
Appendix : Proof of Caldararu's conjecture 

Daniel Huybrechts and Paolo Stellari 

In this short note we show how to combine Yoshioka's recent results 
on moduli spaces of twisted sheaves on K3 surfaces with more or less 
standard methods to prove CiHdararu's conjecture on the equivalence of 
twisted derived categories of projective K3 surfaces. More precisely, we 
shall show 

Theorem 0.1. Let X and X' be two projective K3 surfaces endowed 
with B-fields BE H 2 (X, Q) respectively B' E H 2 (X', Q). Suppose there 
exists a Hodge isometry 

g: H(X,B,Z) 9:! H(X',B',Z) 

that preserves the natural orientation of the four positive directions. 
Then there exists a Fourier-Mukai equivalence 

such that the induced action <I>~·B' on cohomology equals g. 
Here, a := aB and a' := aB' are the Brauer classes induced by B 

respectively B'. 

The twisted Hodge structures and the cohomological Fourier-Mukai 
transform (based on the notion of twisted Chern· character), indispens
able for the formulation of the conjecture, were introduced in [4]. For a 
complete discussion of the natural orientation of the positive directions 
and the cohomological Fourier-Mukai transform <I>~·B' we also refer to 
[4]. Note that Caldararu's conjecture was originally formulated purely 
in terms of the transcendental lattice. But, as has been explained in 
[4], in the twisted case passing from the transcendental part to the full 
cohomology is not always possible, so that the original formulation had 
to be changed slightly to the above one. 

Also note that any Fourier-Mukai equivalence 
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induces a Hodge isometry as above, but for the time being we cannot 
prove that this Hodge isometry also preserves the natural orientation. 
In the untwisted case this is harmless, for a given orientation reversing 
Hodge isometry can always be turned into an orientation preserving one 
by composing with -idH2. In the twisted setting this cannot always be 
guaranteed, so that we cannot yet exclude the case of Fourier-Mukai 
equivalent twisted K3 surfaces (X, as) and (X', as') which only admit 
an orientation reversing Hodge isometry H(X, B, Z) ~ H(X', B', Z). Of 
course, this is related to the question whether any Fourier-Mukai equiv
alence is orientation preserving which seems to be a difficult question 
even in the untwisted case (see [3, 11]). 

From Yoshioka's paper [12] we shall use the following 

Theorem 0.2. (Yoshioka) Let X be a K3 surface with a rational 
B-field B E H 2 (X, Q) and v E H1•1(X, B, Z) a primitive vector with 
( v, v) = 0. Then there exists a moduli space M ( v) of stable (with respect 
to a generic polarizations) as-twisted sheaves E with chs(E)Jtd(X) = 
v such that: 

i) Either M(v) is empty or a K3 surface. The latter holds true if 
the degree zero part of v is positive. 

ii) On X' := M(v) one finds a B-field B' E H 2 (X', Q) such that 
there exists a universal family [ on X x X' which is an aB1 C8l as'
twisted sheaf. 

iii) The twisted sheaf [ induces a Fourier-Mukai equivalence 

The existence of the moduli space of semistable twisted sheaves has 
been proved by Yoshioka for arbitrary projective varieties. Instead of 
considering twisted sheaves, he works with coherent sheaves on a Brauer
Severi variety. Using the equivalence between twisted sheaves and mod
ules over Azumaya algebras, one can in fact view these moduli spaces 
also as a special case of Simpson's general construction [10]. (The two 
stability conditions are indeed equivalent.) In his thesis [5] M. Lieblich 
considers similar moduli spaces. (See also [2] for the rank one case.) 

The crucial part for the application to CaJdararu's conjecture is i), 
in particular the non-emptiness. Yoshioka follows Mukai's approach, 
which also yields ii). Part iii) is a rather formal consequence of the 
usual criteria for the equivalence of Fourier-Mukai transforms already 
applied to the twisted case in [1]. 

In the last section we provide a dictionary between the different 
versions of twisted Chern characters and the various notions of twisted 
sheaves. Only parts of it is actually used in the proof of the conjecture. 
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The rest is meant to complement [4] and to facilitate the comparison of 
[4], [5], and [12]. 
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K. Yoshioka's paper. We are grateful to him for informing us about his 
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of constructing moduli spaces of twisted sheaves. Our proof follows the 
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(see also [3, 7]), although some modifications were necessary. During 
the preparation of this paper the second named author was partially 
supported by the MIUR of the Italian government in the framework of 
the National Research Project "Algebraic Varieties" (Cofin 2002). 

§1. Examples 

Let X and X' be projective K3 surfaces (always over CC) with B-fields 
B E H 2 (X, Q) respectively B' E H 2 (X', Q). We denote the induced 
Brauer classes by a := DB := exp(B0 •2 ) E H 2 (X, Ox) respectively 
a' := DB' E H 2 (X', Oj(' ). We start out with introducing a few exam
ples of equivalences between the bounded derived categories Db(X, a) 
respectively Db (X', a') of the abelian categories of a-twisted (resp. a'
twisted) sheaves. 

i) Let f :X ~X' be an automorphism with f*a' =a. Then <I> := 

j. : Db(X, a) --+ Db(X', a'), E >---+ Rj.E is a Fourier-Mukai equivalence 
with kernel Or1 viewed as an a- 1 ~ a'-twisted sheaf on X x X'. 

If in addition j.(B) = B' then <I>f·B' = j •. 

ii) Let L E Pic( X) be a( n untwisted) line bundle on X. Then 
E >---+ L ® E defines a Fourier-Mukai equivalence L ® ( ) : Db(X, a) ~ 
Db(X, a) with kernel i.L considered as an a- 1 ~a-twisted sheaf on X x 
X. Here, i : X '----+ X x X denotes the diagonal embedding. The induced 
cohomological Fourier-Mukai transform (L ® ( ))f'B : H(X, B, Z) ~ 
H(X,B,Z) is given by multiplication with exp(c1 (L)). 

iii) Let bE H 2 (X, Z). Then DB = DB+b· The identity 

id: Db(X, DB)= Db(X, DB+b) 

descends to id~,B+b : H(X, B, Z) ~ H(X, B +b, Z) which is given by the 
multiplication with exp(b). This follows from the formula chB+b(E) = 

chB(E). chb(O) = chB(E) · exp(b) (see [4, Prop. 1.2]). 
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iv) Changing the given B-field B by a class bE H 1,1 (X, Q!) does not 
affect H(X, B, :Z.). Thus, the identity can be considered as an orientation 

preserving Hodge isometry H(X, B, :Z.) = H(X, B + b, :Z.). 
As shall be explained in the last section, this can be lifted to a 

Fourier-Mukai equivalence. More precisely, there is an exact functor 
<1> : Coh(X, DB) ~ Coh(X, DB+b), whose derived functor, again denoted 
by <1> : Db(X, aB) ~ Db(X, DB+b), is of Fourier-Mukai type and such 
that <1>~,B+b = id. 

v) Let E E Db(X, a) be a spherical object, i.e. Exe(E, E) = 0 for all 
i except for i = 0, 2 when it is of dimension one. Then the twist functor 
TE that sends F E Db(X, a) to the cone of Hom(E, F) Q9 E-+ F defines 
a Fourier-Mukai autoequivalence TE : Db(X, a) ~ Db(X, a). The kernel 
of TE is given by the cone of the natural map 

E* c><J E----?-- OD., 

where 0 6 is considered as an a- 1 c><Ja-twisted sheaf on X x X. The result 
in the untwisted case goes back to Seidel and Thomas [9]. The following 
short proof of this, which carries over to the twisted case, has been 
communicated to us by D. Ploog [7]. Consider the class 0 C Db(X, a) of 
objects F that are either isomorphic toE or contained in its orthogonal 
complement E.L, i.e. Exe(E, F) = 0 for all i. It is straightforward to 
check that this class is spanning. Since TE(E) ~ E[-1] and TE(F) ~ F 
for F E E.L, one easily verifies that Exe(F1 , F2) = Exti(TE(Fl), TE(F2 )) 

for all F1, F2 E 0. 
In other words, TE is fully faithful on the spanning class 0 and hence 

fully faithful. By the usual argument, the Fourier-Mukai functor TE is 
then an equivalence. 

As in the untwisted case, one proves that the induced action on 
cohomology is the reflection a-+ a+ (a,vB(E)) · v 8 (E). Here, vB(E) 
is the Mukai vector vB (E) := ch8 (E)Jtd(X). 

Special cases of this construction are: 
- Let IID1 ~ C c X be a smooth rational curve. As H 2 ( C, 0(;) is 

trivial, its structure sheaf Oc and any twist Oc(k) can naturally be 
considered as a-twisted sheaves. The Mukai vector for k = -1 is given 
by v(Oc(-1)) = (0, [C],O). 

- In the untwisted case, the trivial line bundle 0 (and in fact any 
line bundle) provides an example of a spherical object. Its Mukai vector 
is (1, 0, 1) and has, in particular, a non-trivial degree zero component. 
It is the latter property that is of importance for the proof in the un
twisted case. So the original argument goes through if at least one 
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spherical object of non-trivial rank can be found. Unfortunately, spher
ical object (in particular those of positive rank) might not exist at all 
in the twisted case. In fact, any spherical object E has a Mukai vector 
vB (E) E Pic(X, B) of square (vB (E), vB (E)) = -2 and it is not difficult 
to find examples of rational B-fields B =/=- 0 such that such a vector does 
not exist. 

vi) Let £ E Pic( X) be a nef class with (£, £) = 0. If w = (0, £, s) is 
a primitive vector, then the moduli space M(w) of aB-twisted sheaves 
which are stable with respect to a generic polarization is non-empty. 
Indeed, in this case £ is a multiple n · f of a fibre class f of an elliptic 
fibration 1r : X -+ IP'1 . As gcd( n, s) = 1, there exists a stable rank n 
vector bundle of degree s on a smooth fibre of 1r which yields a point in 
M(w). 

If £ is the fibre class of an elliptic fibration X -+ IP'1 , we can think 
of M(w) as the relative Jacobian .J8 (X/IP'1)-+ !P'1 . 

In any case, M ( w) is a K3 surface and the universal twisted sheaf 
provides an equivalence ci> : Db(M(w), aB') ~ Db(X, aB) (for some B

field B' on M(w)) inducing a Hodge isometry ci>~',B: H(M(w), B', Z) ~ 
H(X, B, Z) that sends (0, 0, 1) tow. 

§2. The proof 

Let g : H(X, B, Z) c:,; H(X', B', Z) be an orientation preserving 
Hodge isometry. The Mukai vector of k(x) with x EX is vB(k(x)) = 
v(k(x)) = (0, 0, 1 ). We shall denote its image under g by w := g(O, 0, 1) = 

(r,£,s). 

1st step. In the first step we assume that r = 0 and £ = 0, i.e. 
g(O, 0, 1) = ±(0, 0, 1), and that furthermore g(1, 0, 0) = ±(1, 0, 0). By 
composing with -id we may actually assume g(O, 0, 1) = (0, 0, 1) and 
g(1,0,0) = (1,0,0). 

In particular, g preserves the grading of H and induces a Hodge 
isometry H 2 (X, Z) ~ H 2 (X', Z). Denote b := g(B)- B' E H 2 (X, Q). 
As g respects the Hodge structure, it maps CJ + B 1\ CJ to CJ 1 + B' 1\ CJ 1 

and, therefore (CJ, B) = (CJ', B'). On the other hand, as g is an isometry, 
one has (CJ, B) = (CJ', g(B)). Altogether this yields (CJ', b) = 0, i.e. bE 
Hl·l(X, Q). 

Now compose g with the orientation preserving Hodge isometry 
given by the identity H(X',B',Z) = H(X',g(B) = B' + b,Z). As 
the latter can be lifted to a Fourier-Mukai equivalence Db(X', aB') ~ 
Db(X', ag(B)) (see example iv)), it suffices to show that g viewed as a 
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Hodge isometry H(X, B, Z) = H(X, g(B), Z) can be lifted. So we may 
from now on assume that B' = g(B). 

As g is orientation preserving, its degree two component defines a 
Hodge isometry that maps the positive cone Cx c H 1,1 (X) onto the 
positive cone Cx' c H 1,1 (X'). 

If g maps an ample class to an ample class, then by the Global Torelli 
Theorem g can be lifted to an isomorphism f : X ~ X' which in turn 
yields a Fourier-Mukai equivalence ci> := f* : Db(X, aB) ~ Db(X', DB'). 

Obviously, with this definition ci>~,B' = g (use f*(B) = g(B) = B'). 
If g does not preserve ampleness, then the argument has to be modi

fied as follows: After a finite number of reflections sc, in hyperplanes or
thogonal to ( -2)-classes [Ci] we may assume that sc, ( ... sc, (h(a)) ... ) 
is an ample class. As the reflections sc, are induced by the twist functors 
Toe, (- 1) : Db(X', DB') ~ Db(X', DB') (see the explanations in the last 
section), the Hodge isometry g is induced by a Fourier-Mukai equiva
lence if and only if the composition sc, o ... sc, o g is. Thus, we have 
reduced the problem to the case already treated above. 

In the following steps we shall explain how the general case can be 
reduced to the case just considered. 

2nd step. Suppose g(O, 0, 1) = ±(0, 0, 1) but g(1, 0, 0) -j. ±(1, 0, 0). 
Again, by composing with -id we may reduce to g(O, 0, 1) = (0, 0, 1) 
and g(1, 0, 0) -1- (1, 0, 0). Then g(1, 0, 0) is necessarily of the form exp(b) 
for some b E H 2 (X', Z). Hence, we may compose g with the Hodge 
isometry exp(-b): H(X',B',Z) ~ H(X',B'- b,Z) (that preserves the 
orientation) which can be lifted to a Fourier-Mukai equivalence accord
ing to example iii). This reduces the problem to the situation studied 
in the previous step. 

3rd step. Suppose that r > 0. Using Theorem 0.2 one finds a K3 
surface Xo with a B-field Bo E H 2 (X0 , Ql) such that over X 0 x X' there 
exists a universal a :B,~ [8Ja B'-twisted sheaf parametrizing stable a'-twisted 

sheaves on X' with Mukai vector vB' = w. In particular, [ induces an 
b b B B' equivalence ci>s: D (Xo, DB0 ) ~ D (X', DB') and ci>s~' (0, 0, 1) = w. 

Thus, the composition g0 := (ci>:~,B')- 1 o g yields an orientation 

preserving (!) Hodge isometry H(X, B, Z) ~ H(X0 , B 0 ,7l). (The proof 
that the universal family of stable sheaves induces an orientation pre
serving Hodge isometry is analogous to the untwisted case. This seems 
to be widely known [3, 11]. For an explicit proof see [4].) Clearly, g can 
be lifted to a Fourier-Mukai equivalence if and only if g0 can. The latter 
follows from step one. 
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4th step. Suppose g is given with r < 0. Then compose with 
the orientation preserving Hodge isometry -id of H(X', B', Z) which 
is lifted to the shift functor E f---+ E[l]. Thus, it is enough to lift the 
composition -id o g which can be achieved according to step three. 

5th step The remaining case is r = 0 and e =I 0. One applies the 
construction of example vi) in Section 1 and proceeds as in step 3. The 
class e can be made nef by applying -id if necessary to make it effective 
(i.e. contained in the closure of the positive cone) and then composing 
it with reflections sc as in step one. 

§3. The various twisted categories and their Chern characters 

Let a E H 2 (X, Ox) be a Brauer class represented by a Cech cocycle 
{aiJk}· 

1. The abelian category Coh(X, { aijk}) of { aiJk}-twisted coherent 
sheaves only depends on the class a E H 2 (X, Ox). More precisely, for 
any other choice of a Cech-cocycle { a;Jk} representing a, there exists an 
equivalence 

where {Aij E O*(Uij)} satisfies a;1kaij~ = AiJ · Ajk · Aki· Clearly, {Aij} 
exists, as { aijk} and { a;jk} define the same Brauer class, but it is far 
from being unique. In other words, the above equivalence Ill { >.,J} is not 
canonical. In order to make this more precise, choose a second { -A;1}. 

Then 'Yij := -A;1 · -Aij1 can be viewed as the transition function of a 
holomorphic line bundle L>.v. With this notation one finds 

A very special case of this is the equivalence 

£ ® ( ) : Coh(X, { aijk}) ___,.. Coh(X, { ai1k}) 

that is induced by the tensor product with a holomorphic line bundle £ 
given by a cocycle {rij }. 

Despite this ambiguity in identifying these categories for different 
choices of the Cech-representative, Coh(X, { ai1k}) is often simply de
noted Coh(X, a). 

2. Now fix a B-field B E H 2 (X, Ql) together with a Cech-repre
sentative { BiJk }. The induced Brauer class a := exp(B0•2 ) E H 2 (X, Ox) 
is represented by the Cech-cocycle {aijk := exp(Bijk)}. 
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In [4] we introduced 

ch8 : Coh(X,{aijk}) -H*•*(X,Q). 

The construction makes use of a further choice of C00-functions aii 

with - Bijk = aij + ajk + aki, but the result does not depend on it. 
Indeed, by definition, ch8 ({Ei,<t?ij}) = ch({Ei,<t'ii ·exp(aij)}). Thus, if 
we pass from aij to aij + Cij with Cij + Cjk + cki = 0, then ch8 ( { Eij, <t'ii}) 
changes by exp(c1(.C)), where .C is given by the transition functions 
{exp(cij)}. But by the very definition of the first Chern class, one has 
c1(.C) = [{cij + Cjk + cki}] = 0. 

More generally, we may change the class B by a class bE H 2(X, Q) 
represented by {bijd· Suppose CtB+b = CtB E H 2 (X, ox-). We denote 
the Cech-representative exp(Bijk + bijk) by a~jk· As before, we write 
-Bijk = aij + ajk + aki and -bijk = Cij + Cjk + Cki· 

The Chern characters ch8 and ch8 +b fit into the following commu
tative diagram 

>IT {exp(-c;j)} 

Sh(X, { aiik}) Sh(X, { a~id) 

~~ 
H*(X,Q). 

Unfortunately, we cannot replace Sh by Coh, for exp(cij) are only 
differentiable functions. Nevertheless, there exist /3ij E 0* (Uij ), non
unique, with a~jk = aijk · (/3ij · /3jk · !3ki)· Using these one finds a 
commutative diagram 

Here, .C is the line bundle given by the transition functions /3ij · exp( Cij). 
It is not difficult to see that c1 (.C) E H 1·1 (X) whenever one has 

bE H 1•1(X,Q). Indeed, c1(.C) = {dlog(/3ij)} +b, which is of type (1, 1), 
as b is (1, 1) by assumption and the functions /3ij are holomorphi~. 

Thus, in this case there exists a holomorphic line bundle .C with 
c1(C) = c1(.C). Now consider the composition q, := (C* Q9 ( )) o \11{,8;;}: 

Coh(X,aB := {aijk}) ~ Coh(X,aB+b := {a~jk}), which is an exact 
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equivalence, and denote the derived one again by <P : Db(X,a:8 ) ~ 
Db(X, a:B+b)· Then the above calculation of the twisted Chern character 
implies that ~~,B+b = id. 

3. Consider again the abelian category Coh(X, { G:ijk} ). For any 
locally free G = {Gi,'Pij} E Coh(X,{a:ijk}) one defines an Azumaya 
algebra Aa := t:nd(Gv). The abelian category of left Aa-modules will 
be denoted Coh(Aa). An equivalence of abelian categories is given by 

Coh(X, {a:ijk})--- Coh(Aa), E ~ cv Q9 E. 

In [12] Yoshioka considers yet another abelian category Coh(X, Y) 
of certain coherent sheaves on a projective bundle Y ___, X realizing 
the Brauer class a:. As is explained in detail in [12], one again has 
an equivalence of abelian categories Coh(X, Y) ~ Coh(X,{a:ijk}). In 
order to define an appropriate notion of stability, Yoshioka defines a 
Hilbert polynomial for objects E E Coh(X, Y). It is straightforward to 
see that under the composition 

Coh(X, Y) ~ Coh(X, { a:ijk}) ~ Coh(Aa) 

his Hilbert polynomial corresponds to the usual Hilbert polynomial for 
sheaves FE Coh(Aa) viewed as Ox-modules. The additional choice of 
the locally free object Gin Coh(X, Y) or equivalently in Coh(X, { a:ijk}) 
needed to define the Hilbert polynomial in [12] enters this comparison 
via the equivalence Coh(X,{a:ijk}) ~ Coh(Aa). From here it is easy 
to see that the stability conditions considered in [10, 12] are actually 
equivalent. 

We would like to define a twisted Chern character for objects in 
Coh(Aa). Of course, as any FE Coh(Aa) is in particular an ordinary 
sheaf, ch( F) is well defined. In order to define something that takes into 
account the Aa-module structure, one fixes B = {Bijk} and assumes 
G:ijk = exp(Bijk)· Then we introduce 

B H* (X tn~) F ch(F) ch0 : Coh(Aa)--- '"", ~ ch B(Gv)· 

. Note that a priori the definition depends on B and G, but the depen
dence on the latter is well-behaved as will be explained shortly. 

Here are the main compatibilities for this new Chern character: 
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i) The following diagram is commutative: 

Coh(X, { aijk}) ______ .,.. Coh(Aa) 

~A 
H*(X,Q). 

Indeed, ch(Gv@ E)= ch- 8 (Gv). ch8 (E). 
ii) Let H be a locally free coherent sheaf and G' := G@ H E 

Coh(X, {aijk} ). Then the natural equivalence Coh(Aa)----> Coh(Aa' ), 
p.,._. Hv@ F fits in the commutative diagram 

Coh(Aa) ------+ Coh(Aa') 

~~ 
H*(X,Q). 

This roughly says that the new Chern character is independent of G. 
iii) If E 1 , E 2 E Coh(X, { aijk}) and Fi := Gv ® Ei E Coh(Aa) 

then x(E1,E2) := 'L:(-l)idimExti(E1 ,E2) is well-defined and equals 
x(Fr,F2) := 'L:(-l)idimExt~0 (FI,F2)· Both expressions can be com
puted in terms of the twisted Chern characters introduced above and 
the Mukai pairing. Concretely, 

Here ( , ) denotes the generalized Mukai pairing and 

(Be aware of the different sign conventions for K3 surfaces and the gen
eral case.) 

4. There is yet another way to define a twisted Chern character 
which is implicitly used in [12]. We use the above notations and de-

fine cha: Coh(Aa)----> H*(X,Q) by cha(F) :=~'where F and 
ch(Ac) 

Aa are considered as ordinary Ox-modules. Using the natural iden
tifications explained earlier, namely Coh(X, Y) ~ Coh(X, { Ctijk}) ~ 
Coh(Aa), this Chern character can also be viewed as a Chern character 
on the other abelian categories. 

Although the definition cha seems very natural, it does not behave 
nicely under change of G. More precisely, in general chae;H(Hv@ F) =1-
cha(F). 
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Fortunately, the situation is less critical for K3 surfaces. Here, the 
relation between che and ch~ can be described explicitly and using the 
results in 3. one deduces from this a formula for the change of che 
under G f---+ G 159 H. In fact, it is straightforward to see that the following 
diagram commutes: 

Coh(Ae) 

y~ 
H*(X,Q) --------i>-H*(X,Q). 

exp(-Bu) 

Here Be:= ~lig}, where cf(G) is the degree two part of ch8 (G). Note 
that B and Be define the same Brauer class. In particular, the Hodge 
structures H*(X, B, Z) and H*(X, Be, Z) are isomorphic. 

This relation between ch~ and che can be used to compare the two 
versions of the cohomogical Fourier-Mukai transform in [4] and [12]. 
With v8 := ch8 · Jtd(X) and ve := che · Jtd(X) and the implicit 
identification Coh(X, a) = Coh(Ae) the following diagram is commu
tative: 

Db(X, aB) ________ <I> ______ ~ Db(X', a') 

~ 7 
H*(X, Q) _____,.. H*(X', Q) 

~;) e~ 
B' v 

H*(X, B, Z) ___________ _____,.. H*(X', B', Z). 
cp~·B' 

Here, the central isomorphism H* (X, Q) ~ H* (X', Q) is the correspon
dence defined by vev 0 e,(E) with£ E Db(X x X', aJ31 ~ aB') the kernel 
defining~. 
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