Advanced Studies in Pure Mathematics 46, 2007
Singularities in Geometry and Topology 2004
pp. 67-76

Motivic sheaves and intersection cohomology

Masaki Hanamura

We propose a motivic refinement of a result in [BBFGK]. The formulation involves the notion of intersection Chow group, introduced by A. Corti and the author.

We are very grateful to the referee for useful suggestions.

§1. Intersection Chow groups and lifting theorems

We consider quasi-projective varieties over $k=\mathbb{C}$. For a quasiprojective variety $Z, \mathrm{CH}_{s}(Z)$ denotes the Chow group of s-cycles on Z tensored with \mathbb{Q}; if Z is smooth, $\mathrm{CH}^{r}(Z):=\mathrm{CH}_{\operatorname{dim} Z-r}(Z)$. We consider only constructible sheaves of \mathbb{Q}-vector spaces. The singular (co-)homology, Borel-Moore homology, and intersection cohomology are those with \mathbb{Q}-coefficients.

Relative canonical filtration.
The study of filtration on the Chow group of a smooth projective variety was started by Bloch and continued by several people; of most relevance to us now are the works of Beilinson, Murre and Shuji Saito. Beilinson explained the filtration in terms of the conjectural framework of mixed motives. Murre proposed a set of conjectures, Murre's conjectures, on a decomposition of the diagonal class in the Chow ring of self-correspondences; he relates the decomposition to the filtration of Chow groups.

For X a smooth projective variety, its Chow group of codimension r cycles $\mathrm{CH}^{r}(X)$ should have a filtration F^{\bullet} such that $\mathrm{CH}^{r}(X)=$ $F^{0} \mathrm{CH}^{r}(X), F^{1} \mathrm{CH}^{r}(X)$ is the homologically trivial part, $F^{2} \mathrm{CH}^{r}(X)$ is perhaps the kernel of Abel-Jacobi map, and so on. The subquotient $G r_{F}^{\nu} \mathrm{CH}^{r}(X)$ should in some way be determined by cohomology $H^{2 r-\nu}(X, \mathbb{Q})$.

A candidate for the filtration was proposed by S. Saito, see [Sa 1] [Sa 2]. We extend his definition as follows. If $S=\operatorname{Spec} k$, it coincides with Saito's filtration.

Let S be a quasi-projective variety, and X a smooth variety with a projective map $p: X \rightarrow S$. For another smooth variety W with a projective $\operatorname{map} q: W \rightarrow S$, an element $\Gamma \in \mathrm{CH}_{\operatorname{dim} X-s}(W \times s X)$ induces a map $\Gamma_{*}: \mathrm{CH}^{r-s}(W) \rightarrow \mathrm{CH}^{r}(X)$, see $[\mathrm{CH}]$. The cycle class of Γ in BorelMoore homology gives a map $\Gamma_{*}: R q_{*} \mathbb{Q}_{W}[-2 s] \rightarrow R p_{*} \mathbb{Q}_{X}$; passing to perverse cohomology one has a map (for each ν)

$$
{ }^{p} \mathcal{H}^{2 r-\nu} \Gamma_{*}:{ }^{p} \mathcal{H}^{2 r-2 s-\nu} R q_{*} \mathbb{Q}_{W} \rightarrow{ }^{p} \mathcal{H}^{2 r-\nu} R p_{*} \mathbb{Q}_{X} .
$$

(Here ${ }^{p} \mathcal{H}^{*}$ stands for perverse cohomology.)
We define a filtration F_{S}^{\bullet} on $\mathrm{CH}^{r}(X)$ as follows. Let $\mathrm{CH}^{r}(X)=$ $F_{S}^{-\operatorname{dim} S} \mathrm{CH}^{r}(X)$. Assume F_{S}^{ν} has been defined. Define

$$
F_{S}^{\nu+1} \mathrm{CH}^{r}(X):=\sum \operatorname{Image}\left[\Gamma_{*}: F_{S}^{\nu} \mathrm{CH}^{r-s}(W) \rightarrow \mathrm{CH}^{r}(X)\right]
$$

where the sum is over $\left(q: W \rightarrow S, \Gamma \in \mathrm{CH}_{\operatorname{dim} X-s}\left(W \times{ }_{S} X\right)\right.$) satisfying the following condition: the map ${ }^{p} \mathcal{H}^{2 r-\nu} \Gamma_{*}:{ }^{p} \mathcal{H}^{2 r-2 s-\nu} R q_{*} \mathbb{Q}_{W} \rightarrow$ ${ }^{p} \mathcal{H}^{2 r-\nu} R p_{*} \mathbb{Q}_{X}$ is zero. One can show:

Proposition 1.1. The filtration F_{S}^{\bullet} on $\mathrm{CH}^{r}(X)$ has the following properties.
(1) $\mathrm{CH}^{r}(X)=F_{S}^{-\operatorname{dim} S} \mathrm{CH}^{r}(X)$. For any $\Gamma \in \mathrm{CH}_{\operatorname{dim} X-s}\left(W \times{ }_{S}\right.$ $X)$, the induced map $\Gamma_{*}: \mathrm{CH}^{r-s}(W) \rightarrow \mathrm{CH}^{r}(X)$ respects F_{S}^{\bullet}.
(2) If ${ }^{p} \mathcal{H}^{2 r-\nu} \Gamma_{*}:{ }^{p} \mathcal{H}^{2 r-2 s-\nu} R q_{*} \mathbb{Q}_{W} \rightarrow{ }^{p} \mathcal{H}^{2 r-\nu} R p_{*} \mathbb{Q}_{X}$ is zero, then Γ_{*} sends $F_{S}^{\nu} \mathrm{CH}^{r-s}(W)$ to $F_{S}^{\nu+1} \mathrm{CH}^{r}(X)$.
(3) The filtration is the smallest one with properties (1) and (2).

Intersection Chow group.
We refer to a forthcoming paper with A. Corti for details on intersection Chow groups.

Let S be a quasi-projective variety, X a smooth variety, and $p: X \rightarrow$ S a projective map. There is an algebraic Whitney stratification

$$
S=S_{0} \supset S_{1} \supset \cdots \supset S_{\alpha} \supset \cdots \supset S_{\operatorname{dim} S}
$$

of S, so that $S_{\alpha}-S_{\alpha+1}$ is smooth of codimension α, satisfying the following condition.
(i) p is smooth projective over $S^{0}:=S-S_{1}$, and
(ii) there is an algebraic stratification of X such that p is a stratified fiber bundle over each stratum $S_{\alpha}^{0}:=S_{\alpha}-S_{\alpha+1}$.
We then say $p: X \rightarrow S$ is a stratified map with respect to $\left\{S_{\alpha}\right\}$. The stratification can be chosen to satisfy a stronger condition as follows.

Let $X_{\alpha}=p^{-1} S_{\alpha}$. There exist resolutions $\tilde{X}_{\alpha} \rightarrow X_{\alpha}\left(\right.$ with $\left.\tilde{X}_{0}=X\right)$ such that
(i) the induced map $\tilde{p}_{\alpha}: \tilde{X}_{\alpha} \rightarrow S_{\alpha}$ is smooth over S_{α}^{0}, and
(ii) there is a stratificaton on \tilde{X}_{α} such that \tilde{p}_{α} is a stratified fiber bundle over S_{β}^{0} for $\beta \geq \alpha$. (In other words, \tilde{p}_{α} is a stratified map with respect to $\left\{S_{\beta}\right\}_{\beta \geq \alpha}$.)
In this case we say the data $\left(p: X \rightarrow S,\left\{\tilde{X}_{\alpha} \rightarrow X_{\alpha}\right\}\right.$) is stratified with respect to $\left\{S_{\alpha}\right\}$.

Let $\iota_{\alpha}: \tilde{X}_{\alpha} \rightarrow X$ be the induced map.
We now restrict ourselves to the birational case: let S be a quasiprojective variety and $p: X \rightarrow S$ a resolution of singularities. One has $\operatorname{maps}(d=\operatorname{dim} S)$

$$
\mathrm{CH}_{d-r}\left(\tilde{X}_{\alpha}\right) \xrightarrow{\iota_{\alpha *}} \mathrm{CH}^{r}(X) \xrightarrow{\iota_{\alpha}^{*}} \mathrm{CH}^{r}\left(\tilde{X}_{\alpha}\right)
$$

Each group has filtration F_{S}^{\bullet}.
Define the intersection Chow group as a subquotient of the Chow group of X given by:

$$
\mathrm{ICH}^{r}(S):=\frac{\cap_{\alpha \geq 1}\left(\iota_{\alpha}^{*}\right)^{-1} F_{S}^{2 r-d+1} \mathrm{CH}^{r}\left(\tilde{X}_{\alpha}\right)}{\sum_{\alpha \geq 1} \iota_{\alpha *} F_{S}^{2 r-d+1} \mathrm{CH}_{d-r}\left(\tilde{X}_{\alpha}\right)}
$$

Theorem 1.2. $\operatorname{ICH}^{r}(S)$ is well-defined (independent of the choice of stratification and resolution).

Denote by $I H^{i}(S)$ the intersection cohomology with middle perversity and with \mathbb{Q}-coefficients.

Proposition 1.3. There is a natural map

$$
\mathrm{ICH}^{r}(S) \rightarrow I H^{2 r}(S)
$$

The Conjectures.
We recall three well-known conjectures concerning cohomology, Chow group, and higher Chow group of a smooth projective variety over a field. In this paper we refer to them as Conjectures. The addition of
the third conjecture is needed to prove the existence of a t-structure on the triangulated category of mixed motives. See [Ha].

1. Grothendieck's Standard conjecture.

This concerns the functorial behavior of cycle classes in (singular or étale) cohomology. It has two components, the Lefschetz type conjecture and the Hodge type conjecture. For $k=\mathbb{C}$, the latter holds true (Hodge index theorem). The Lefschetz type conjecture itself consists of three statements, Conjecture (A), (B) and (C). Conjecture (C) says: the Künneth components of the diagonal class of a smooth projective variety are algebraic.

The standard conjecture implies the semi-simplicity of the category of pure homological motives (Grothendieck).
2. Murre's conjecture (Bloch-Beilinson-Murre conjecture)

One of the formulation of the conjectural filtration on Chow group is due to Murre, and stated as the existence of a orthogonal decomposition to projectors of the diagonal class Δ_{X} in $\mathrm{CH}(X \times X)$. To be precise, the conjecture states:
(A) Let X be a smooth projective variety. There exists a decomposition $\Delta_{X}=\sum \Pi^{i}$ to orthogonal projectors in the Chow ring such that the cohomology class of Π^{i} is the Künneth component $\Delta(2 \operatorname{dim} X-i, i)$. The decomposition is called the Chow-Künneth decomposition.
(B) Π^{i} with $i=0, \ldots, r-1$ or $i=2 d, \ldots, 2 r+1$ acts as zero on $\mathrm{CH}^{r}(X)$.
(C) Put $F^{0}=\mathrm{CH}^{r}(X), F^{1}=\operatorname{Ker} \Pi^{2 r}, F^{2}=\operatorname{Ker}\left(\Pi^{2 r-1} \mid F^{1}\right), \ldots$, $F^{r}=\operatorname{Ker}\left(\Pi^{r+1} \mid F^{r-1}\right), F^{r+1}=0$. This is independent of the choice of the decomposition in (A).
(D) $\quad F^{1}=\mathrm{CH}^{r}(X)_{\text {hom }}$, the homologically trivial part.

Note a Chow-Künneth decomposition gives a decomposition in the category of Chow motives over $k h(X)=\bigoplus h^{i}(X)$, where $h^{i}(X)$ carries cohomology in degree i only. For the category of Chow motives, see $\S 2$.
3. Variant of Beilinson-Soulé vanishing conjecture: Let $(X, 0, P)$ be an object of the category of Chow motives $\operatorname{CHM}(k)$ whose realization is of cohomological degree $\geq 2 r-n$ if $n>0$ and $>2 r$ if $n=0$. Then $P_{*} \mathrm{CH}^{r}(X, n)=0$.

When we give results that hold under the three Conjectures, we will always say so; some of them require only the first two. For example,

Proposition 1.4 (Under Conjectures). $\quad F_{S}^{\nu} \mathrm{CH}^{r}(X)=0$ for ν large enough.

We have:

Theorem 1.5 (Under Conjectures). The map

$$
p_{*}: \mathrm{CH}^{r}(X) \rightarrow \mathrm{CH}_{d-r}(S)
$$

induces a surjective map $\mathrm{ICH}^{r}(S) \rightarrow \mathrm{CH}_{d-r}(S)$.
Under Conjectures, one has (1.5), which immediately implies the following Theorem (1.6) in [BBFGK]. One has the cycle class map $c l: \mathrm{CH}_{d-r}(S) \rightarrow H_{2(d-r)}^{B M}(S)$ (the latter is the Borel-Moore homology). There is a natural map $I H^{2 r}(S) \rightarrow H_{2(d-r)}^{B M}(S)$.

Theorem 1.6. For any $z \in \mathrm{CH}_{d-r}(S)$, its class cl $(z) \in H_{2(d-r)}^{B M}(S)$ can be (non-canonically) lifted to an element of intersection cohomology.

Indeed, we can show (1.6) without assuming Conjectures, but still using the same ideas as for the proof of (1.5).

§2. Motivic categories and decompositions of motives

Theory of Chow motives.
Let S be a quasi-projective variety over $k=\mathbb{C}$. Let $C H \mathcal{M}(S)$ be the pseudo-abelian category of Chow motives over S. It has the following properties (for details see $[\mathrm{CH}]$).

- An object of $C H \mathcal{M}(S)$ is of the form

$$
(X, r, P)=(X / S, r, P)
$$

where X is a smooth variety over k with a projective (not necessarily smooth) map $p: X \rightarrow S, r \in \mathbb{Z}$, and if X has connected components X_{i},

$$
P \in \bigoplus_{i} \mathrm{CH}_{\operatorname{dim} X_{i}}\left(X \times_{S} X_{i}\right)
$$

such that $P \circ P=P$. Here \circ denotes composition of relative correspondences defined in [CH], which makes $\bigoplus_{i} \mathrm{CH}_{\operatorname{dim} X_{i}}\left(X \times_{S} X_{i}\right)$ a ring with the diagonal Δ_{X} as the identity element. If (Y, s, Q) is another object, Y_{j} the components of Y, then

$$
\operatorname{Hom}((X, r, P),(Y, s, Q))=Q \circ\left(\bigoplus_{j} \mathrm{CH}_{\operatorname{dim} Y_{j}-s+r}\left(X \times_{S} Y_{j}\right)\right) \circ P
$$

Composition of morphisms is induced from the composition of relative correspondences.

- Let $h(X / S)=(X, 0$, ip $)$ and $h(X / S)(r)=(X, r$, ip $)$. More generally, Tate twist is defined to be the functor $(t \in \mathbb{Z})$

$$
K=(X, r, P) \mapsto K(t)=(X, r+t, P)
$$

on objects.

- One has a functor

$$
\mathrm{CH}^{t}: C H \mathcal{M}(S) \rightarrow V e c t \mathbb{\mathbb { Q }}, \quad \mathrm{CH}^{t}((X, r, P))=P_{*} \mathrm{CH}^{r+t}(X) .
$$

Note $\mathrm{CH}^{t}(K)=\mathrm{CH}^{0}(K(t))$ and $\mathrm{CH}^{r}(h(X / S))=\mathrm{CH}^{0}(h(X / S)(r))=$ $\mathrm{CH}^{r}(X)$.

- If X and Y are smooth varieties with projective maps to S and $f: X \rightarrow Y$ a map over S, there corresponds a morphism

$$
f^{*}: h(Y / S) \rightarrow h(X / S)
$$

If X, Y are equidimensional, there corresponds

$$
f_{*}: h(X / S) \rightarrow h(Y / S)(\operatorname{dim} Y-\operatorname{dim} X)
$$

It is of use to define the homological motive of X / S : if X has components X_{i},

$$
h^{\prime}(X / S):=\bigoplus h\left(X_{i} / S\right)\left(\operatorname{dim} X_{i}\right)
$$

Then a map $f: X \rightarrow Y$ induces a morphism $f_{*}: h^{\prime}(X / S) \rightarrow h^{\prime}(Y / S)$.

- Let $D_{c}^{b}(S)=D_{c}^{b}(S, \mathbb{Q})$ be the derived category of sheaves of \mathbb{Q}-vector spaces on S with constructible cohomology. There is the realization functor

$$
\rho: C H \mathcal{M}(S) \rightarrow D_{c}^{b}(S)
$$

such that on objects

$$
(X, r, P) \mapsto P_{*} R p_{*} \mathbb{Q}_{X}[2 r]
$$

$\left(P_{*} \in \operatorname{End}_{D_{c}^{b}(S)}\left(R p_{*} \mathbb{Q}_{X}\right)\right.$ is a projector, and $P_{*} R p_{*} \mathbb{Q}_{X}$ is its image, which exists since $D_{c}^{b}(S)$ is pseudo-abelian.) Note $\rho(h(X / S)(r))=$ $R p_{*} \mathbb{Q}_{X}[2 r]$ and

$$
\rho\left(h^{\prime}(X / S)(r)\right)=R p_{*} D_{X}[2 r]
$$

where D_{X} is the dualizing complex of X. Recall $D_{X}=\mathbb{Q}_{X}[2 \operatorname{dim} X]$ if X is smooth.

Theory of Grothendieck motives.
We also have the pseudo-abelian category of Grothendieck motives over S. The main properties are the following.

Denote by $\operatorname{Perv}(S)$ be the abelian category of perverse sheaves of \mathbb{Q} vector spaces on S. There is a canonical full functor cano: $C H M(S) \rightarrow$
$\mathcal{M}(S)$ and a faithful realization functor $\rho: \mathcal{M}(S) \rightarrow \operatorname{Perv}(S)$. The following diagram commutes.

Here ${ }^{p} \mathcal{H}^{*}=\bigoplus_{i}{ }^{p} \mathcal{H}^{i}$ is the total perverse cohomology functor.
Relative decomposition of motives.
The following is in $[\mathrm{CH}]$ (for this, we only need the first two of the three Conjectures). This is a motivic analogue of the decomposition theorem for the total direct image in [BBD].

Theorem 2.1 (Under Conjectures). Let $p: X \rightarrow S$ be as before. Let $\left\{S_{\alpha}\right\}$ be a Whitney stratification of S, and $\tilde{X}_{\alpha} \rightarrow X_{\alpha}$ resolutions such that $\left(p: X \rightarrow S,\left\{\tilde{X}_{\alpha} \rightarrow X_{\alpha}\right\}\right)$ is stratified with respect to $\left\{S_{\alpha}\right\}$. Then:
(1) There are local systems \mathcal{V}_{α}^{j} on $S_{\alpha}-S_{\alpha+1}$, non-canonical direct sum decomposition in $C H M(S)$

$$
h(X / S)=\bigoplus_{j, \alpha} h_{\alpha}^{j}(X / S)
$$

and isomorphisms

$$
\rho\left(h_{\alpha}^{j}(X / S)\right) \cong I C_{S_{\alpha}}\left(\mathcal{V}_{\alpha}^{j}\right)\left[-j+\operatorname{dim} S_{\alpha}\right]
$$

in $D_{c}^{b}(S)$.
(2) For each i, the sum $\bigoplus_{j \leq i, \alpha} h_{\alpha}^{j}(X / S)$ is a well-defined subobject of $h(X / S)$ (independent of the decomposition).
(3) The category $\mathcal{M}(S)$ is semi-simple abelian, and the functor $\rho: \mathcal{M}(S) \rightarrow \operatorname{Perv}(S)$ is exact and faithful.

Relative canonical filtration and motives.
For a projective map $p: X \rightarrow S$ with X smooth, the filtration on $\mathrm{CH}^{r}(X)$ can be interpreted in terms of motives as follows. Keeping the notation in the above theorem, define subobjects of $h(X / S)$ by

$$
{ }^{p} \tau_{\leq i} h(X / S):=\bigoplus_{j \leq i, \alpha} h_{\alpha}^{j}(X / S)
$$

(the sum over (j, α) with $j \leq i)$ and subquotients

$$
{ }^{p} \mathcal{H}^{i} h(X / S):=\bigoplus_{\alpha} h_{\alpha}^{i}(X / S)
$$

More generally for $r \in \mathbb{Z}$, subobjects of $h(X / S)(r)$

$$
{ }^{p} \tau_{\leq i}(h(X / S)(r)):=\bigoplus_{j \leq i+2 r, \alpha} h_{\alpha}^{j}(X / S)(r)
$$

and subquotients

$$
{ }^{p} \mathcal{H}^{i}(h(X / S)(r)):=\bigoplus_{\alpha} h_{\alpha}^{i+2 r}(X / S)(r)
$$

are defined. Then we have

$$
\begin{aligned}
\mathrm{CH}^{r}(X) & =\mathrm{CH}^{0}(h(X / S)(r)) \\
& =\mathrm{CH}^{0}\left(\bigoplus_{\alpha, \nu} h_{\alpha}^{2 r-\nu}(X / S)(r)\right), \\
F_{S}^{\nu} \mathrm{CH}^{r}(X) & =\mathrm{CH}^{0}\left({ }^{p} \tau_{\leq-\nu}(h(X / S)(r))\right) \\
& =\mathrm{CH}^{0}\left(\bigoplus_{\mu \leq 2 r-\nu, \alpha} h_{\alpha}^{\mu}(X / S)(r)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Gr}_{F_{S}}^{\nu} \mathrm{CH}^{r}(X) & =\mathrm{CH}^{0}\left({ }^{p} \mathcal{H}^{-\nu}(h(X / S)(r))\right) \\
& =\mathrm{CH}^{0}\left(\bigoplus h_{\alpha}^{2 r-\nu}(X / S)(r)\right)
\end{aligned}
$$

§3. Outline of the proof of (1.5)

We start with a result on perverse cohomology. Let X be smooth, $p: X \rightarrow S$ a projective map, and assume ($p: X \rightarrow S,\left\{\tilde{X}_{\alpha} \rightarrow X_{\alpha}\right\}$) is stratified with respect to $\left\{S_{\alpha}\right\}$. There are local systems V_{α}^{i} on S_{α}^{0} such that $R p_{*} \mathbb{Q}_{X} \cong \bigoplus I C_{S_{\alpha}}\left(\mathcal{V}_{\alpha}^{j}\right)\left[-j+\operatorname{dim} S_{\alpha}\right]$. Let $d=\operatorname{dim} X$.

Proposition 3.1. (1) Let $\iota_{\alpha}^{*}: R p_{*} \mathbb{Q} \rightarrow i_{\alpha *} R \tilde{p}_{\alpha *} \mathbb{Q}_{\tilde{X}_{\alpha}}$ be the natural map ι_{α} induces, and

$$
{ }^{p} \mathcal{H}^{i}\left(\iota_{\alpha}^{*}\right):{ }^{p} R^{i} p_{*} \mathbb{Q} \rightarrow i_{\alpha *}{ }^{p} R^{i} \tilde{p}_{\alpha *} \mathbb{Q}_{\tilde{X}_{\alpha}}
$$

the induced map on perverse cohomology of degree i. The restriction to the direct summand $I C_{S_{\alpha}}\left(\mathcal{V}_{\alpha}^{i}\right)\left[\operatorname{dim} S_{\alpha}\right]$

$$
{ }^{p} \mathcal{H}^{i}\left(\iota_{\alpha}^{*}\right): I C_{S_{\alpha}}\left(\mathcal{V}_{\alpha}^{i}\right)\left[\operatorname{dim} S_{\alpha}\right] \rightarrow i_{\alpha *}^{p} R^{i} \tilde{p}_{\alpha *} \mathbb{Q}_{\tilde{X}_{\alpha}}
$$

is a split injection.
(2) Let $\iota_{\alpha *}: \iota_{\alpha *} R \tilde{p}_{\alpha *} D_{\tilde{X}_{\alpha}}(-d)[-2 d] \rightarrow R p_{*} \mathbb{Q}$ be the natural map, and

$$
{ }^{p} \mathcal{H}^{i} \iota_{\alpha *}: \iota_{\alpha *}{ }^{p} \mathcal{H}^{i} R \tilde{p}_{\alpha *} D_{\tilde{X}_{\alpha}}(-d)[-2 d] \rightarrow{ }^{p} R^{i} p_{*} \mathbb{Q}
$$

the induced map on perverse cohomology; here $D_{\tilde{X}_{\alpha}}$ is the dualizing complex. This map factors through a split surjection

$$
{ }^{p} \mathcal{H}^{i} \iota_{\alpha *}: \iota_{\alpha *}{ }^{p} \mathcal{H}^{i} R \tilde{p}_{\alpha *} D_{\tilde{X}_{\alpha}}(-d)[-2 d] \rightarrow I C_{S_{\alpha}}\left(V_{\alpha}^{i}\right)\left[\operatorname{dim} S_{\alpha}\right]
$$

to the direct summand of the target.

We can extend the definition of the filtration F_{S}^{\bullet} as follows. For any quasi-projective (possibly singular) variety Z with a quasi-projective map to S, one can define a filtration F_{S}^{\bullet} on the Chow $\operatorname{group} \mathrm{CH}_{s}(Z)$. This was done in $[\mathrm{CH}, \S 5]$ in the case $S=\operatorname{Spec} k$, and the general case is similar. For a projective map of varieties over $S, f: X \rightarrow Y$, the induced $\operatorname{map} f_{*}: \mathrm{CH}_{s}(X) \rightarrow \mathrm{CH}_{s}(Y)$ respects the filtrations F_{S}^{\bullet}. If $S \rightarrow S^{\prime}$ is a closed immersion, and $Z \rightarrow S$, then the filtrations F_{S}^{\bullet} and $F_{S^{\prime}}^{\bullet}$ on $\mathrm{CH}_{s}(Z)$ coincide.

For a quasi-projective variety T, viewing it as a variety over T, one has filtration F_{T}^{\bullet} on $\mathrm{CH}_{s}(T)$. For this filtration, one has the following result. The proof uses the triangulated category of mixed motives over a base, the perverse t-structure on it, and the interpretation of the filtration F_{S}^{\bullet} on $\mathrm{CH}_{s}(Z)$ in terms of the perverse truncation (similar to the interpretation in $\S 2$). See [Ha] for the case where the base is Spec k.

Lemma 3.2 (Under Conjectures). For an irreducible quasi-projective variety $T, F_{T}^{-2 s+\operatorname{dim} T+1} \mathrm{CH}_{s}(T)=0$.

From now on we assume the Conjectures throughout.
Let $p: X \rightarrow S$ be a desingularization. We have a decomposition $h(X / S)=\bigoplus h_{\alpha}^{j}(X / S)$ as in (2.1). In this case $h_{0}^{\nu}=0$ for $\nu \neq d$, and it can be shown $C H^{r}\left(h_{0}^{d}\right)=\mathrm{ICH}^{r}(S)$ as a subquotient of $\mathrm{CH}^{r}(X)$.

Lemma (3.2) implies that $p_{*}: \mathrm{CH}^{r}(X) \rightarrow \mathrm{CH}_{d-r}(S)$ passes to a $\operatorname{map} \mathrm{ICH}^{r}(S) \rightarrow \mathrm{CH}_{d-r}(S)$.

For the surjectivity we must show: For any $a \in \mathrm{CH}_{d-r}(S)$, there is an element $b \in \mathrm{CH}^{r}(X)$ such that
(i) $p_{*}(b)=a$, and
(ii) $\iota_{\alpha}^{*}(b) \in F_{S}^{2 r-d+1} \mathrm{CH}^{r}\left(\tilde{X}_{\alpha}\right)$ for each $\alpha \geq 1$.

Let $a \in \mathrm{CH}_{d-r}(S)$ and $\nu \leq 2 r-d+1$. Consider the following Claim $(I)_{\nu}$.

Claim $(I)_{\nu}$.
(1) (Case $\nu \leq 2 r-d)$ there is an element $b^{\nu} \in \mathrm{CH}^{r}(X)$ with (i) $p_{*}\left(b^{\nu}\right)=a$, and (ii) $b^{\nu} \in F_{S}^{\nu} \mathrm{CH}^{r}(X)$.
(2) (Case $\nu=2 r-d+1) \quad$ there is an element $b^{2 r-d+1} \in \mathrm{CH}^{r}(X)$ satisfying the following (let $b=b^{2 r-d+1}$ for short): (i) $p_{*}(b)=a$, and (ii) $b \in F_{S}^{2 r-d} \mathrm{CH}^{r}(X)\left(\operatorname{not} F_{S}^{2 r-d+1} \mathrm{CH}^{r}(X)!\right)$, and $b \bmod F_{S}^{2 r-d+1} \in$ $\operatorname{Gr}_{F_{S}}^{2 r-d} \mathrm{CH}^{r}(X)=\bigoplus_{\alpha \geq 0} \mathrm{CH}^{r}\left(h_{\alpha}^{d}(X / S)\right)$ is contained in the first summand $I C H^{r}(S)=\mathrm{CH}^{r}\left(h_{0}^{d}(X / S)\right)$.

For ν small enough $(I)_{\nu}$ obviously holds: one can take any element satisfying (i). The larger ν is, the stronger $(I)_{\nu}$ is. What we must show is $(I)_{2 r-d+1}$.

Proposition 3.3. Let $\nu \leq 2 r-d$. We have $(I)_{\nu} \Rightarrow(I)_{\nu+1}$.

The proof of Proposition (3.3) is achieved by an argument that uses Proposition (3.1), the motivic interpretation of the filtration in $\S 2$, the two Lemmas (3.2) and (3.4), and semi-simplicity of the category $\mathcal{M}(S)$.

Lemma 3.4. If $\nu<2 r-2 \operatorname{dim} \tilde{X}_{\alpha}+\operatorname{dim} S_{\alpha}$, then $h_{\alpha}^{2 r-\nu}(X / S)$ is zero.

Indeed using (3.1) one shows the realization of $h_{\alpha}^{2 r-\nu}(X / S)$ is zero. Since $\rho: \mathcal{M}(S) \rightarrow \operatorname{Perv}(S)$ is exact and faithful, it follows $h_{\alpha}^{2 r-\nu}(X / S)$ itself is zero.

References

[BBFGK] G. Barthel, J.-P. Brasselet, K.-H. Fieseler, O. Gabber and L. Kaup, Relèvement de cycles algébriques et homomorphismes associés en homologie d'intersection, Ann. Math., 141 (1995), 147-179.
[BBD] A. Beilinson, J. Bernstein and P. Deligne, Faisceaux Pervers, Astérisque, 100, Société Mathématique de France, 1982.
[CH] A. Corti and M. Hanamura, Motivic decomposition and intersection Chow groups I, Duke Math. J., 103 (2000), 459-522.
[Ha] M. Hanamura, Mixed motives and algebraic cycles I, II, and III, Math. Res. Letters, 2 (1995), 811-821; Invent. Math., 158 (2004), 105-179; Math. Res. Letters, 6 (1999), 61-82.
[K1] S. Kleiman, Algebraic cycles and Weil conjectures, In: Dix Exposés sur la Cohomologie des Schémas, North Holland, Amsterdam, pp. 359-386.
[Mu] J. P. Murre, On a conjectural filtration on the Chow groups of an algebraic variety I and II, Indag. Mathem., 2 (1993), 177-188 and 189-201.
[Sa 1] S. Saito, Motives and filtrations on Chow groups, Invent. Math., 125 (1996), 149-196,
[Sa 2] S. Saito, Motives and filtrations on Chow groups II, In: The arithmetic and geometry of algebraic cycles, Banff, AB, 1998, NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 321-346.

Mathematical Institute
Tohoku University
Aramaki, Aoba-ku
Sendai 980-8587
Japan

