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Bilinear estimates for the transport equations 

Shuji Machihara 

Abstract. 

This note consists of the several types of bilinear estimates for 
the solutions of transport equations in one space dimension. As appli
cations, the time local wellposedness results for the systems of these 
equations with quadratic interaction terms are shown. 

§1. Introduction 

We consider the following Cauchy problem 'for the transport equa
tions in one space dimension, 

(1) 

(2) 

8tu- 8xu = F, u(O, x) = uo(x), 

8tv + 8xv = G, v(O,x) = vo(x), 

where u and v are functions from IR2 to C and initial data u0 and vo 
are functions from IR to C. Inhomogeneous terms F and G are complex 
valued functions oft, x, u and v. In this note we consider the bilinear 
estimates on uv, uu or vv for the solutions of (1) and (2). 

The first motivation of these studies is to investigate the following 
Dirac equation with some nonlinearities in one space dimension [17, 18]. 

(3) 'Du + mu = F(u), 

where m 2: 0 is mass, u is a function from JR2 to C2 such that 

u = (u1) = (u1(t,x)), 
u2 u2(t, x) 

the Dirac operator V is defined by V = i"y08t + i"'( 18x with the Dirac 
matrices 

(4) 

Received October 21, 2005. 
Revised January 18, 2006. 

1 = (0 -1) 'Y 1 0 . 



190 S. Machihara 

It is well known that V 2 -of + f}~ from ( 4) 1 and this leads Dirac 
equations to wave equations. We denote the nonlinear term by F(u) 
which is the function from C2 to C2 . We prescribe the initial data ¢ 
using a function from JR. to C 2 1 

(5) u(O, x) = ¢(x) = (:~~~D. 

We have studied the Cauchy problem on (3)-(5). 

In this note we deal with (1)-(2) which are essential parts of (3). 
The first approach to this problem is so called Fourier restriction norm 
method, which has been developed by Bourgain [2, 3], and after that, 
refined by Kenig, Ponce and Vega [12, 13, 14]. These methods have 
been applied for various nonlinear dispersive equations. For example, 
nonlinear Schrodinger equations [14, 21], KdV equations [12, 13], higher 
ordered nonlinear Schrodinger equations [20, 22] which are respectively 
second order, third order and more higher order derivative equations. In 
our case, transport equations are one order derivative equation and are 
dispersive. Generally speaking, we have the stronger smoothing effect 
for higher ordered equations. For instance, it is reported in [20] that 
the fourth order Schrodinger equation has a powerful smoothing effect 
to control even the nonlinear term (roughly expressed) u2a~u. We could 
not expect such properties as to transport equations. Indeed there seems 
not to exist the study on transport equations by the Fourier restriction 
norm method. There are results on the coupled system of transport 
equation with Schrodinger equation [I] in which the norm (6) below was 
used. But the proof of bilinear estimates for that system rely mainly on 
the norms regarding Schrodinger equation. 

We introduce our Fourier restriction norms and another notation. 

(6) 

where U±(t) = e'ft8x are free propagators, that is, U_(t)u0 (x) and 
l!+(t)vo(x) solves (1) with F = 0 and (2) with G = 0 respectively. 
f denotes the Fourier transform with respect to variables x and t, 
J = J e-ixt;-itT f(t, x)dtdx. We use (x) = 1 + lxl. We set a cut-off 
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function 'ljJ E C0 such that 0 ~ 'ljJ ~ 1, 

'lj;(t) = {1, 
0, 

ltl ~ 1, 

ltl 2: 2. 

We study the following type of bilinear estimates, 

lluvllxs,b-1 :S llullxs,b llvllxs,b 

where three Xs are X+ or X_. 
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For the second approach to the problem on (1)-(2), we study the 
solutions of inhomogeneous transport equations. We employ the argu
ments in the series of papers by Fang and Fang-Grillakis [7, 8, 9] for 
the study on the Cauchy problem of Dirac-Klein-Gordon equation. We 
study the solutions of transport equations in Fourier space, variables 
( T, 0. We take a notice of that the Fourier transform of solutions for 
transport equations are described mainly by variables for the light lines 
T - ~ or T + ~ respectively. We estimate on solution of integral equation 
corresponding to the inhomogeneous transport equations and derive the 
bilinear estimates which work with these variables. By Plancherel's the
orem and suitable cut-off function with respect to variable t, we do these 
investigation in L;Lr We estimate the solutions in the neighborhood 
of light cone and in otherwise separately as in [7]. In the weaker case 
[17], we do not take Fourier transform for the solutions and investigate 
in LF L; to obtain the similar estimate. 

The rest of this paper is organized as follows. In section 2, we give 
the bilinear estimates which are related to the Fourier restriction norms. 
In section 3, we present the bilinear estimates for the solutions of the 
inhomogeneous transport equations. 

§2. Bilinear estimates type 1 

In this section we consider the some bilinear estimates on the Fourier 
restriction norm. 

From the following lemma, it suffices to derive the bilinear estimate 
that we obtain the time local wellposedness for the corresponding equa
tions. 
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Lemma 1. Let -1/2 < b' ::; 0 ::; b ::; b' + 1, 0 < T ::; 1. The 
following estimates hold, 

111/J(t)U±(t)a(x)llxsb '""llaiiHs, 
± 

111/J(t/T) r U±(t- t')f(t',x)dt'llxs" ;S Tl-b+b'llfllx±b'· lo ± 

Now we give the results [17]. 

Proposition 2. The following estimates hold for any s > -1/8 and 
suitable b, and fail for any s < -1/6, bE JR., 

(7) 

Proposition 3. The following estimates hold for any s, b > 1/2, 
and fail for any s < 1/2, b E JR., 

Proposition 4. The following estimates hold for any s > 1/4, 1/2 < 
b ::; 3/4, and fail for any b, s satisfying max{ 4s, 0} < 2b- 1, 

lluvllxs.&-1 ;S llullxs.&llvllx'·&. 
± 'F 'F 

From Proposition 2, we have that the following system of transport 
equations 

(8) 
u(O, x) = uo(x), 

v(O, x) = vo(x) 

is time locally wellposed in H 8 , s > -1/8. 
For the proof of these estimates, we have utilized following elemental 

inequalities. 

Lemma 5. Let p, q satisfy p + q > 1 and max(p, q) "I- 1. Set r;, = 
min(p, q, p + q - 1). The following estimates hold, 

(9) 100 dx 1 
-oo (x-a)P(x-b)q'"" (a-b)"" 

Proof of Proposition 2. See [17] for details. By setting f ( T, ~) 
(T+~)b(0 8 ~, g(T,~) = (T-~)b(~) 8B we have estimated the following 
for the norm of left hand side of (7) by the use of Lemma 5, 
(10) 

11 
(~)sf(CJ,TJ)g(T-CJ,~-TJ)tp(T,~) d d d dtl 

sup 1 b b b CJ TJ T '> · 
II'PIIr.h2=l IR4 (T ± ~) - (CJ + 17) (17) 8 (T- CJ- ~ + 17) (~ _ 17) 8 

T !_ 
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We have followed the arguments of the proof of bilinear estimates on the 
Fourier restriction norms by Kenig, Ponce and Vega in [13, 14] and so 
on. Q.E.D. 

§3. Bilinear estimates type 2 

In this section we give the bilinear estimate for the solutions of 
inhomogeneous transport equations (1) and (2). We obtain the following 
estimate [18]. 

Proposition 6. Lets> -1/4. Let u and v be solutions to (1) and 
(2) respectively. Then 

11(7 + ~) 8 (7- ~) 8 (,((J * uv)ll£2£2 
T €, 

;S (lluoiiHs + 11(7 + ~) 8 (7- Os Ft2 L 2 ) 

T €, 

x (llvo IIH' + II (7 + ~)s (7- ~)sGt2 £ 2). 
T t. 

From Proposition 6, we have that the system of transport equations 
(8) is time locally wellposed in H 8 , s > -1/4. Here the number -1/4 
is less than -1/6 which is the number for failure of Proposition 2. 

Proof. See [18] for details. We estimate on the following expression 
of solutions. 

- iF2(7,~) + ib(7- ~) J F2(CJ,~) dCJ, 
7-~ CJ-~ 

where F = F1 + F2 such that 

F1(7,~) = 1/;(7- ~)F(7,~), 

And 
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where G = G 1 + G2 such that 

We investigate the solutions in the neighborhood of a = ±~ and other
wise separately. We have to estimate all terms in uv = U*V. For example·, 
we here estimate the convolution of the first term in (11) and the forth 
term in (12). We change the variables((~+ r)/2, (~- r)/2)---* (r,~), 

II (r + ~)8 (r- ~)8 ( c5(r- ~)uo(~) * 8(r +~)I G;~':) da) IIL~L~ 

"'11(~) 8 uoii£211(~) 8 1G;(a,~)dall . 
~ IJ + ~ L~ 

We estimate from Holder's inequality and Lemma 5, 

II (~)8 I G2(a, ~) dall 
IJ + ~ L~ 

s; II (~) 8 (I I(:: :;1~88 1 2 da f 12
11Lf II (r- ~) 8 (r + ~) 8G2 (r, ~) t~L~ 

~ ll(r- ~)8(r + ~)8G2(r,~)t2£2. 
7" ~ 

In the case s = 0, we do not need Fourier transform. We estimate 
on the following expression of solutions in L~L';, see [17]. 

u(t, x) = uo(x + t) +lot F(s, x + t- s)ds, 

v(t, x) = vo(x- t) +lot G(s, x- t + s)ds. 
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