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The £P resolvents for elliptic systems of divergence 
form 

Yoichi Miyazaki 

Abstract. 

We consider elliptic systems of divegence form in JRn under the 
limited smoothness assumptions on the coefficients. We construct £P 
resolvents with evaluation of their operator norms, and derive. the 
Gaussian bounds for heat kernels and estimates for resolvent kernels. 
These results extend those for single operators. 

§1. Introduction 

In [5] we considered a single elliptic operator of order 2m in diver
gence form, which is defined in IR.n and has non-smooth coefficients, in 
the framework of LP Sobolev spaces and constructed the resolvents. In 
[6, 7] we extended this result to an operator defined in a general domain 
with the Dirichlet boundary condition. Furthermore, in [7] we showed 
that the heat kernels and the resolvent kernels are differentiable (we ex
clude the diagonal set for the resolvent kernels) up to order m- 1 +a for 
any a E (0, 1) and evaluated their derivatives. These results correspond 
to the results by Tanabe [8] for single operators of non-divergence form. 

The purpose of this paper is to extend the above results to elliptic 
systems defined in JR_n. 

Let x = (x1, ... , Xn) be a generic point in JR_n, a: = (o:t, ... , O:n) a 
multi-index with length lo:l = 0:1 + · · · + O:n, and 
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a 
D1· = -Ff- (j = l, ... ,n). 
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Let N ~ 1 be an integer. We consider the elliptic operator in diver
gence form 

(1.1) Au(x) = D0 (aaf3(x)Df3u(x)) 

in IR.n, where a0 13(x) is an N x N matrix (a~13 (x)h-s_i5_N, 1"5_j"5_N and 
u(x) = t(u1(x), ... ,uN(x)). We allow the coefficients to be complex 
valued, whereas many literature such as [2, 4] deals with systems with 
real-valued coefficients. We denote by a(x, e) the principal symbol of A: 

a(x,e)= L aaf3(x)ea+f3, xEIR.n,eEJR.n. 
lal=lf31=m 

Throughout this paper we assume the following. 
(H1) All the coefficients a~13 are measurable and bounded in IR.n. 

(H2) The coefficients a~13 with lal = 1.81 = m are uniformly contin
uous in IR.n. 

(H3) The operator A satisfies the Legendre-Hadamard condition, 
that is, there exists 8A > 0 such that 

for any X E JR.n, e E JR.n and 'TJ = t('T/1, ... ,'TJN) E JR.N. 
Let 1 ::::; p::::; oo and T E JR.. We denote by LP = LP(IR.n) the space of 

p-integrable functions and define Hr,p by 

Hr,p = Hr,P(JR.n) = {! E S'(JR.n): (Dr f E LP(JR.n)} 

with norm llullw·" = II(DruiiL"' where(e) = (1 + lel 2 ) 112 . 

For a Banach space X we define X N to be the set of all u 
t(u1, ... ,uN) such that Uj EX for 1::::; j::::; N with norm llullxN 
maxl"S_j"S_N llujllx, and xNxN theset of all N X N matrices a= (aij)i,j 
such that aij E X for 1 ::::; i ::::; N, 1 ::::; j ::::; N with norm llallxNxN = 
maxl-s_i5_N,l5_j"5_N llaiJIIx- When X= JR., we simply write lal for llallxNxN. 

For an integer k ~ 1 it is sometimes convenient to write f E 
(H-k,p)N as 

(1.2) f = L D0 Ja, fa E (£P)N 
lai"S_k 

and note that the norm inf Llal"5.k llfallcL")N is equivalent to the norm 
llfllcH-k,,)N, where the infimum is taken over all the expressions in (1.2). 
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We mean by T : X -+ Y that T is a bounded linear operator from 
a Banach space X to a Banach space Y. 

Let 1 < p < oo. Since Da : (H7 ·P)N -+ (HT-Ial,p)N for T E ffi. and 
aa{3 : (LP)N-+ (LP)N, we can regard A in (1.1) as a bounded operator 
from (Hm,p)N to (H-m,p)N. When we want to stress p, we write A as 
Ap. So we have 

A= Ap = L Daaa{3D{3: (Hm,p)N-+ (H-m,p)N. 

lal,lf31:'0m 

We often use the following notations: 

MA = max llaaf3II(L=)NxN, 
lal, lf31:'0m 

WA(E) = max max 
1:'0i::ON, 1:'0j::ON lal=lf31=m 

sup{la~{3(x)- a~{3(y)l: x,y E ffi.n, lx- Yl::::; E}, 

A(R,B) = {>. E C: 1>-12': R, B::::; arg>.::::; 21r- B} 

for E > 0' R > 0 and 0 < e < 7r. 
Let /-lj(x, ~), 1 ::::; j ::::; N be all the eigenvalues of a(x, 0- By (H1) 

we have IImf.lj(x,~)l::::; Mol~l 2m with some constant M0 depending only 
on n, m, N and MA. On the other hand, (H3) implies Re /-lj(x, ~) > 
c5 A l~l 2m. Therefore we conclude that 

(1.3) 

where K:A = arctan (M0/c5A) E (0, 1r /2). In [5, 6] we assumed a(x, ~) 2': 
c5AI~I 2m for a single operator, which is a stronger ellipticity condition 
than (H3). In this case we can take K:A = 0. 

§2. Main results 

We are now ready to state the main theorems. The first theorem is 
concerned with the estimates of the type 

(2.1) II(A ')-111 . <KI'I-H(i+j)/2m p- /\ (H-'·P)N->(HJ,p)N _ /\ 

for 0::::; i::::; m and 0::::; j::::; m with some K > 0. 

Theorem 2.1. Let p E (1, oo) and e E (K:A, 7r/2). Then there exist 
R = R(B,(A,WA), K1 = K1(p,B,(A) and K2 = K2(B,(A) such that for 
>. E A(R, B) the resolvent (Ap ->.)-1 exists and (2.1) holds for 0::::; i::::; m 
and 0::::; j::::; m with K = K 1 , and for 0::::; i::::; m- 1 and 0::::; j::::; m -1 
with K = K2. 
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Moreover the resolvents are consistent in the sense that 

when A E A(R, 0) for any p, q E (1, oo). 

For p E (1, oo) we define the operator A(p) in (LP)N by 

D(A(p)) = {u E (Hm,p)N: Apu E (LP)N}, 

A(p)u = Apu for u E D(A(p))· 

It follows from Lemma 3.1 in Section 3 that D(A(p)) is dense in (Hm,p)N, 

A(p) is a closed operator in (LP)N, and (A(p))* = (A*)(p•)• where p* = 
pf(p- 1) and A* is the dual operator of A. 

Let h E IRn. We define the difference operators tlh, Ll~1 ) and Ll~2) 
by tlhu(x) = u(x +h) - u(x), Ll~1 ) F(x, y) = F(x + h, y) - F(x, y) 

and Ll~) F(x, y) = F(x, y +h) - F(x, y), respectively, for vector-valued 
functions u of x E IRn and F of (x, y) E IRn x IRn. We set 

tl = {(x,x): x E IRn}. 

FortE C \ {0}, x E IRn and C > 0 we set 

Theorem 2.2. Let p E (1, oo). Then the operator -A(p) generates 
an analytic semigroup e-tAcpJ of angle 1r /2 - KA with kernel U(t, x, y) 
which is independent of p and satisfies the following estimates. For any 
c: E (0,7r/2- KA) and CT E (0,1) there exist C1 = Cl(c,(A), C2 = 
C2(c:,(A), c3 = C3(c:,(A,WA), q = Cf(c:,CT,(A), c~ = q(c:,CT,(A) and 
q = q(c:,CT,(A,WA) such that for lal < m, 1!11 < m and largtl < 
1rj2- KA- c: we have 

(2.3) ltl~i)a~aeu(t,x,y)l 

:::; c~ 1t1-(n+l<>l+li3l+u)/2m<Pm(t, X - y; C~)eC~ItllhiO" 

fori E {1, 2}, hE IRn and (x, y) E IRn X IRn with 2lhl ::=; lx- Yl· 
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Theorem 2.2 extends the result for p = 2 obtained by Auscher and 
Qafsaoui (1], who used the method of Morrey-Campanato spaces. 

For x E !Rn, >. E C, T > 0 and C > 0 we set 

{ 
l>.l-l+r/2m exp( -CI>.I1/2mlxl) 

w~(x, >.;C) = (1 +log+ l>-l 112mlxl) exp( -CI>.I112mlxl) 
lxl2m-r exp( -CI>.I1/2mlxl) 

where log+ s = max{O, logs} for s > 0. 

(r <2m) 

(r =2m) 

(r >2m), 

Theorem 2.3. Let p E (1, oo) and 0 E (KA, 7r/2). Then there exists 
R = R(O, (A,WA) such that for>. E A(R, 0) the resolvent (A(p) - >.)-1 

exists and it has a kernel G;>..(x, y) which is independent ofp and satisfies 
the following estimates. For any a E (0, 1) there exist 0 1 = C1(0, (A), 
C2 = C2(0, (A), Of = Of (a, 0, (A) and q = CHa, 0, (A) such that for 
lad < m, I,BI < m and >. E A(R, 0) we have. 

(2.4) la;'aec:>..(x, y)l ::; c 1 w~+I<>I+I.BI(x- y, >.; c 2) 

for (x, y) E !Rn X IR.n \ ~' and 

(2.5) ~~~) a;'aec:>..(x, y)l ::; c~ w~+I<>I+I.BI+u(x- y, >.; c~)lhi<T 

fori E {1, 2}, hE !Rn and (x, y) E !Rn X IR.n \ ~ with 2lhl :$ lx- Yl· 
Moreover 8;'8eG:>..(x, y) is continuous on~ if n +lad+ I,BI <2m. 

§3. Partial proof of Theorem 2.1 

Since T = (TiJ)i,J : XN -t yN and Tij : X -t Y for 1 :$ i :$ N, 
1 :$ j :$ N are equivalent, most properties ofT can be reduced to those 
of Tij· This enables us to obtain the main results along the same line as 
in the case of single operators. We first derive Lemma 3.1 below, which 
is weaker than Theorem 2.1 for the constants Rand K may depend on 
p. Then Lemma 3.1leads to Thorem 2.2, from which Theorems 2.1 and 
2.3 follow. 

In the following we give only the outline of the proofs except Lemma 
3.3 whose proof is a little complicated when N ~ 2. The details for the 
case of single operaters are found in (5, 6, 7]. 

Lemma 3.1. Let p E (1, oo) and 0 E (KA, 7r/2). Then there exist 
Rp = R(p, 0, (A, WA) and K = K(p, 0, (A) such that for>. E A(Rp, 0) the 
resolvent (Ap- >.)- 1 exists and (2.1) holds for 0 :$ i :$ m and 0 :$ j :$ m. 

Moreover the resolvents are consistent in the sense of Theorem 2.1. 

The proof of Lemma 3.1 is given after some preparation. 
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Lemma 3.2 ([7]). Let e E (/\;A, Jr/2). Then there exists a constant 
C = C(e, /\;A) > 0 such that 

is -.AI ~ C(lsi + I.AI) 

for I argsl::::: /\;A and e::::: arg.-\::::: 27r- e. 

Lemma 3.3. Letp E (1,oo), e E (/'\;A,7r/2) andfixxo E lRn. Then 
for .-\ E A(1, e) the operator a(x0 , D) - .-\ : (Hm,p)N -+ (H-m,p)N has 
an inverse and there exists K = K(p, e, (A) such that 

for 0 :S:: i :S:: m and 0 :S:: j :S:: m. 

Proof. Set b;..(~) = (b>-.ij(~))i,j = (a(xo,~)- .>.)-1 . Then 

b>-.ij(O = (det (a(xo, ~)- .>.))- 1 C>-.ji(~), 

where C>-.ij(~) is (i, j)-cofactor of the matrix a(x0 , 0- .>.. By (H1), (1.3), 
Lemma 3.2 and ReJLj(x,~) ~ <5AI~I 2m we have 

ic>-.ij(~)l :S:: C(l~l 2m + I.AI)N-l, 

jdet (a(xo, 0- >.)I = I .A- JLI (xo, ~)I·· ·I .A- JLN(xo, ~)I 

~ C(l~l 2m + j.-\I)N. 

Since afb;..(~) is written in the form 

L Caal ... akb;..(~). a( a(xo, ~) ... b;..(~). a( a(xo, ~). b;..(~) 
a 1 +···+ak=a 

with 1 :S:: jaJj :S:: 2m (j = 1, ... , k), we have 

lafb;..(~)l::::: c.L: l~l2m-Ja 1 1 •• ·l~l2m-Jakl(l~l2m + i.>.l)-k-1 

:S:: C(j~j2m + j.-\j)-l-jcrj/2m. 

So we get 

l~ll'llal {~a+,Bb;..(~)}~ :S:: Cj.-\j-l+(jaj+J,6)/2m 

for iai :S:: m, 1!31 :S:: m and hi :S:: [n/2] + 1. Finally, by applying Mihlin's 
multiplier theorem to the operator D"'b;..(D)D,B we get the lemma. 0 
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Proof of Lemma 3.1. For c E (0, 1) we take a family of functions 
{ 1JsE ( x)} sEZn in C0 (JR.n) such that 

SUPP1JsE C {x E lR.n: lx- ssl < s}, 

IDn1JsE(x)l :S Cn,mc-lnl for lad :S 2m, 

#{s E zn: 1JsE(x) :j:c 0} :S 2n for any X E JR.n. 

We define a parametrix for A - A by 

P>. = L 1JsEPs>.1JsE, 
sEZn 

Using the Leibniz formula, we have 

where I denotes the identity and 

lnl+li31<2m 

Ps>. = (a(ss,D)- A)- 1 . 

h = L L chi3DQaa-y (2:: 1J~I-!3) D13 Ps>.1JsE)' 
lnl=bl=m /3<-y 

J3 = L Da (L(aa/3- aa;3(cs))1JsED13 Ps>.1JsE), 
lal=li31=m s 

J4 = L L Co-yaDa (L a-y;3(ss)11~I-a) D13 Ps>.1JsE) 
bl=li31=m a<-y s 

with some constants Co-ya and C1-y/3· Careful calculation yields 

IIP>.R~ II (H-•,p)N --->(Hi,p)N 

::; KoKf(wA(vfns) + s-11AI-1/2m)kiAI-l+(i+j)/2m 

for 0::; i::; m, 0::; j::; m and A E A(s-2m,e). So if we takes E (0, 1) 
and R > 0 so that 

then for A E A(R,8) the series ~~0 (-1)kP>.R~ converges as an opera
tor (H-m·p)N --+ (Hm,p)N and it is a right inverse of A- A. The duality 
aurgument shows that the right inverse is exactly (A- A)-1. 

We also get the consistency of resolvents, since (A- A)-1 consists 
of three kinds of operators such as Da, Fourier multipliers (a(x0 , D) -
A)-1, and multiplication operators by functions in (L 00 )N, which are 
consistent in the sense of Theorem 2.1. 0 
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§4. Proof of Theorem 2.2 

Based on Lemma 3.1, we can prove Theorem 2.2. It is seen from 
(2.1) that -A(p) generates an analytic semigroup of angle 1rj2- ~A· 

As for the heat kernel estimate, we shall first consider the case of 
p = 2. By the Sobolev embedding theorem and Lemma 3.1 we have 
range (A(v)- A)-1 c (LP)N n (Lq)N for p, q with 1 < p < q, p-1- q-1 < 
m/n and 

II (A ')-111 < Cl 'l-l+(n/2m)(1/p-1/q) (p) - A (L'')N -+(L•)N _ A 

for A E A(Rv,(l) nA(Rq,O) with(} E (~A,7f/2). 
Given c E (0, 2-1(1f/2- ~A)) and a E (0, 1), we take a sequence 

{Pj }j=1 satisfying 

2 = Pk < Pk-1 < · · · < P1 =max{ 1 ~,., 2}, -1 -1 I Pj - Pj-1 < m n, 

and assume that A E A(~A + c, R) and largtl < 7f/2- ~A- 2c with 
R = max{Rpu ... , Rpk }, where each RPi, j = 1, ... , k is the constant 
defined for p =Pi and (} = ~A + c in Lemma 3.1. Then we have 

and therefore 

This combined with the formula 

e-tA(2) = 21rA Jr e-t>.(A<2l - A)-1 dA 

= ~;~t1-k fr e-t>.(A(2) - A)-k dA, 

where r is a path in A(~A + c, R), gives 

lle-tA(2) II (£2)N -+(L=)N :::; Clt1-n/4me(sin(~<A +e))-1 Rltl. 

Applying the kernel theorem to e-2tA<2> = e-tA<2> (e-tA(2> )*,we obtain 

The Gaussian estimate can be derived by Davies' method of exponential 
perturbation (cf (3]). To this end we set A¢= e-<i>Ae<i>, where ¢(x) = 
¢(x; ry, Ro) is a coo function of x with parameters 'T/ E IR.n and Ro > 0 
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satisfying ¢>(x) = ex'1 for lxl ~ Ro and EP·¢> E L00 (1Rn) for lal ~ m. 
Then the heat kernel U¢(t, x, y) for A¢ satisfies the estimate similar to 
(4.1). So the relation 

U(t, x, y) = e(x-y)ryU¢(t, x, y) 

for lxl ~ Ro and IYI ~ Ro yields the Gaussian bounds. 
We can get the estimates for the derivatives of U(t, x, y) and their 

Holder norms by using the fact (A(pt)- >.)-1 : (£Pl )N --> (Bm-l+u)N in 
the above argument, where Bm-l+u denotes the Holder space of order 
m-1+a. 

Finally we shall consider the case of p =1- 2. The Gaussian bounds 
yield supy IJU(t, ·, y)IIC£1)NxN < oo and supx IIU(t, x, ·)IIC£1)NxN < oo. 
So the integral operator with kernel U(t, x, y) is a bounded operator in 
(LP)N. Hence the consistency of resolvents shows that e-tA<P> has the 
same integral kernel as e-tA<2>. 

§5. Proof of Theorem 2.3 

By Theorem 2.2 we have lle-tA<P> II(LP)N--+(LP)N ~ CeRiti with some 
C and R, and therefore 

(A(p)- >.)-1 = 1oo et.\e-tA<P> dt, >. < -R. 

Let 0 E (0, 2-1 (rr/2- "'A)). Deforming the integral path and using 
analytic continuation, we get the formulae such as 

(5.1) 

for>. with I .AI > (sin0)-1 Rand "'A +20 ~ arg >. ~ rr, where Lois the half 
line which runs from 0 to ooev'-IC1r 12-"'A -B). Then the estimate for the 
resolvent kernel G.\(x, y) follows from (5.1) and the Gaussian bounds. 

§6. Proof of Theorem 2.1 

Let p E (1,oo) and 0 E (i'i:A,rr/2). By Theorem 2.2 and (5.1) we 
have A(R0 , 0) C p(A(p)), the resolvent set of A(P)' with some Ro = 
R0(0, (A, WA)· On the other hand, by Lemma 3.1 we have A(R1. 0) c 
p(Ap) with some R1 = R1(p,O,(A,WA)· Based on these inclusions and 
the resolvent equation, we can take the constant R independent of p in 
Theorem 2.1. Furthermore, by using (5.1) and the Gaussian bounds we 
can also take the constant K 2 independent of pin Theorem 2.1. 
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