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On a covering property of rarefied sets at infnity in 
a cone 

Ikuko Miyamoto and Hidenobu Yosida 

Abstract. 

This paper gives a quantitative property of rarefied sets at oo 
of a cone. The proof is based on the fact in which the estimations 
of Green potential and Poisson integral with measures are connected 
with a kind of densities of the measures modified from the measures. 

§1. Introduction 

Let R and R+ be the set of all real numbers and the set of all 
positive real numbers, respectively. We denote by Rn (n ~ 2) the n
dimensional Euclidean space. A point in Rn is denoted by P = (X, y), 
X = ( x1, x2, ... , Xn-1). The Euclidean distance of two points P and Q 
in Rn is denoted by IP- Ql. Also IP- 01 with the origin 0 of Rn is 
simply denoted by IPI· The boundary and the closure of a set Sin Rn 
are denoted by aS and S, respectively. 

We introduce a system of spherical coordinates (r, 8), 8 = (01 , 

02, ... ,Bn-1), in Rn which are related to cartesian coordinates (x1, 
X2, .•. , Xn-1, y) by y = rcos01. 

The unit sphere and the upper half unit sphere are denoted by sn-1 

and s~- 1 , respectively. For simplicity, a point (1, 8) on sn-1 and the 
set {8;(1,8) E 0} for a set 0, 0 C sn- 1 , are often identified with 
8 and n, respectively. For two sets A c R+ and n c sn-1 , the set 
{(r, 8) E Rn; r E A, (1, 8) E 0} in Rn is simply denoted by Ax 0. In 
particular, the half-space R+ x s~- 1 = {(X, y) E Rn; y > 0} will be 
denoted by T n. 
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Let n be a domain on sn-1 (n;:::: 2) with smooth boundary. Consider 
the Dirichlet problem 

(An +r)f = 0 on n, 
f = 0 on an, 

where An is the spherical part of the Laplace operator ~n 

n -1 8 82 _ 2 
~n = ---;:) + -;:}2 + r An. 

r ur ur 

We denote the least positive eigenvalue of this boundary value problem 
by Tn and the normalized positive eigenfunction corresponding to Tn by 
fn(8). We denote the solutions of the equation t2 + (n- 2)t- Tn = 0 
by an, -f3n (an, f3n > 0). If n = s~-1 , then an = 1, f3n = n- 1 and 
fn(8) = (2ns;;: 1 ) 112 cos fh, where Sn is the surface area 27rn/2{f(n/2)} - 1 

of sn-1 . 

To simplify our consideration in the following, we shall assume that 
if n;:::: 3, then n is a C 2·<>-domain (0 <a< 1) on sn-1 (e.g. see Gilbarg 
and Trudinger [7, pp.88-89] for the definition of C 2•<>-domain). 

By Cn(n), we denote the set R+ X n in Rn with the domain non 
sn-1 ( n ;:::: 2). We call it a cone. Then T n is a special cone obtained by 
putting n = s~- 1 . 

It is known that the Martin boundary of Cn(n) is the set 8Cn(D) U 
{ oo }, and the Martin functions at oo and at 0 with respect to a ref
erence point chosen suitably are given by K(P; oo, !1) = r<>n fn(8) and 
K(P; 0, !1) = ~r-f3n fn(8) (P = (r, 8) E Cn(D)), respectively, where ~ 
is a positive number. 

Let E be a bounded subset of Cn(O). Then R~(-;oo,n) is bounded 

on Cn(D) and hence the greatest harmonic minorant of R~(-;oo,n) is 

zero. When by Gn(P, Q) (P E Cn(n), Q E Cn(O)) and Gn~(P) (P E 

Cn(O)) we denote the Green function of Cn(D) and the Green potential 
with a positive measure~ on Cn(D), respectively, we see from the Riesz 
decomposition theorem that there exists a unique positive measure AE 
on Cn(O) such that 

AE n 
RK(~;oo,n)(P) = G )..g(P) (P E Cn(O)). 

Let E be a subset of Cn(O) and Ek = Enh (k = 0, 1, 2, ... ), where 
h = {P = (r, 8) ERn; 2k :<:; r < 2k+1 }. A subset E of Cn(O) is said to 
be rarefied at oo with respect to Cn(D), if 

00 

LTkf3n),.Ek(Cn(O)) < +oo. 
k=O 
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Remark 1. This definition of rarefied sets was given by Essen and 
Jackson [4] for sets .in the half-space. This exceptional sets were origi
nally investigated in Ahlfors and Heins [1] and Hayman [8] in connection 
with the regularity of value distribution of subharmonic functions in the 
half plane. 

As in Tn (Essen and Jackson [4, Remark 4.4], Aikawa and Essen [2, 
Definition 12.4, p.74]) and in T 2 (Hayman [9, p.474]), we proved 

Theorem A (Miyamoto and Yoshida [10, Theorem 2]). A subset 
E of Cn(O) is rarefied at oo with respect to Cn(O) if and only if there 
exists a positive superharmonic function v(P) in Cn(O) such that 

inf v(P) = 0 
PEC,(O) K(P; oo, f2) 

and E C {P = (r, 8) E Cn(f2); v(P) ~ r"'0 }. 

In this paper, we shall give a quantitative property of rarefied sets at 
oo with respect to Cn(O) (Theorem 2), which extends a result obtained 
by Essen, Jackson and Rippon [5] with respect to Tn and complements 
Azarin's result (Corollary 1). It follows from two results. One is another 
characterization of rarefied sets at oo with respect to Cn(O) (Theorem 
A). The other is the fact that the value distributions of Green potential 
and Poisson integral with respect to any positive measure on Cn(O) and 
8Cn(f2) are connected with a kind of densities of the measures modified 
from the measures, respectively (Theorem 1). Our proof is completely 
different from the way used by Essen, Jackson and Rippon [5] and is 
essentially based on Hayman [8], Usakova [12] and Azarin [3]. 

In order to avoid complexity of our proofs, we shall assume n ~ 3. 
All our results in this paper are true, even if n = 2. 

§2. Statements of results 

In the following we denote the sets I X n and I X an with an interval 
I on R by Cn(f2; I) and Sn(O; I). By Sn(O) we denote Sn(O; (0, +oo)) 
which is 8Cn(f2) - {0}. We shall also denote a ball in Rn having a 
center P and a radius r by B(P, r). 

Let m be any positive measure on R n. Let q and c be two positive 
numbers. When for each P = (r,8) ERn- {0} we set 

M(P;m,q)= sup 
0<p:o:;2- 1 r 

m(B(P,p)) 
pq 
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the set {P ERn- {0}; M(P;m,q)rq > e} is denoted by w(.s;m,q). 

Remark 2. If m({P}) > 0 (P =F 0), then M(P;m, q) = +oo for any 
positive number q and hence {P ERn- {0}; m( {P}) > 0} C w(.s; m, q) 
for any positive number .s. 

Let p, be any positive measure on Cn(n) such that G0 p,(P) ¢. +oo 
(P E Cn(O)). The positive measure m~1 ) on Rn is defined by 

(Q = (t, cl>) E Cn(n; (1, +oo))) 
(Q ERn- Cn(O; (1, +oo))). 

Let v be any positive measure on Sn(O) such that the Poisson integral 

where 8 8 denotes the differentiation at Q along the inward normal into 
nq 

Cn(O). We define the positive measure mS2) on Rn by 

(Q = (t,cl>) E Sn(O; (1,+oo))) 
(Q ERn- Sn(O; (1, +oo))). 

Remark 3. We remark from Miyamoto and Yoshida [10, (i) of Lemma 
1] (resp. [10, (i) of Lemma 4]) that the total mass of m~1 ) (resp. mS2)) 

is finite. 

The following Theorem 1 gives a way to estimate the Green po
tential and the Poisson integral with measures on Cn(O) and Sn(O), 
respectively. 

Theorem 1. Let p, and v be two positive measures on Cn(O) and 
Sn(O) such that G0 p,(P) ¢. +oo and IT0 v(P) ¢. +oo (P E Cn(O)), 
respectively. Then for a sufficiently large L and a sufficiently small .s we 
have 

(2.1) {P = (r,8) E Cn(O; (L,+oo)); G0 p,(P);::: r 0 n} 

c w(.s· m(l) n- 1) 
' p. ' ' 
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As in Tn (Essen, Jackson and Rippon [5, p.397]) we have the fol
lowing result for rarefied sets in Cn(O) by using Theorems A and 1. 

Theorem 2. If a subset E of Cn(O) is rarefied at oo with re
spect to Cn(O), then E is covered by a sequence of balls Bk (k=1,2,3, .. .) 
satisfying 

00 

(2.3) ~)rk/ Rk)n- 1 < +oo, 
k=1 

where rk is the radius of Bk and Rk is the distance between the origin 
and the center of Bk· 

Remark 4. By giving an example we shall show that the reverse of 
Theorem 2 is not true. When the radius rk of a ball Bk and the distance 
Rk between the origin and the center of it are given by rk 
= 3 · 2k- 1k- ,'_2, Rk = 3 · 2k- 1 (k = 1, 2, 3, ... ),they satisfy 

00 00 

~)rk/ Rk)n-1 = L k-(n-1)/(n-2) < +oo. 
k=1 k=1 

Let Cn (0') be a subcone of Cn (0) i.e. 0' c 0. Suppose that these balls 
are so located: there is an integer k0 such that Bk C Cn(O'), rk/ Rk 
< 2- 1 ( k ::;:: ko). Then the set E = U~ko B k is not rarefied. This proof 
will be given at the end in the last section 4. 

From this Theorem 2 and Miyamoto and Yoshida [10, Theorem 3], 
we immediately have the following corollary. 

Corollay 1 (Azarin [3, Theorem 2]). Let v(P) be a positive su
perharmonic function on Cn(O). Then v(P)ran uniformly converges to 
c(v)fn(8) as r----> +oo outside a set which is covered by a sequence of 
balls Bk satisfying (2.3), where 

v(P) 
c(v) = inf 

PEC,(!!) K(P; oo, 0) 

§3. Proof of Theorem 1 

All constants appearing in the expressions in the following all sec
tions will be always written A, because we do not need to specify them. 
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Inclusion (2.1) is an analogous result to [11, Theorem 2]. Hence we 
shall prove only (2.2) of Theorem 1. To do it, we need two inequalities 
which follow from Azarin [3, Lemma 1] (also see Essen and Lewis [6, 
Lemma 2]) and Azarin [3, Lemma 4 and Remark]: 

(3.1) 

(3.2) 
a a 

(resp.~Gn(P, Q) ~ Ar<>nci3n-l fn(8)~ fn(<I>)) 
unQ un~ 

for any P = (r, 8) E Cn(D) and any Q = (t, <I>) E Cn(D) satisfying 
0 < tjr ~ 4/5 (resp. 0 < r/t ~ 4/5); 

(3.3) ~Gn(P Q) <A fn(8)~ fn(<I>) +A rfn(8)~ fn(<I>) 
anQ ' - tn-1 IP- Qln 

for any P = (r, 8) E Cn(D) and any Q = (t, <I>) E Sn(D; ((4/5)r, (5/4)r]). 

Poof of Theorem 1. If we can show that for a sufficiently large L 
and a sufficiently small positive number E, 

then we can conclude (2.2). 
For any point P = (r, 8) E Cn(D), write rrnv(P) as the sum 

(3.5) ITnv(P) = h(P) + h(P) + h(P), 

where 

Ii(P) = { a a Gn(P, Q)dv(Q) (i = 1, 2, 3), 
Js,(n;J,) nQ 

where J1 = (0, (4/5)r], h = ((4/5)r, (5/4)r]) and h = ((5/4)r, oo). 
From (3.1) and the boundedness of fn(8) (8 E !1) we first have 

I1 (P) ~ Ar<>n(ir)-(<>n+i3ol { t<>n-l~fn(<I>)dv(Q), 
5 Js,(n; (O,trlJ an<I> 

and hence 

(3.6) II(P) = o(1)r<>o (r----> oo) 

by Miyamoto and Yoshida [10, (ii) of Lemma 4]. 
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We similarly have 

from (3.2) and hence 

(3.7) !3(P) = o(l)r0 n (r---. oo) 

by Remark 3. 
For I2(P) we have 

(3.8) 

where 
I (P) <A { fn(8)tf3n+l dm(2)(Q) 

2,1 - J.~ tn-l v ' 
Sn(O; (!r,£r]) 

h2(P) =A r . 4 5 tf3{;l~fn~8) dmS2)(Q). 
Jsn(O, (-5 r, 4 r]) J QJ 

Since fn(8) is bounded on n, we first have 

from Remark 3. 
We shall estimate J2,2(P). Take a sufficiently small positive number 

K such that Sn(O; ((4/5)r, (5/4)r]) C B(P, 2-1r) for any P = (r, 8) E 

A(K), where 

A(K) = {Q = (t,<I>) E Cn(O); inf J(l,<I>)- (l,Z)J :s; K, 0 < t < +oo} 
ZE80 

and divide Cn(O) into two sets A(K) and Cn(O)- A(K). 
If P = (r, 8) E Cn(O)- A(K), then there exists a positive constant 

K 1 such that JP- Ql > K 1T for any Q E Sn(O), and hence 

(3.10) 12,2(P) :s; ArCtfl r . 4 dmS2l(Q) = o(l)r0 fl (r ___. +oo) 
Jsn(O, ( 5 r,+oo)) 

from Remark 3. 
We shall consider the case where P E A(K). Now put 

Wi(P) = {Q E Sn(O; ((4/5)r, (5/4)r]); 2i-lJ(P) :s; JP- QJ < 2iJ(P)}, 
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where 8(P) = infQE8Cn(S1) IP- Ql. Since Sn(D) n {Q ERn; IP- Ql 
< 8(P)} = 0, we have 

I (p) = ~i(P)A1 tf3n+1rfn(8)d (2)(Q) 
2,2 L,t=l IP Qln mv ' 

W;(P) -

where i(P) is a positive integer satisfying 2i(P)-18(P) ::; r /2 < 2i(P)8(P). 
Since r fn(8) ::; A8(P) (P = (r, 8) E Cn(D)), we have 

f tf3n+1rfn(8) dm(2l(Q) < Ar"'n2n-imS2l(wi(P)) 
Jw;(P) IP- Qln v - {2'8(P)}n-l 

fori= 0, 1, 2, ... , i(P). Suppose that P rf. W(E; mS2), n- 1) for a positive 
number E. Then we have 

fori= 0, 1, 2, ... , i(P)-1 and 

mS2)(Wi(P)(P)) < mS2)(B(P, ~)) ::; Erl-n. 

{2i(p)8(P)}n-1 - (~)n-1 

In this case we also have 

(3.11) 

From (3.5),(3.6),(3.7),(3.8),(3.9),(3.10) and (3.11), we finally obtain 
that if L is sufficiently large and E is sufficiently small, then rrnv(P) 

< r"'" for any P E Cn(D; (L,+oo))- w(E;mFl,n -1). 

§4. Proof of Theorem 2 

The following Lemma 1 is a result concerning measure theory, which 
was proved in Miyamoto and Yoshida [11]. 

Lemma 1 . Let m be any positive measure on R n having the finite 
total mass. Let E and q be two any positive numbers. Then S(E; m, q) is 
covered by a sequence of balls B 1 (j = 1, 2, ... ) satisfying 

00 

"'[)r1/ R1)q < +oo, 
j=l 
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where ri is the radius of Bj and Rj is the distance between the origin 
and the center of Bj. 

Proof of Theorem 2. Since E is rarefied at oo with respect to Cn(O), 
by Theorem A there exists a positive superharmonic function v(P) in 
Cn(O) such that 

(4.1) inf v(P) = 0 
PECn(O) K(P; oo, 0) 

and 

(4.2) E c {P = (r,e) E Cn(O); v(P) ~ r"n}. 

By Miyamoto and Yoshida [10, Lemma 3] (also see Azarin [3, Theorem 
1]) and (4.1), for this v(P) there exist a unique positive measure p/ on 
Cn(O) and a unique positive measure v' on Sn(O) such that 

v(P) = co(v)K(P; 0, 0) + G0 J.L'(P) + IT0 v'(P). 

Let us denote the sets {P = (r, 8) E Cn(O); c0 (v)K(P; 0, 0) ~ 3-lro:n }, {P 
= (r, 8) E Cn(O); G0 J.L'(P) ~ 3-1ro:n} and {P = (r, 8) E Cn(O); 
IT0 v'(P) ~ 3-lro:n} by E(l), E<2l and E(3), respectively. Then we see 
from (4.2) that 

(4.3) 

For each E(i) (i = 1, 2, 3) we shall find a sequence of balls which covers 
it. 

It is evident from the boundedness of E(l) that E<1l is covered by a 
finite ball B1 satisfying 

(4.4) r1IR1 < +oo, 

where r 1 is the radius of B1 and R1 is the distance between the origin 
and the center of B1. 

When we apply Theorem 1 with the measures J.L and v defined by 
J.L = 3J.L' and v = 3v' we can find two positive constants L and c: such that 
E<2l n Cn(O; (L, +oo)) c w(c:; m~1 l, n- 1) and E<3l n Cn(O; (L, +oo)) 

c w(c:;m~2l,n- 1), respectively. By Lemma 1 these w(c:;m~1l,n- 1) 
and w(c:; m~2), n - 1) are covered by two sequences of balls BY) and 

Bj3l(j = 1, 2, ... )satisfying 

00 00 

~)rY) I RY))n-l < +oo and L:{r)3) I Rj3lt-1 < +oo, 
j=l j=l 
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respectively, where rj2l (resp. rj3l) is the radius of BY) (resp. BJ3)) and 

RJ2 ) (resp. RJ3)) is the distance between the origin and the center of 

BY) (resp. BJ3l). Hence E(2) and E(3) are also covered by the sequences 

of balls BJ2) and B?) (j = 0, 1, ... ) with an additional finite ball B62) 

covering Cn(O; (0, L]) satisfying 

00 00 

(4.5) :L:{r)2) /RJ2))n-1 < +oo and L(rJ3 ) /RJ3))n-1 < +oo, 
j=O j=1 . 

respectively. 
Thus by rearranging B1, BJ2)(j = 0, 1, ... ), Bj3l(j = 1, ... ),we have a 

sequence of balls Bk (k = 1, 2, ... ) which covers E from ( 4.3) and satisfies 
(2.3) from (4.4), (4.5). 

Proof of Remark 4. Since fo.(8) ;::::: A for any 8 E 0' and rkRk - 1 

< 2-1 (k ;::::: ko) for a positive integer k0 , we have that K(P; oo, 0) 
;::::: AR~11 and hence 

(4.6) 

for any P E Bk (k ;::::: ko). 
Take a measure Ton Cn(O), supp T C Bk, T(Bk) = 1 such that 

for any Q E Bk, where Cap denotes the Newtonian capacity. Since 
G0 (P, Q) :=:; IP- Ql 2-n (P E Cn(O), Q E Cn(O)), we have 

J (! G0 (P, Q)d>..Bk (Q))dT(P) :=:; {Cap(Bk)} - 1 ABk (Cn(O)) 

from (4.7) and 

J (! G0 (P, Q)d>..Bk (Q))dT(P) 

= jCR~(-;oo,o.)(P))dT(P);::::: AR~11 T(Bk) = AR~11 

from (4.6). Hence we have that ABk (Cn(O)) ;::::: ACap(Bk)R~11 

> A n-2R<>n b C (-B ) n-2 _ rk k , ecause ap k = rk . 
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Thus if we observe >-e. (Cn(!l)) =>.B. (Cn(!l)), then we have 

00 00 00 

L 2-kf3n>.e.(Cn(!l));::: A L (rk/Rk)n- 2 =A L k- 1 = +oo, 
k=ko k=ko k=ko 

which shows that E is not rarefied. 
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