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Speed estimate for a periodic rotating wave 
in an undulating zone on the sphere 

Bendong Lou 

Abstract. 

On the unit sphere 5 2 given a zone with periodically undulating 
boundaries, we consider periodic rotating waves (curves) in this zone 
which are driven by geodesic curvature. We state without proof the 
existence of periodic rotating waves. Then we study how the average 
rotating speed depends on the geometry of the boundaries, give the 
estimate of this average speed by using its homogenization limit. 

§1. Introduction 

Many kinds of curvature flows in manifolds have been studied re
cently. To name only a few, [3], [4], [5], [6], [7], etc. studied mean 
curvature flows on the plane; [1], [12], etc. studied mean curvature flows 
in manifolds; [2] etc. studied Gauss curvature flows. Besides these, 
there are also some studies about geodesic flows under Ricci curvature, 
geodesic curvature flows, etc .. 

Most of these works concern the existence and asymptotic behavior 
of the flows. As far as we know, very little is known about (periodic) 
traveling/rotating surfaces in manifolds, though traveling/rotating wave 
solutions of reaction diffusion equations in Euclidean spaces have been 
studied a lot (cf. [13] and references therein). 

In this paper we study a geodisic curvature flow in a zone with 
undulating boundaries on the sphere. More precisely, define domain Dm 
as the following: Let b(s) be 21r-periodic smooth functions satisfying 

b(O) = b(27r) = 0, b(s) ~ 0, maxb'(s) = tano:, minb'(s) = -tan,{J. 
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for some a,j3 E (0, ~).Given 00 E (0, ~),for any mEN define 

cos Oo 
bm(s) := -- · b(ms). 

m 

Let 8 2 := {(cosOcoscp,cosOsincp,sinO) E R.3 I(} E [-~, ~], cp E JR.} be 
the unit sphere. For convenience, in the following we use spherical co
ordinates (O,cp) to denote point (cosOcoscp,cosOsincp,sinO) E 8 2 . Zone 
Om c 8 2 is defined as 

Om:= { (0, cp) E 8 2 I - Oo- bm(cp) < (} < Oo + bm(cp), cp E JR.}. 

Denote the boundaries(}= -Oo- bm('P) and(}= Oo + bm('P) by a-om 
and a+om, respectively (see Figure 1). 

We consider the motion of curves immersed in Om, which is driven 
by 

(1.1) V= Kg, 

where for a time-dependent simple curve rt immersed in 0£, v denotes 
the velocity of the curve at point P E Ft along the normal direction on 
the tangent plane Tp82 ' Kg denotes the geodesic curvature of rt at P. 
To avoid sign confusion, the normal vector v to Ft on T 8 2 will always be 
chosen to be the increasing direction of cp, the sign of the normal velocity 
V and the geodesic curvature Kg will be understood in accordance with 
this choice (see details below). 

Fig. 1 Zone with undulating boundaries on unit sphere 
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By a solution of (1.1) we mean a time-dependent simple curve Ft c 
Om which satisfies (1.1) and contacts the boundaries a±om with angle 
¢ E (0, ~) (see details below). 

In this paper we are interested in those curves rotating along Om 
periodically, also we estimate the average rotating speed for homoge
nization limit problem. For simplicity, we consider the case that each 
curve is the graph of a function 'P = u(O, t), that is, the curve is 
Ft = {(0, u(O, t))}l - Bo - bm(u) ::::; (J ::::;_ Bo + bm(u)} c Om. The unit 
tangent vector (pointing to the positive direction of 0) of rt is 

1!' = - sin (J sin u + cos (J cos u · ue . 
1 ( - sin (J cos u - cos (J sin u · u8 ) 

J1 + u~ cos2 (J cos (J 

For a curve {(O(s), 'P(s))}~~~~ cOm with parameters, its geodesic cur
vature is 

( 

d(J 

r;,9 =cosO· det ds 
di.p 

ds 

~;~ + sin (J cos (J ( ~~ r ) . 
d 'P d(J di.p 
- -2tan0 -
ds2 ds ds 

So for curve 'P = u(O, t), its geodesic curvature is 

n uee - 2 tan (J · ue - sin (J cos (J · ue3 
r;, = cos u . _:..:.___--:----,,.:---=-....,.,.,:-;:::--_:.._ 

9 (1 + u~ cos2 0)312 

because when we use arc length s as parameter we have 

d(J 1 ue di.p 

ds v'1 + ue2 cos2 (J' 

d20 u~ sin (J cos (J - ueuee cos2 (J d2 i.p uee + u~ sin (J cos (J 

ds2 (1 + u~ cos2 0)2 ds2 (1 + u~ cos2 0)2 · 

The unit normal vector of Ft on T 8 2 is 

and so 

v = --;====;;;::==::::::;::=:::: sin (J cos (J sin u · ue + cos u 
1 ( sin (J cos (J cos u · u8 - sin u 

J1 + u~ cos2 (J - cos2 (J . ue 

V-- ( -cosOsinu·ut 
COS (J COS U · Ut 

0 
) 

COS (J · Ut 

. v = -vf11:==+=u=;~;;=c=o=s~2~(J 

)· 
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Thus (1.1) is equivalent to 
(1.2) 

u99 - 2tan0 · u9 - sinO cosO. u93 

Ut = 1 + u~ cos2 0 for1J_(t) < 0 < 'TJ+(t), t > 0, 

where 1J±(t) (with 17-(t) < 0 < 1J+(t)) denote the 0-coordinates of the 
end points of Ft lying on a±om, i.e. 11-(t) = -Oo- bm(u(1J-(t),t)), 
'TJ+(t) = Oo + bm(u(1J+(t), t)). 

Denote the unit tangent vector along a±om by 'li'±, both toward the 
increasing direction of c.p, then 

1 ( -b~sinOcoscp- cosOsincp) 
'JI'+ = -b~ sinOsinc.p + cosOcoscp (0 = Oo+bm(cp)), 

· lb' 2 + cos2 0 -b' cosO V m m 

1I' _ is calculated similarly. Hereinafter we say that curve Ft contacts 
a± Om with angle ¢> E ( 0, ~) in the sense that cos ¢> = -'JI' · 1I' _ on a- Om, 
cos ¢> = 1I' ·'li' + on a+ Om. These are nothing but our boundary conditions, 
which can be expressed as 
(1.3) 

cos¢ cosO- b~(u) sin¢ 
u9(0, t) = =f 0 ( . ¢> 0 b' ( ) ¢>) =: :r=F(u) for 0 = 'TJ=F(t). cos sm cos + m u cos 

Let 0 0 = {(0, cp) E S 2 I - Oo < 0 < 00 } be a trivial zone which is 
formally a limit of Om as m ~ oo. For 0 0 we consider problem (1.2) 
with boundary condition 

(1.4) 
cot¢> 

u9(±0o, t) = ±-n-· 
cosuo 

As is shown in subsection 2.1, there exists a unique c0 such that problem 
(1.2), (1.4) has a unique rotating wave Uo(O) +cot, which has profile U0 

and rotating speed co. 
On the other hand, in Om, as Ft propagates, its shape and speed 

fluctuate along with the undulation of the domain Om. In such a sit
uation, we adopt a generalized definition of rotating waves. A solution 
Um(O, t) of (1.2)-(1.3) is called a periodic rotating wave if it satisfies 

27r 
Um(O, t + Tm) = Um(O, t) +-

m 
for some Tm > 0. 

The average rotating speed of a periodic rotating wave is defined by 

27r 
Cm = mTm" 
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In what follows we concentrate on periodic rotating waves with average 
speed of order 1 as m-+ oo. 

Before stating our results, we give two assumptions. 

¢+a< rr/2. (Hl) 

(H2) a+(J < ¢, 2(3 < ¢. 

Roughly speaking these conditions require that a and (3 are not large, 
that is, the undulation of the boundaries is gradual. (H1) guarantees 
the existence of lower solutions rotating in a positive speed (see Lemma 
2.2 below). Conditions a+ (3 < ~ in (H2) exclude the possible singu
larity that the curve touches the boundaries besides at two endpoints, 
otherwise the curve may split into multiple components; (3 < ¢ in (H2) 
ensure that luol is bounded on the boundaries. 

About the existence of periodic rotating waves, using the standard 
theory of quasilinear parabolic equations ( cf. [8], [9]) one can show that 
(refer also to [10]): 

Proposition 1.1. Assume (H1) and (H2) holds, then when m is 
large, (1.2)-(1.3) has a periodic rotating wave, which is unique up to 
time-shift. 

In fact, the unique periodic rotating wave is asymptotically stable. 
We refer reader to general theory in [11] or to [10]. 

Our main purpose in this paper is to study how the average speed 
of the periodic rotating wave depends on the shape of the boundaries. 
Speed estimate is an important problem in the study oftravelingfrotating 
waves. So far, very little is known for periodic traveling/rotating waves 
of curvature flow equations. 

THEROREM 1.1. Assume (H1) and (H2) hold. Then when m is 
large, 

(i) there exists C > 0 independent of m such that 

(1.5) * c * c 
C - - < Cm < C + r,;;;; < Co, 

m ym 

where c* = c* (a,¢) > 0 is given by the unique solution ( c*, <I>* ( B; c*)) of 

{ 

<I>oo - 2 tan B · <I>o -sin B cos B · <I>~ 
c = 1 + <I>o 2 cos2 B ' 

<I>o(±Bo) =±cot(¢+ a) <I>(O) = 0, 
cosBo 

-Bo < B < Bo, 

(1.6) 
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c0 is given by the unique rotating wave U0 (e) + c0t of (1.2), (1.4) in f!0 . 

(ii) As m--> oo, periodic rotating wave Um(e, t)--> <I>*(e; c*) +c* t+ 
C in C 2, 1([-e0 , e0 ] x [-T, T]) for any T > 0, where C is a constant 
independent ofT. 

Cm < co in (1.5) implies that boundary undulation always lowers 
the speed of the rotating wave, c* < co implies that the effect of spatial 
inhomogeneity of Cm is left to the homogenization limit. Moreover, the 
fact that c* depends mainly on a (besides ¢) is a notable result, the 
dependence on other information of the boundaries should appear in 
the error Jk. 

In section 2 we prove Theorem 1.1: estimate the average rotating 
speed by constructing a lower solution and a precise upper solution. 
We point out that our upper solution is only a temporary one (only on 
t E [0, 1]), but it is good enough to give the upper bound of the average 
rotating speed. In section 3, we give some remarks. 

§2. Estimate of Average Speed 

2.1. Rotating waves in trivial zones 

We first study rotating waves in trivial zones (zones with flat bound
aries), select one of such rotating waves as lower solution. Denote 

{j =eo+ maxbm(s). 
s 

Consider the following problem 

{ 
<I>ee- 2tane · <I>e- sinecose · <I>e 3 

c- ~~--------~--~~----~c_ 
(2.1) - _ 1+<I>~cos2e 

<I>e(±e) =±BE lR, <I>(O) = 0. 

-e < e < e, 

If there exist c and <I>( e) satisfy (2.1), then we call the pair (c, <I>( e)) to 
be a solution of (2.1 ). This solution determines a rotating wave <I>(e) +ct 
of (1.2) in zone {( e, cp) 1- iJ < e < iJ}. Assume the graph of <I>( e) contacts 
e = iJ with angle "f, then B cos 1J = cot T 

LEMMA 2.1. If B > 0, then (2.1) has a unique solution (c, <I>( e)). 
Moreover, 

(i) c = c(B) > 0 is increasing in B; 
(ii) <I>e(e). e > 0 and <I>ee(e) > 0 fore =I 0. 
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Proof (i). Set w(e) = <Po(e), and consider the following initial 
value problem 
(2.2) 

{ w' =_c(1 + W' 2 cos2 e)+ 2W'tane + w3 sin ecose, 
w(-e) =-B. 

e 2:: -iJ, 

For each c, denote the solution of (2.2) by w(e; c). It is clear that w(e; c) 
is strictly increasing in c, and depends on c continuously. 

When c > 0 is very large, we have w(iJ; c) > B. When c = 0, the 
solution of (2.2) is 

d 
w(e; o) = (e E [-iJ, iJ]) 

cos evcos2 e- d2 

2 -
with d = -Bcos e < 0. 

V1 + B 2 cos2 e 
Hence w(iJ; 0) < 0 <B. Therefore there exists a unique c > 0 such that 

w(iJ; c)= B, which determines a solution of (2.1): <I>( e)= I: w(c;-; c)dc;-. 
By the proof, one can see that c = c(B) is increasing in B. 
(ii). From above discussion it is easy to see that w(-e) = -w(e). 

Moreover, w(B) = 0 implies that w'(B) = c > 0, this shows that w(e) = 0 
if and only if e = 0. Hence w(e) · e > 0 for e =f. 0, and so W'o(e) 
<Poo (e) > 0. 

• 
2.2. Lower Solution 

In this part, we show that for appropriate choice of B, the rotating 
wave <I>(e; c, B) + ct, given by the unique solution of (2.1), is a lower 
solution of (1.2)-(1.3). In what follows, we shall use positive constants 
like C, (,etc., which may be different from line to line and may depend 
on some of bm, e0 , m. Denote 

Bl = cot(¢+ a). 
cos eo 

LEMMA 2.2. Assume (H1) holds and m is large, then (1.2)-(1.3) has 
a lower solution <P1(e) + c1t, and c0 > c1 > 0. 

Proof Consider (2.1) with B = B1 - ( ~- (H1) implies that B1 > 0 
and soB> 0 when m is large and ( = 0(1) as m ____, oo. Hence we have 
a unique solution of (2.1): (c1, <P1(e)), which determines a rotating wave 
<P1(e) + c1t in the zone [-iJ, iJ]. 
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Denote by 17~ ( t) the {}-coordinate of the point where the graph of 
IP1(B) + c1t meets a±om. Then ry~(t) + 0 = 0(~) and we have 

l l l - c l 1 c 1Po(1J_ (t)) ~ IP0 ( -0) -- = -B + (---
m m m 

for some C > 0. 

On the other hand, since ~~t? < 0 and b:n ( u) :::; cos (}0 tan a we have 

-F(1Pl(1Jl )) = b:n(u) sin¢- cos¢ cosry~ 
- cos 17:_ (sin¢ cos 17:_ + b~ ( u) cos¢) 

cos 00 tan a sin ¢ - cos ¢ cos 17:_ 
< 

cos 17:_ (sin ¢ cos 17:_ + cos Bo tan a cos ¢) 

< 
cos Bo tan a sin ¢ - cos ¢ cos Bo C 

----~--------~--~------~+-
cos Bo (sin¢ cos Bo +cos Bo tan a cos¢) m 

-B1 + C :::; IP~(ry~(t)) 
m 

provided (is large. Similarly, IP~(ry~) :::; F(IP1 (ry~)) provided (is large. 
Therefore IP1(B) + c1t (for (}with (0, IP1(B) + c1t) E Om) is a lower 

solution of (1.2)-(1.3). Moreover, when m is large, it is easy to see from 
Lemma 2.1 that co > c1 > 0. • 

Remark 2.1. Suppose P1 = ( -01, s1) E a-om such that b:n(s1) = 
cos B0 tan a, then when the graph of IP1 (B) + c1t meets a- Om at P1, we 
have 

IP~(-01 ) = -B1 + 0 (~) = -F(IP1(-01)) + 0 (~). 
Similar discussion is true on a+om. Hence IP1(0) + c1t is a good lower 
solution of (1.2)-(1.3), which means that the graph of IP1 (B) +c1t contacts 
a± Om with angles not smaller than ¢, and equals to ¢ + 0 ( ~) at some 
points. 

Proof of the first inequality of (1.5). The fact that IP1(0) + c1t is a 
lower solution implies that em ~ c1. 

Denote by (c*, IP*(B)) the solution of (1.6). Then from the proofs of 
Lemmas 2.1 and 2.2, it is easily seen that 

c* = c1 + o ( ~) , ~P* = ~P1 + c + o ( ~) , ~P0 = IP~ + o ( ~) . 
Therefore, 

(2.3) * c Cm>c --
m 

for some C > 0. 
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• 
2.3. Upper solution 

Now we use <P1(B) + c1t to construct an upper solution. Let U(B, t) 
be the periodic rotating wave of (1.2)-(1.3). We note that U(B, t)I(-Oo,Oo] 

is nothing but the solution of 
(2.4) 

{ 

_ iloo- 2tanB · ilo- sinBcosB · u~ 
Ut = 1 + u~ cos2 B ' 
~(-Bo,t) = U(-Bo,t), u(Bo,t) = U(Bo,t), 
u(B, 0) = U(B, 0), 

-Bo < B < eo, t > 0, 

t > 0, 
-eo < e < eo. 

Without loss of generality we assume U(e, 0) ~ <P1(e), "~" means 
that U(e, 0) :::; <P1(e) for e E [-e0 , e0] and U(B, 0) = <P1(B) for some 
B E [-eo, eo]. 

Define 

(2.5) w(e, t) = Elf (t + e;) + tEFff for 1e1 :::; Bo, t ~ 0, 

where E = 0(1) is determined later, and F = 27rcot(:+a). 
cos 0 

LEMMA 2.3. u(e, t) := w(e, t) + <P1(e) + c1t is an upper solution of 
(2.4) on time-interval t E [0, 1], and hence 

(2.6) u(B,t) ~ u(e,t) fore E [-eo, 00 ], t E [0, 1]. 

PROOF: To prove the Lemma, it suffices to show that 
(2.7) 

_ uoo - 2 tan B · uo - sin e cos e · u~ 
Ut > for -eo < e < Bo, t > 0, 

- 1 + u~ cos2 e 

and 

(2.8) U( -00 , t) :::; u( -Bo, t), U(80 , t) :::; u(e0 , t) for t E [0, 1]. 
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We first prove (2.7). Since «P~9 - 2tana«P~- sinBcosB(«P~) 3 > 0 
and «P~(B) · B ~ 0 forB E [-00 , 00], a direct calculation shows that 

_ uee - 2 tan B · ue - sin B cos B · u~ 
Ut-

1 + u~ cos2 B 

> (E+EF)I! +EI!· 2B·tanB+3B«P~sinBcosB +O ( 2._) 
m m 1 + («P~ +Ej"fef cos2B m 2 

> (E + EF)I!- El! · 3IB«P~ sinBcosBI 

> E(1 +F-27rcot(¢+a)) (T >O. 
cosBo V;;: 

Next we prove (2.8). Suppose that they hold on t E [0, Tj for some 
T < 1; then u is upper solution on t E [0, Tj and so 

(2.9) U(B,t):::; u(B,t) for BE [-Bo,Bo], t E [O,Tj. 

We show that (2.8) holds in fact on t E [0, 1] (see Figure 2). 
Construct a great circle <p = .X( B) on 8 2 as the following. Assume 

b~(st) =cos Bo tan a at s1 E [0, -:). Denote Bi = -Bo-bm(st) and P1 = 
(Bi,s1 ) E a-nm. Choose .X(B) to be the great circle (geodesic curvature 
is 0) contacting a-nm at P1 with angle ¢. This .X(B) corresponds to a 
solution of (2.1} with c = 0, and so from the proof of Lemma 2.1 we 
have 

.X( B)= { 0 d de;+ C 
lo cos<; vcos2 <;- d2 

for suitable d and C. Just as that in the boundary conditions (1.3), at 
P1 we have 

cos ¢ cos Bi - cos Bo tan a sin ¢ 
cosBi (sin¢cosBi + cosBotanacos¢) 

_cot(¢+ a) + 0 (_!._) = cpl (-B)+ 0 (_!._) . 
cosBo m 0 m 

Hence, there exists R > 1 such that 

(2.10) I«P~(B)- .Xo(B)I :::; (R- 1)1! for BE [ -Bo, -Bo + /!] , 
and 
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Suppose at T, .X( B) + D(r) intersects u(B, r) at e = -Bo + ~, i.e. 

il ( -00 + ~, r) =.X ( -00 + ~ +D(r). Then by (2.10) there exists 

0 E [ -Bo, -Bo + ~ such that 

D(r) = il ( -Bo + ~, r) -.X ( -Bo + ~) 

w ( -Bo+~,r) 

+ c1r + ~~ ( -00 + ~) - .X ( -Bo + ~) 
BoE 1 1 w( -Bo, r)-- + c T + ~ ( -Bo) 
m 

-.X( -Bo) + (~~(0)- .Xo(O))~ + o ( ~) 
_( D .) R1 + R - 1 - BoE ( 1 ) < u -uo, T + + o -

m m 
R1 +57!" < il( -Bo, r) - ---

m 

provided we choose E large such that 00E > R + 2R1 +57!". 

Fig. 2 Upper solution 
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Since>.( B) contacts a- Dm at P 1 with angle¢, there exists 8 E [0, ;;: ) 
such that >.(B)+ D(T) + 8 also contacts a-nm at some point with angle 
¢, so >.(B) + D( T) + 8 is stationary. Therefore by 

U ( -B0 + {f,T) ~ il ( -B0 + {f,T) ~). ( -Bo + ff)+D(T)+8, 

we have U(B, T) ~>.(B)+ D(T) + 8 for -Bo ~ B ~ -Bo + ['-£. Especially, 

R1+21r 37r 
U(-Bo,T) ~ >.(-Bo) + D(T) + 8 ~ D(T) + ~ u(-Bo,T)- -. 

m m 

Therefore, 

37r 
u( -B0 , T + t) ?: u( -B0 , T) ?: U( -Bo, T) +- ?: U( -Bo, T + t) 

m 

for t E [0, TmJ, 

In other words, the first inequality of (2.8) holds at least on [0, T + Tm]· 
Similarly, the second inequality of (2.8) at B = Bo holds on [0, T + Tm]· 
Consequently, (2.8) hold on t E [0, T + Tm] provided T < 1. 

Finally, repeating the discussion stated above finite times we obtain 
(2.8) on t E [0, 1], and so (2.6) holds on t E [0, 1]. • 

Proof of the second inequality of (1.5). From Lemma 2.3 we have 

B2 (1 27f 
U(B, 1) ~ u(B, 1) ~ <I>1(B) + E(1 + ; + F)y-;;;;, + c1 ~ <I>1(B) + N m 

forB E [-Bo,Bo], 

where N := [ ( E(1 + 0} +F) {1; + c1) · :;:, + 1 J, [·] denotes the Gauss 

function. On the other hand, U(B, 0) :::5 <I>1(B) implies that 

for BE [-Bo,Bo], 

Since U ( B, t) is strictly increasing in t (we omit the proof and refer 
to [10]), we have NTm ?: 1 and so 

27r 
Cm=-- < 

mTm 
27r { ( B5 {1 l) m } m · E(1 + "2 + F)y-;;;;, + c · 27r + 1 
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This proves the second inequality of (1.5). 

Finally, it is not difficult to see that (ii) of Theorem 1.1 can be 
proved by (i) of Theorem 1.1 and regularity of U. • 

§3. Some Remarks 

1. In [10], we studied periodic traveling waves of a mean curvature 
flow equation in an undulating band domain, obtained similar results 
as above. Problem in that paper is different from the present one in 
several points. First, since the boundaries of a zone on S 2 have period 
271' anyway, here the existence result is true in fact even if m = 1, or 
the two boundaries of the zone are given by two different functions with 
different periods ~ and 2;. In such cases, the period of periodic rotating 
wave is ( 211") ((m, n) is the greast common divisor), not necessarily to m,n 
be small as that in [10]. Second, the problems and backgrounds are 
different. Mean curvature flows in an unbounded band domain is reduced 
from a traveling front or a traveling pulse, but problem in this paper is 
about geodesic curvature flows in bounded zone on sphere, which is more 
interesting in geometry. 

2, (H1) is a necessary condition for the existence of periodic rotating 
waves. However, we do not think (H2) is essential in the speed estimate. 
In fact, we believe that Theorem 1.1 remains true even if the curve 
develops singularities near the boundaries. 

3. So far, very little is know about periodic rotating/traveling wave 
surfaces in manifolds, we believe that other curvature flows in some other 
manifolds can be studied in a similar way as above. 
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