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On the bifurcation structure of positive stationary 
solutions for a competition-diffusion system 

Yukio Kan-on 

Abstract. 

In this survey, we consider a generalized Latka-Volterra compe
tition model with diffusion, and discuss the bifurcation structure of 
positive stationary solutions for the model. To do this, the compari
son principle, the bifurcation theory, and the numerical verification are 
employed. 

§1. Introduction 

To understand the mechanism of phenomena which appear in vari
ous fields, we often use the system of reaction-diffusion equations 

(1.1) { Ut=E:D~u+f(u), xEn, 

tv U = 0, X E an, t > 0 

t > 0, 

with suitable initial condition, and discuss the existence and stability 
of stationary solutions for the system, where u E RN, E: > 0, D is a 
diagonal matrix whose elements are positive, f : R N --> R N is a smooth 
function in u, n is a bounded domain in R" with smooth boundary an, 
and tv denotes the outward normal derivative on an. 

When· N = 1, we employ the so-called comparison principle, and 
study the existence of stationary solutions of (1.1) and their stability 
property. Furthermore it is well-known that for suitable f(u), the global 
attractor A of (1.1) can be represented as A = UeEE wu(e), where E 
is the set of stationary solutions of (1.1), and wu(e) is an unstable 
manifold of (1.1) at u = e (for example, see Chapter 4 in Hale [2]). 
This fact suggests that one important problem is to seek all stationary 
solutions of ( 1.1). 
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In general, the comparison principle does not always hold for the case 
N ;::: 2. This fact leads to the considerable complexity for the study of 
the existence and stability of stationary solutions for (1.1). As a first step 
to approach the problem, we treat a competition-diffusion system which 
describes the dynamics of the population for two competing species u = 
(u,v) E R 2, where du > 0, dv > 0, D = diag(du,dv), 

f(u) = (!, g)(u), f(u) = f 0 (u) u, g(u) = g0 (u) v, 

and f 0 (u) = (!0 , g0 )(u) is a smooth function in u. Moreover we set n = 
{ x E R£ llxl < 1r }, and we restrict our discussion to radially symmetric 
positive stationary solutions of ( 1.1), where we denote by Cl A the closure 
of the set A, and we call u(x) = (u,v)(x) positive when u(x) > 0 and 
v(x) > 0 are satisfied for any x E ClO. At this point, we should note 
that such stationary solutions satisfy 

(1.2) {
0 = c: Dr1-£ [r£-l u']' + f(u), 

u' = 0, r = 0, 1r 

r E (0, 1r), 

for suitably fixed real number £ E [1, +oo), where r = lxl and ' = 
fr. There are many and various theorems on the existence of positive 
solutions for (1.2). Recently in case of£ = 1, the author in the papers 
[6], [7] and [8] has established the global bifurcation structure of positive 
solutions for (1.2) with 

(1.3) f 0 (u) = 1- un- cvn, l(u) = 1- bun- vn 

relative to c: > 0, where the positive constants du, dv, n, b and c are 
suitably fixed. The aim of this paper is to survey the result in the 
papers [6], [7] and [8] which correspond to the case£= 1, and to give a 
characterization on the set of positive solutions for (1.2) in case of£ > 1. 

§2. Assumptions 

From the competitive interaction, we assume that 

(A.1) there exists M > 0 such that f(u) < 0 and g(u) < 0 hold for 
any u E Cl R~ with I u I ;::: M, 

(A.2) f~(u) < 0, f~(u) < 0, g~(u) < 0 and ge(u) < 0 are satisfied 
for any u E ClR~, and 

(A.3) there exists a solution u = (u, v) E R~ of f(u) = 0 with 
detfu(U.) < 0, 

where R+ = (0, +oo). We should remark that (A.1) means the bounded
ness of positive solutions for (1.2), and (A.2) implies that the comparison 
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principle holds for (1.1) relative to the order relation~ which is defined 
in the following manner: 

It is obvious that (1.3) is a typical example satisfying (A.1-3), when 
n > 0 and min(b, c) > 1 are satisfied. 

We define E by the set of solutions of f(u) = 0 with u E ClR~. 
For the sake of simplicity, we assume that 

( A.4) det fu (e) =J 0 is satisfied for any e E E, 
which implies that every e E Eisa nondegenerate solution of f(u) = 0. 

§3. Sets of Positive Solutions 

We set 

X= { u(.) E C2 ([0, 7r]) I u'(O) = 0 = u'(7r) }. 

For each C E [1, +oo), we denote by E(C) the set of (c, u(;)) E R+ x X 
such that u(r) is a positive solution of (1.2) for c, and by E;(C) (respec
tively, E/t(C)) (kEN) the set of (c, u(.)) E E(C) such that there exists a 
strictly increasing sequence { rj }j=0 (c [0, 1r]) such that ( -1)j u'(x) >- 0 
(respectively, ( -1)1+1 u'(x) >- 0) holds on (rj, rJ+l) for any integer 
0 :::; j < k, where r 0 = 0, rk = 1r, and the relation -< is obtained 
from the order relation ~ by replacing :::; with <. Setting 

we clearly have Uk:o::o Ek(C) C E(C) for any C E [1, +oo). 

Lemma 1. Let C E [1, +oo), k E N, and (ci, ui(.)) E Ek(C) (i = 1, 
2) be arbitrary. Suppose that [u1(0)]I = [uz(O)h and/or [u1(0)]z = 
[u2 (0)]z is satisfied, where [u]j is the jth element of the vector u. Then 
c1 = cz and u1(.) = uz(.) hold. 

Proof Let C E [1, +oo), k E N, and (ci, ui(.)) E Ek(C) (i = 1, 
2) be arbitrary. Since the argument below is still valid for the case 
[u1(0)]z = [u2 (0)]z by the change of the role between u and v, we only 
consider the case [u1(0)h = [u2 (0)]1. For each i, setting 
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we see that wi(~) is a positive solution of 

(3.1) {
0 =ne-e:~ [e-l t~wi] + f(wi), 

J~ wi(O) = 0 = dd~ wi(2i), 

and satisfies J~wi(~) J~zi(~):::; 0 for any~ E [0,2i]· Moreover we have 

a?j(O < 0 for any i, j and~ by virtue of (A.2), where 

Suppose that z1(0) > z2(0) holds. From 

it follows that there exists 6 E (0, 3] such that 

(i) w1(~) > w2(~) and z1(0 > z2(~) hold for any~ E (0,6), and 
(ii) w1(6) = w2(6) and/or z1(6) = z2(6) is satisfied for the case 

6 <2, 
where 3 = min(21, 2 2). Setting 

we have 

W(~) = J~wl(~) w2(~)- w1(0 J~w2(~), 

Z(O = d~z1(~) z2(~)- z1(~) J~z2(~), 

du e-e -1?, [e- 1 W(~)J 

wi(~) w2(~) 

=- a~ 1 (~) (wi(O- w2(~))- a~2 (~) (z1(~)- z2(~)) > 0, 

dv e-e -1?, [e- 1 Z(~)] 

ZI(~) Z2(~) 

=- agd~) (wi(~)- w2(0)- ag2 (~) (z1(~)- z2(~)) > 0 

for any~ E (0, 6) due to (3.1). From W(O) = 0 and Z(O) = 0, we obtain 
W(6) > 0 and Z(6) > 0, which implies 6 = 3. If 2j :::; 2 3_j holds, 
then we have 

This contradiction implies that z1(0) :::; z2(0) must be satisfied. 
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Since we can similarly derive a contradiction for the case z1 (0) < 
z2(0), we arrive at z1(0) = z2(0). By the uniqueness of solutions for 
(3.1), we have w1(~) = w2(~) for any~- By the definition of Ek(£), we 
obtain c1 = c2. Q.E.D. 

For each k E N and (c, u(.)) E Ek(1), we can regard u(r) as a 
periodic function with period 2 1r satisfying u(r) = u( -r) for any r 2:: 0. 
Furthermore we see that (k2 c, u(./k)) E E 1 (1) is equivalent to (c, u(.)) E 
Ek(1) for each kEN, because we can take ri as satisfying ri = 1r jjk 
for any integer 0 ~ j ~ k due to the uniqueness of solutions for (1.2). 

Lemma 2 (Section 2.1 in [5]). E(1) = Uk2:o Ek(1) holds. 

The above lemma says that we can understand the complete struc
ture of E(1) by using the information on the structure of E 1 (1). Unfor
tunately it is unknown whether Lemma 2 is valid for £ E (1, +oo). 

Setting 
Pk(£) = { [u(O)h I (c, u(.)) E Ek(£)}, 

we see from Lemma 1 that for each £ E [1, +oo) and k E N, there 
exist functions tk(p, £) and uk(., p, £) defined on Pk(£) such that (i) 
[uk(O,p,£)h =pis satisfied for any p E Pk(£), and (ii) Ek(£) is rep
resented as 

Hence it follows that Ek(£) can be parameterized by the value of [u(O)]t, 
and that the secondary bifurcation from the positive solution on Ek(£) 
is of saddle-node type even if it exists. 

§4. Structure of E 1 ( £) 

As £0 ( u) is represented as 

! 0 (u) =f<0 + f 0 un 1 + 1° vn2 + the remainder term, 0,0 n1,0 JO,n2 

g0 (u) =g0 + g0 un3 + g0 vn4 + the remainder term 0,0 na,O O,n4 

with suitable constants f~i, g?,i and ni, we treat the simplest nonlin
earity (1.3) in this section, in order to discuss the global bifurcation 
structure of positive solutions for (1.2), where n, b and c are positive 
constants. At this point, we should note that (1.2) has constant solu
tions (0, 0), (0, 1), (1, 0), and 

u = ((~)!.' (~) !.) 1-bc 1-bc 
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which is positive for either max(b, c) < 1 or min(b, c) > 1. By the max
imum principle, we can prove that (1.2) has no positive nonconstant 
solutions for the case min(b, c) < 1. Hereafter we shall discuss the bifur
cation structure of positive solutions of (1.2) for the case min(b, c) > 1. 

We set No= N U { 0 }, 

X= { u(.) E C 2 [0, 11"]1 u'(O) = 0 = u1(7r)}, Y = C 0 [0, 71"], 

and we define the linear operator K(.; R) :X--> Y by 

K( u; £) = -r1-£ [r£- 1 u'J' 

for R E [1,+oo). Let {Ak(R)}kENo be eigenvalues of K(.;R) satisfying 
Ak(R)::; Ak+l(R) for any k E N 0 , and let (h(r,R) (kENo) be an eigen
function of K(.; R) corresponding to the eigenvalue Ak(R). Without loss of 
generality, we may assume ¢k(O, R.) > 0 for each k E N 0. It is well-known 
that the following property holds for each R E [1, +oo): 

(i) Ao(R) = 0, Ak(R) > 0 for any kEN, and limk-+oo Ak(R) = +oo 
are satisfied, 

(ii) ¢k(r,R) has k zeros on (0,71") for any k E N 0 , 

(iii) { cPk (r, R) }kENo is a complete orthonormal set in L2 (0, 71") rela
tive to the weight r£- 1, and 

(iv) ¢k(r, R) is represented as 

Setting 

for R = 1, 

for R > 1 

with suitable constant C, where lv(z) is the Bessel function of 
the first kind. 

<I>k(R.) = fo., ¢1(r,R)kr£- 1dr, 

we have <I>2 ( R) > 0 for any R E [1, +oo), and <!>3 (1) = 0. It is known that 
<I>3 ( R) > 0 is satisfied for any R > 1 (for example, we refer to [9]). By 
,\1 ( R) > 0 and detfu ( u) < 0, we obtain 

V(£) = { d = (du, dv) E R~ I det ( -A1(£) D + fu(U.)) = 0} :f 0 

for each R ~ 1. 
Let R ~ 1 and d E V(R) be arbitrary, and let v (respectively, v*) be 

a nontrivial solution of 

(-A1(R)D+fu(U.)) v=O 

(respectively, ( -,\1(£) D + fu(uf) v* = o), 
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where AT is the transposed matrix of the matrix A. After simple calcu
lations, we can check that the linearized operator of (1.2) around u = u 
has the only one eigenvalue (respectively, at least two eigenvalues) in the 
right half-plane for any c with c: > 1 (respectively, 0 < c < 1), and that 
the linearized operator£ of (1.2) around u = u for c = 1 has the simple 
eigenvalue 0 with the corresponding eigenfunction (PI (r, £) v. Moreover 
we see that ¢1 (r, £) v* is an eigenfunction of the adjoint operator of £ 
corresponding to the eigenvalue 0. 

Substituting 

c = f(£, v) =1 + v€1(£) + v2 €2(£) + v3 €3 (£, v), 

u = ii(r, £, v) =il + v ¢ 1(r, £) v + v 2 ii2(r, £, v) 

into (1.2), we have 

0 = : 2 { c Dr1-e [re- 1 u'J' + f(u)} = £ii2(r,£, v) 

- €1 (£)A1 (£) ¢1 (r, £) D v + ¢1(r, £)2 f2(v, v) + o(1) 

as v--+ 0, where f2(u1, u 2) is a bilinear map obtained from the second 
derivative of f(u). From the Fredholm Alternative Theorem, it follows 
that the above equation has a solution ii2(r,£, v) if and only if 

is satisfied. 

4.1. Case£= 1 

From ci>3 (1) = 0, we obtain €1(1) = 0, so that we need to determine 
the sign of €2(1). To do this, we employ the numerical verification 
method such as the interval arithmetic built into Mathematica, and then 
we can establish the following: 

Lemma 3 ([6], [7]). If either n = 1 or n ~ 2 is satisfied, then 
there exist a constant v0 (1) > 0 and C 2 -class functions €(1, v), ii(., 1, v) 
defined on the interval ( -vo(1), vo(1)) such that 

(i) (€(1, v), u(., 1, v)) E E1(1) holds for each v-I- 0, and 
(ii) €1(1) = 0 and €2(1) < 0 are satisfied. 

From (A.1) and Theorem 1.3 in Rabinowitz [10], it follows that there 
exists a maximal continuum C ( C E 1 ( 1) U { ( 1, u) } ) such that C contains 
(1, u) and meets { 0} x X. By (A.2) and the maximum principle, we 
have C = E1(1) u { (1, u) }. 



608 Y. Kan-on 

We define '1/J(r, p, c, f) by the solution of 

{
0 = c Dr1-t [;e- 1 u'J' + f(u), 
u(O) = p, u (0) = 0, 

r > 0, 

where p = (p,q) E R 2 . It is well-known that '1/J(r,p,c,f) is analytic in 
(r, p, c, f) (for example, see Corollary 3.4.6 in Henry [3]). Clearly we 
have 

'1/J(., ft1 (0, p, f), €1 (p, f), f) = ft1 (., p, f) 

for any f E [1,+oo) and p E P1 (f). Since '1/J(r,p,c,f) is a solution of 
(1.2) if and only if 'l/J'(7r,p,c,f) = 0 holds, we may seek solutions (p,c) 
of 'ljJ 1(1r, p, c, f) = 0. Setting 

w(p, f) = '1/J~( 1r, ih (o, p, f), t1 (p, f), f), 

we know the following: 

Lemma 4 (Section 2. 7 in [5]). Every element of w(p, f) is positive 
for any f E [1, +oo) and p E P1(f). 

The above lemma means that the eigenvalue 0 of w(p, f) is sim
ple even if it exists. After lengthy arguments, we can establish the 
following by employing the above lemma, Lemma 1, Theorem 1.3 in 
Rabinowitz [10], Theorem 2.1 in [4], and Theorem 1.1 in [5]: 

Theorem 1 ([6], [8]). If either n = 1 or n ~ 2 is satisfied, then 
there exist continuous functions u_(.,c) and u+(.,c) such that 

(i) Er(1) = { (c, u±(.,c)) 1 c E (o, 1) }, 
(ii) ±u± (r, c) -< 0 for any (r, c) E (0, 1r) x (0, 1), and 

(iii) lime-+1 U±(.,c) = u 
hold (see Figure 1). 

The above theorem says that the secondary bifurcation of positive 
solutions for (1.2) never occurs. 

4.2. Case f > 1 

Setting 

z=vn, w=(w,z), w=1-w-z, 

we obtain 

Y = A1(f) Z du, 
nw 

0 < w < 1, 0 < z < 1, 0 < w < 1, 0 < y < 1 
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X 
u(O) 

1 ..1.. 
--;1 z2 

Fig. 1. Global Bifurcation Structure for f = 1 

because of 
dv = n(nw- .X1(C)idu) . 

.X1(£) (.X1(£) du + nw) 

Since we can take v and v* as satisfying 

( n(1-w)u ) 
v = -(du .X1(£) + nw) v 

* ( n (1- z) v ) 
and v = -(du.Xl(C)+nw)u ' 

respectively, we have 

_ (o) _ n (n + 1) r2(y) <1>3(£) 
e1 .r. - , 

2 Zrl (y) <1>2 (.C) 

wherer1 (q) =wi+2wq-wq2 and 

From 

r2(q) =- w2 22 + 2 (1- 4w + 3w2 - 2 + 4w 2) q 

- w (1 - w- z- 2 w 2) q2 + w2 q3 . 

r1(0) =w z > 0, 

r2(0) =- w2 22 < 0, 

r1(1) =(1- w) (1- z) > 0, 

r2(1) =(1- w) 2 (1- z) 2 > 0, 

it follows that r 1 (y) > 0 holds, and that there exist 0 < Ql ::::; Q2 ::::; q3 < 1 
such that r 2 ( q1) = 0 for each j and 

ify E I+=: [O,ql) U(q2,q3), 
if y E L = ( Ql , Q2) U ( q3, 1]. 
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X X 
u(O) 
r------

£[(1) 

(a) dE V_(£) 

Fig. 2. Global Bifurcation Structure for C > 1 

Setting 

V±(£) = {dE V(£) I du = At~~ Z y, Y E h } , 

we obtain ±f1 ( £) > 0 for any d E V'f ( £). By employing the similar 
argument with Theorem 1, we have the following: 

Theorem 2. Let£ > 1 and IJ E { -, +} be arbitrary. If d E Da(£) 
is satisfied, then there exists a continuous function u(., c) such that 

(i) Ef(£) = { (c, u(., c)) I c E (0, 1) }, 
(ii) IJ u'(r, c) --< 0 for any (r, c) E (0, 1r) x (0, 1), and 

(iii) lim6 __. 1 u(., c)= u 
hold (see Figure 2). 

Figure 2 shows the structure of E 1 ( £) which is suggested by The
orem 2, and says that the secondary bifurcation of saddle-node type 
appears on Et ( £) (respectively, E! ( £)) for the case d E V _ ( £) ( respec
tively, d E V + ( £)). Since Theorem 2 does not give us enough information 
on the structure of E 1 (£), it is open how many secondary bifurcations 
occur on Et(£). 

§5. Concluding Remarks 

From the result in Chafee and Infante [1], it follows that under 
the assumption stated in Theorem 1, the global bifurcation structure of 
positive solutions for (1.2) with £ = 1 relative to c is similar to that for 

{ 
0 = c u" + u ( 1 - u) ( u - a), 

u'(O) = 0, u'(1r) = 0 

r E (0,1r), 

with 0 < a < 1. Figure 3 shows the numerical bifurcation diagram 
for the case where n = 1.1 and du = dv are satisfied. The horizontal 
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(a) b = c = 200.0 

-----------
...................... 

........................ 

) 
4 

3 

2 

1 --·-·--···--·-···-···--····----···-···-<::.·-----· __ ... _. __ ... _ .. _ ...... _ ... _ ...... -·--·-·::. 
OL-~--~--~~--~--~~ 
0.995 0.996 0.997 0.998 0.999 1 1.001 1.002 

(b) b = c = 2000.0 

Fig. 3. Numerical Bifurcation Diagram 

and vertical axes mean the value of c and u(O)ju, respectively. This 
figure suggests that the bifurcation structure of positive solutions for 
(1.2) depends on band c, when the assumption of Theorem 1 is violated 
(for example, 1 < n < 2 is satisfied). 

To determine the local bifurcation structure of positive solutions for 
(1.2) on a neighborhood of (s, u) = (1, tl), we employ the numerical ver
ification method such as the interval arithmetic built into Mathematica. 
Unfortunately we have not succeeded in establishing the local bifurcation 
structure when f 0 (u) is changed for 

f 0 (u) = 1- un 1 - cvn2 , g0 (u) = 1- bun3 - vn4 

with positive constants b, c and n1, so that the global bifurcation struc
ture for (1.2) with more general nonlinearity f 0 (u) is still open. 

Finally, we should remark that Theorem 1 and Theorem 2 do not 
give us the information on the Hopf bifurcation from positive stationary 
solutions of 

{
Ut = c D ( Urr + R. ~ 1 Ur) + f(u), 

Ur=O, r=0,7r, t>O, 

T' E (0, 1r), t > 0, 

so that the global attractor of the above evolution equation is also still 
open. 
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