lemma 2.8. Let (A(x, t), H(x, t)) solve the initial-boundary value 
problem (1.1}-(1.4}. Then 

A(x, t);;:: mi_!!Ao(x)e-t and H(x, t);;:: mi_!!Ho(x)e-tfr 
xEO xEO 

for all X E fi", t ;;:: 0. 

Step 2. We apply the arguments in Step 3 of the proof of Theorem 
1.1 to obtain an upper bound on A(x, t) and then an upper bound on 
H(x, t) by making use of Lemma 2.5 and Lemma 2.8. This finishes the 
proof of Theorem 1.3. q.e.d. 

§3. Stationary Problem for Shadow System. 

3.1. Proof of Theorem 1.4. 

Let (A(x), ~) be a stationary solution of the shadow system (1.14)
(1.16). If we put 

(3.1) A(x) = ~qf(v-llu(x) 

then (u(x), ~) satisfies 

(3.2) c2U11 - U +uP+ cqf(p-l)G"a(x) = 0 for 0 <X<£, 

(3.3) C" = ~ 1£ ur dx, 

(3.4) u'(O) = u'(£) = 0. 

It is well-known that there is an c:0 > 0 such that the Neumann 
problem 

(3.5) 2 II p 0 c: u0 -uo+u0 = and uo > 0 for 0 < x < £, 

(3.6) u~(O) = u~(£) = 0 
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has a unique monotone decreasing solution u0 (x) = u0 (x; c) for 0 < c < 
co and that 

(3.7) uo(c)---+ w(y) uniformly on [O,t'/c) 

as c 1 0, where w(y) is the solution of (1.17). It is crucial to observe 
that the linearized operator 

(3.8) L 2 d2 p-1 
"' = c dx2 - 1 + puo 

under homogeneous Neumann boundary conditions is invertible and 
there exists a positive constant 0 1 independent of c E (0, co) such that 

(3.9) 

(See, e.g, [9].) We begin with the perturbation theory for the boundary 
value problem (3.5)-(3.6). · 

Lemma 3.1. There is a Oo > 0 such that if 0 < o < 80 , then the 
boundary value problem 

(3.10) 

(3.11) 

c2v"- v + vP + Oaa(x) = 0 and v > 0 on 0 < x < f, 
v'(O) = v'(f) = 0 

has a solution v(x; c, o) and it satisfies 

(3.12) 

for some positive constant independent of o and c, where Kp = min{1,p-
1}. 

For a proof, see [8] (pp. 348-349) in which the case aa(x) ==: ao, a 
positive constant, is considered. The method works also for nonconstant 
aa(x). Therefore, we put ¢0 = -L-; 1aa and study its behavior as E 1 0. 
Since ¢0 solves the boundary value problem 

(3.13) { 
c2¢~- <Po+ pug- 1¢o + aa(x) = 0 

¢~(0) = ¢~(£) = 0 

for 0 < x < f, 

it is convenient to introduce a function Ec:(x) as the solution of 

for 0 < x < f, 
(3.14) 
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Let 
¢o(x) = Ee:(x) + 1/Je:(x). 

As to the asymptotic behavior of 1/Je: and Ee:, we have the following two 
lemmas. 

Lemma 3.2. Let {/Je:(Y) = 1/Je:(cy) for 0:::;; y:::;; £/c. Then as c! 0, 
{/J" converges to 1/J1 (y), locally uniformly on [0, +oo), which satisfies 

for 0 < y < oo, 

For the proof, see [8] (pp. 349-350) for the case where aa is a con
stant. The argument works also for the case of nonconstant aa(x). 

Lemma 3.3. As c! 0, Ee:(x) converges to aa(x) uniformly on the 
interval [0, t']. 

We emphasize that, although (3.14) is a singular perturbation prob
lem, neither a boundary layer nor an interior layer appears in this case. 
For the proof, see [12]. 

Now we are ready to construct a solution of (3.2)-(3.4). Put 

~o ~ ( ~ J.' uO dx) ->/•, u, (x) ~ v(x; £, ~Ool<•- ''), 

and "~ 0 l u\dx rl· 
Note that 

~oa = ~ (100 
w(yr dy + o(1)) as c! 0 

by virtue of (3.7). Therefore, ~0 ---> +oo as c! 0, which allows us to define 
u1(x) by Lemma 2.8. Moreover, we can prove that limc1o6/~o = 1 (see 
Lemma 3.3 of [8]). 

We put 

(3.16) u(x) = u1(x) + ~~qf(p-l)¢(x), ~ = 6(1 +17) 

and reduce the problem to that of seeking (¢(x), 17). As in pp. 354-360 of 
[8], we can find (¢(x), 17) by the contraction mapping principle, provided 
that c is sufficiently small, say, 0 < c <co; and it satisfies the estimate 

(3.17) max l¢(x)l :::; c2 
o,;;;x,;;;e 

and 
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for 0 < c <co, where c2, c3 are independent of c, and r* = max{r, 1}. 
Therefore, we obtain a steady-state solution of the shadow system 

(Az,c:(x), ez,c:) of the following form: 

(3.18) 

and 

(3.19) 

Az,c(x) = cqj[qr-(p-1)(s+l)]{w(x/c) + o(1)} 

+ Ec:(x) + aa(0)¢1(x/c) + o(1) 

( roo ) (p-1)/(qr-(p-1)(s+1)] 
ez,c: = c(p-1)/(qr-(p-1)(s+l)] lo w(zrdz + o(1) 

Similarly, we obtain a one-parameter family of stationary solutions 
{(Ar,c:(x), er,c:Ho<c:<c:o which has a spike at X = f. Hence the proof of 
Theorem 1.4 is now complete. q.e.d. 

3.2. Proofs of Theorems 1.5 and 1.6. 

By (3.16) and (3.17), we obtain an upper bound on u(x): 

(3.20) 

Therefore, the assertions of Theorems 1.5 and 1.6 can be proved in ex
actly the same way as in Sections 3 and 4 of [9]. Note that if r ~ 1 
then we do not need lower bounds of the solution u for the proof of 
Proposition 3.4 of [9] which is the key to the stability analysis. We omit 
the detail. 
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