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The Hamiltonian formalism in reaction-diffusion 
systems 

Masataka Kuwamura 

Abstract. 

It is well known that the Hamiltonian formalism plays an central 
role in classical mechanics. In this survey, we show that the Hamil­
tonian formalism is useful for studying pattern formation problems 
in reaction-diffusion systems. Although they are not derived from 
the Newton principle (the motion law), the notion of gradient/skew­
gradient structure enables us to use the Hamiltonian formalism for 
their study. This structure was originally introduced by [14], and for­
mulated in more abstract fashion by [6]." We explain usefulness of the 
gradient/skew-gradient structure through the linear stability analysis 
of standing pulse solutions and spatially periodic patterns in reaction­
diffusion systems of activator-inhibitor type. 

keywords: gradient/skew-gradient structure, Hamiltionian formalism, 
pattern formation, reaction-diffusion systems 

§1. Introduction 

There are many interesting macro scopic spatio-temporal patterns in 
dissipative systems such as chemical reaction and biological morphogen­
esis, which are maintained by balance between supply and consumption 
of energy and substances. The dynamics of such patterns are often de­
scribed by a system of reaction-diffusion equations [10, 11], which is a 
phenomenological model derived from careful observations based on real 
and/or numerical experiments. Therefore it is not always easy to per­
form theoretical analysis of a proposed reaction-diffusion system even if 
it is a good model which describes the dynamics of patterns. 

On the other hand, various interesting spatio-temporal patterns have 
attracted much attention in dynamics of a fluid and a motion of rigid 
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bodies. The dynamics of these patterns are described by the equation 
of motion derived from the Newton principle. The theory of classical 
mechanics established by Euler, Lagrange, Hamilton and Jacobi provides 
an useful framework for studying the equation of motion. It plays a 
central role in hydrodynamics and the theory of rigid-body dynamics 
[1, 7]. 

The aim of this survey is to explain that the Hamiltonian formalism 
in classical mechanics is useful for studying pattern formation prob­
lems in reaction-diffusion systems. As is mentioned above, since they 
are phenomenological models not derived from the Newton principle, 
the Hamiltonian formalism is not always applicable to analysis of them. 
However, the gradient/skew-gradient structure introduced in the next 
section enables us to apply the Hamiltonian formalism to the study of 
reaction-diffusion systems. This structure was originally introduced by 
[14], and formulated in more abstract fashion by [6]. The organiza­
tion of this survey is as follows: In the next section, we introduce the 
gradient/skew-gradient structure following [6]. In section 3, according 
to [14], we review the linear stability analysis of standing pulse solutions 
in reaction-diffusion systems. The gradient/skew-gradient structure en­
ables us to compute the eigenfunctions of the adjoint operator of the 
linearized eigenvalue problem at a standing pulse. In section 4, we ex­
plain the linear stability analysis of spatially periodic steady states in 
reaction-diffusion systems with the gradient/skew-gradient structure [6]. 
It is a typical example to understand usefulness of the Hamiltonian for­
malism for studying reaction-diffusion systems. Section 5 is devoted to 
a brief summary of this survey. 

§2. Reaction-diffusion systems with gradient/skew-gradient 
structure 

As was mentioned in the previous section, a reaction-diffusion sys­
tem gives a phenomenological model for studying dynamics of dissipative 
systems. For example, the Ginzburg-Landau equation 

(2.1) { 
Ut 

Vt 

Uxx + u(1 - u 2 - v2 ) 

Vxx + v(1 - u2 - v2 ) 

is a very famous reaction-diffusion system in the study of phase transi­
tion phenomena. We can easily (formally) find that (2.1) has gradient 
structure, i.e., an energy equation 

d - f 2 2 dtE[u(x,t),v(x,t)] =- (ut +vt)dx 
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holds, where 

It is well known [11] that many interesting results concerning (2.1) have 
been obtained by mathematical analysis based on the gradient structure 
of (2.1). The notion of gradient/skew-gradient structure introduced in 
this survey is an extension of the gradient structure explained in the 
above example. 

Let us consider an n-component reaction-diffusion system 

According to [6], the reaction-diffusion system is said to have gradient/ 
skew-gradient structure when (2.2) satisfies the following assumptions: 

(A1) Tis a non-degenerate positive diagonal matrix. 
(A2) Dis a regular matrix satisfying DTQ = QD, where Q is a sym­
metric matrix with Q2 =In. 
(A3) f(u) = Q'\luF(u), where F = F(u) : Rn--+ R is a smooth func­
tion. 

Under the above assumptions, we immediately see that QD is a 
symmetric matrix, and that the Jacobi matrix off denoted by fu satis­
fies 

(2.3) fu(ufQ = Qfu(u). 

Moreover, (2.2) has a (skew) energy functional defined by 

E[u] = J { ~((D'\lu, Q'\lu))- F(u)} dx, 

where 
((D'\lu,Q'\lu)) := Ldij'\lui ·Qij'\lUj. 

i,j 

In fact, we can easily (formally) check that the (skew) energy equation 

holds, where ( , ) denotes the usual inner product defined on Rn. (2.2) 
is said to have gradient structure when QT is nonnegative symmetric, 
and skew-gradient structure otherwise. 



638 M. Kuwamura 

An example of reaction-diffusion system with gradient structure is 
given by the Ginzburg-Landau equation (2.1). As for an example of 
skew-gradient reaction-diffusion system, we give a reaction-diffusion sys­
tem of activator-inhibitor type as follows: 

In fact, we can easily verify that (2.4) satisfies the assumptions (A1)­
(A3) because it is rewritten in the form of (2.2) with 

D= 

1 2 1 4 1 2 F = F(u v) = -au - -u - uv + -f3v . 
' 2 4 2 

For other examples, see [6]. 
In what follows, we consider (2.2) in one-dimensional case N = 1, 

that is, 

(2.5) Tut = Duxx + f(u), u = (u1, u2, · · · , un), x E R. 

Then, the equation for stationary solutions of (2.5) 

(2.6) Duxx + f(u) = 0 

admits structure of the Hamiltonian dynamical systems. Indeed, setting 
Ux = v, (2.6) can be rewritten as a first order system 

Ux = v, Dvx =- j(u), 

which leads to 

QDux = QDv, QDvx = -Qf(u). 

As a consequence, it turns out that (2.6) is rewritten in the canonical 
form 

(2.7) KZx = -\lzH(Z), 

where Z = (u, ux)T and 

(2.8) K=( 0 

-QD 
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is a skew-symmetric matrix because QD is symmetric, and H(Z) is a 
first integral (Hamiltonian) given by 

(2.9) 
1 

H(Z) = H(u, ux) := 2(Dux, Qux) + F(u). 

Thus we expect that the theory of Hamiltonian dynamical systems 
can be applied for studying various properties of stationary solutions of 
(2.5). In section 4, we show that the canonical form (2.7) is useful in 
the stability analysis of spatially periodic stationary solutions of (2.5). 

§3. Stability analysis of standing pulse solutions 

In this section, according to [14], we review a strategy of the lin­
earized stability analysis of a standing pulse solution of (2.5) with the 
skew-gradient structure. For more details, the reader should consult 
[14]. Let us consider 

(3.1) D¢xx + f(cp) = 0, cp(x) = p + O(e-Cixl) as x----> ±oo, 

where C is a positive constant, and p ERn satisfies f(p) = 0. 

Figure 1 : the shape of a standing pulse 

We call ¢ a standing pulse solution of (2.5). Notice that ¢ represents 
any stationary solution of (2.5), which decays exponentially as x----> ±oo. 
A typical example of the shape of ¢ is presented in Figure 1. In order 
to investigate the stability of ¢, we are concerned with the linearized 
eigenvalue problem of (2.5) at ¢ defined by 

(3.2) >.Tv= Dvxx + f'(cp)v 

on the space C~nif(R) of bounded uniformly continuous functions. Set~ 
ting Y = (v, vx)T, we rewrite (3.2) as a first-order ODE 

(3.3) Yx = A(x)Y +>.BY, 

where 

A(x) = ( -n-? f'(¢) ~)' B= ( 
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We can regard (3.3) as a system oflinear ODEs with constant coefficients 

(3.4) Yx = AY +>.BY, A= ( -D-~ f'(p) 10 ) 
as x __, ±oo. 

According to [13], ).. is in the essential spectrum of the linear operator 
associated with the eigenvalue problem (3.2) if 

det(A + >.B- ik) = 0 

has a solution k E R. That is, A + >.B has an eigenvalue with zero real 
part, i.e., spec( A+ >.B) n iR =/= 0 

From now on, we are concerned with the point spectrum of the 
linear operator associated with the eigenvalue problem (3.2). Namely, 
we consider ).. E C such that all the eigenvalues of A + >.B have nonzero 
real part, i.e., spec(A+>.B)niR = 0. In this case, (3.4) has m and 2n-m 
linearly independent exponentially decaying solutions as x __, -oo and 
x __, +oo, respectively. 

Differentiating (3.1) with respect to x, we have 

D¢~x + J'(¢)¢' = 0, ¢'(x) = O(e-Cixl) as x __, ±oo, 

which implies that (3.3) has m and 2n- m linearly independent expo­
nentially decaying solutions Yj(x;>.) (j = 1,2,···m) and Yk(x;>.) (k = 
m, m + 1, · · · 2n) with · 

(3.5) Y1(x; 0) = Y2n(x; 0) = !l>(x), !l>(x) = ( ::~~~ ) 

as x __, -oo and x __, +oo, repectively. Then, a bounded solution of 
(3.3) is expressed by 

Y(x) = c1Y1(x; >.)+· · ·+cmYm(x; >.) = Cm+lYm+l(x; >.)+· · ·+c2nY2n(x; >.) 

Therefore, Yj(x; >.) (j = 1, 2, · · · 2n) must be linearly dependent when 
(3.3) has a non-trivial bounded solution. Namely, 

(3.6) E(>.) = det(Y1(0; >.) Y2(0; >.) · · · Y2n(O; >.)) = 0 

holds if and only if ).. is in the point spectrum of the eigenvalue problem 
(3.2). The function E(>.) is called the Evans funtion which plays a crucial 
role in the stability analysis of the standing pulse ¢. 

We immediately find that E(O) = 0 by (3.5). Moreover, it follows 
from [13, Section 4.2.2] that E(>.) > 0 for sufficiently large).. > 0. Hence, 
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if E'(O) < 0, then E(,\0 ) = 0 holds for some )..0 > 0, so that (3.3) has a 
non-trivial bounded solution for some )..0 > 0. Therefore, the standing 
pulse¢ is linearly unstable provided E'(O) < 0. 

Differentiating (3.6) with respect to ).., and setting ).. = 0, we have 

E'(O) = det( 8.>..Y1(0; ,\) Y2(0; ,\) .. · Y2n(O; ,\) )l.x=o 

+ det( Y1(0; ,\) Y2(0; ,\) .. · a.xY2n(O; ,\) )i.x=o 

det( Y1(0;,\) .. · Y2n-1(0;,\) 8.x(Y2n(O;,\)- Y1(0;,\)) )l.x=o, 

because YI(O; 0) = Y2n(O; 0) by virtue of (3.5). We can compute the 
value of this determinant as long as we know the orthogonal projection of 
a_x(Yl(O; ,\)- Y2n(O; ,\))l.x=o to Wj_, where W = span{Y1(0; 0), Y2(0; 0), 
.. · , Y2n-l(O; 0)}. 

On the other hand, by using Y* (x; ,\) a solution of the adjoint system 
of (3.3) defined by 

(3.7) 

we have 

d~ (Yj(x; ,\), Y*(x; ,\)) 

= ( d~ Yj(x; ,\), Y*(x; ,\)) + (Yj(x; ,\), :x Y*(x; ,\)) 

= ( (A(x) + ,\B)Yj(x; ,\), Y*(x; ,\)) + (}j(x; ,\), -(A(x) + ,\B)TY*(x; ,\)) 

=0, (j=1,2, .. ·,2n). 

Hence, it follows from Yj(x; ,\) --+ 0 as x--+ +oo or x--+ -oo that 

Wj_ = span{w*(O)} 

holds, where w* is defined by a bounded solution of 

(3.8) w~ = -A(xfw*. 

Differentiating (3.3) and (3.7) with respect to).., and using (3.5), a direct 
calculation yields 
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Since the orthogonal projection of 8>. (Y1 (0; ..\)- Y2n (0; ..\)) 1>-=0 to W.L is 
given by 

1!1*(0) 1!1*(0) 
( B>.(E(O; ..\)- Y2n(O; ..\))1>-=o, llll*(O)I ) llll*(O)I, 

we obtain 
(3.9) 

E'(O) = foo (Bif>( ) Ill* ( ))d . det( Y1 (0; 0) · · · Y2n-l (0; 0) Ill* (0)) 
-oo X , X X (l!f*(O), I!J*(O)) , 

where 

(3.10) I: (Bif>(x), w*(x))dx 

is called the Melnikov integral. In many practical problems, the stability 
of standing pulse solutions of (2.5) is determined by the signature of 
the Melnikov integral (3.10). Notice that (3.9) holds for any general 
reaction-diffusion systems because we did not use the assumptions (A1)­
(A3) concerning the gradient/skew-gradient structure. 

In order to study the stability of the standing pulse c/J, we have to 
compute (3.10). In general, we can not know any concrete informa­
tions about Ill* in (3.10), which is defined by the adjoint system (3.8). 
However, if (2.5) has the gradient/skew-gradient structure, we find that 

(3.11) Ill* =Kif>= ( QDcjJ"(x) ) 
-QDcjJ'(x) 

holds, where K is the skew-symmetric matrix defined by (2.8). Hence we 
can compute the Melnikov integral (3.10), which determines the linear 
stability of the standing pulse c/J. (3.11) suggests that reaction-diffusion 
systems with the gradient/skew-gradient structure have symmetry in 
some sense. 

§4. Stability analysis of spatially periodic stationary solutions 

In this section, according to [5, 6], we consider the linear stability of 
spatially periodic stationary solutions of (2.5) with the gradient/skew­
gradient structure. Let rp(x; fl) be a family of spatially periodic station­
ary solutions of (2.5) parameterized by its wavelength fl, that is, 

( 4.1) Drp(x;fl)xx + j(rp(x;fl)) = 0, 

( 4.2) rp(x; fl) = rp(x + fl; fl). 
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Notice that we do not require any other assumptions about cp(x; £) such 
as smallness and symmetry. As seen in Section 2, rJ) = (cp, 'Px)T is a 
solution of the Hamiltonian system 

(4.3) KrJ)x = -'\lzH(rJ)), 

where K is the skew-symmetric matrix defined by (2.8), and H is the 
first integral (Hamiltonian) given by (2.9). In order to study the lin­
ear stability of cp(x; £), we are concerned with the linearized eigenvalue 
problem of (2.5) at cp(x; £) defined by 

(4.4) >.Tv= Dvxx + fu(cp(x; £))v 

on the space L 2(R). 
In what follows, we consider ( 4.4) by a formal argument based on 

the Floquet theory (Bloch transformation) and the analytic perturbation 
theory. As for a mathematical background of the following argument, 
the reader should consult [4, 12, 13] and the references theirin. 

Setting V = (v, vx)T, we rewrite (4.4) as a first-order ODE 

(4.5) 

where 

(4.6) 

Let 

KVx == S(x; £)V +>.NV, 

( 
-'\12F(cp(x;£)) 

S(x; £) = 
0 )' -QD 

0 

d 
L = K dx- S(x;£). 

Then, we (formally) see that the first order differential operator L is 
self-adjoint because K and S(x; £) are skew-symmetric and symmetric 
matrices, respectively. By using L, (4.5) is simply written as 

(4.7) LV= >.NV. 

Applying the Bloch transformation V = W eikx, we have 

(4.8) LW = >.NW - ikKW, 

where W E L~er(O, £). According to [6], the self-adjoint operator L on 
L~er(O, £) has the following property: 
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Lemma [6] Let 1/J1 = <Px and 1/J2 = x<Px + R<Pc. Then, 1/J1, 1/J2 E L;er (0, R) 
and 

( 4.9) 

hold, where <P = (cp, 'Px)T. 

We now solve ( 4.8) by using a simple perturbative argument. Sup­
pose that >. and W in ( 4.8) can be expanded with respect to k around 
k = 0. Then it follows from (4.9) that >.(0) = 0 and W(O) = 7/J1. Differ­
entiating ( 4.8) with respect to k, we have 

(4.10) LWk = >.kNW + >.NWk- iKW- ikKWk. 

Setting k = 0, we have 

Since L is self-adjoint, applying the solvability condition, we have 

[7/JI, AkN 1/J1 - iK 7/JI] = 0, 

where [, ] denotes the usual inner product on L;er(O, 1!). Recalling that 
7/J1 is real, and that K is skew-symmetric, we have 

Ak = i[7/JI, K7JJI] = 0 
[7/JI, N7JJI] ' 

which implies L Wk = -iK 1jJ1 . Comparing this result with the second 
equation of (4.9), we obtain 

wk = -i7/J2· 

Similarly, differentiating (4.10) with respect to k, and setting k = 0, we 
have 

LWkk = >.kkN1/J1- 2K7/J2· 
Hence, applying the solvability condition, we obtain 

Akk = 2[7/JI, K1/J2J_ 
[7/JI, N7/JI] 

Since K is skew-symmetric, by using (2.8), ( 4.6) and ( 4.3), a direct 
calculation shows that 

[7/JI, N7/J1] =lac (Tcpx, Qcpx/dx := l(R), 

[7/JI, K1JJ2] = [<Px, xK<Px] + R[<Px, K<Pc] = R[-K<Px, <Pc] 

= R[V' H(<P) <P ] = f!2. dH(R) 
z ' € df! ' 
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where 

( 4.11) 

is a first integral (Hamiltonian) which is independent of x (cf. (2.9)). 
Therefore, we obtain 

( 4.12) 

for sufficiently small k. Thus we see that >. > 0 holds if I(£) and H'(£) 
have same signs, so that IP(x; £) is linearly unstable if I(£) and H'(£) 
have same signs. 

As seen in the above argument, the linear (in)stability of IP(x; £) is 
due to perturbations having a large spatial period. It is known as the 
Eckhaus instability [2] which was originally obtained in the study of the 
linear stability of roll patterns in thermal convection phenomena. 

§5. Concluding remarks 

As we have observed in the arguments so far, the notion of gradient/ 
skew-gradient structure enables us to use the Hamiltonian formalism 
for studying pattern formation problems in reaction-diffusion systems. 
The approach explained in this survey is quite natural because it is 
extensively used in the study of dynamics of a fluid and a motion of 
rigid bodies [1, 7, 8, 9]. 

In our knowledge, there are not so many works concerning reaction­
diffusion systems with the gradient/skew-gradient structure. Especially, 
in higher dimensional cases, there has been no results yet except [15]. 
Recently, singular perturbation problems in reaction-diffusion systems 
can be treated under the gradient/skew-gradient structure [3]. We ex­
pect that the it gives an useful viewpoint for studying pattern formation 
problems in reaction-diffusion systems. 
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