
Advanced Studies in Pure Mathematics 44, 2006 
Potential Theory in Matsue 
pp. 145-154 

Martin kernels of general domains 

Kentaro Hirata 

Abstract. 

This note consists of our recent researches on Martin kernels of 
general domains. In particular, minimal Martin boundary points of a 
John domain, the boundary behavior of quotients of Martin kernels, 
and comparison estimates for the Green function and the Martin 
kernel are studied. 

§ 1. Introduction 

This note is a summary of our recent researches on the Martin 
boundary and the Martin kernel of general domains. To begin with, 
let us recall the notion of the Martin boundary and the Martin kernel. 
Let !1 be a Greenian domain in ffi.n, where n 2': 2, possessing the Green 
function Gn for the Laplace operator. Let x 0 E !1 be fixed, and let 
{y1} be a sequence in !1 with no limit point in !1. If w is an open sub­
set of !1 such that the closure w is compact in !1, then there exists j 0 

such that {Gn(-,y1 )/Gn(xo,y1 )}~Jo is a uniformly bounded sequence 
of positive harmonic functions in w. Therefore there is a subsequence of 
{ Gn ( ·, YJ) / Gn ( xo, YJ) }J converging to a positive harmonic function in !1. 
The collection of all such limit functions in !1 gives an. ideal boundary 
of !1, referred to as the Martin boundary of !1 and denoted by ~(!1). 
For ( E ~(!1), we write Kn(·, () for the positive harmonic function in 
!1 corresponding to (, and call Kn the Martin kernel. We say that a 
positive harmonic function h is minimal if every positive harmonic func­
tion less than or equal to h coincides with a constant multiple of h. The 
collection of all minimal elements in ~(!1) is called the minimal Martin 
boundary of !1, and is denoted by ~1 (!1). The importance of the Martin 
boundary appears in the representation theorem for positive harmonic 
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functions h in general domains: there exists a measure f.Lh on .6.(!1) such 
that f.Lh(b.(n) \ .6.1 (!1)) = 0 and 

h(x) = r Kn(x, ()dp,h(() for X En. 
JL:!..(O.) 

So, for general domains, it is valuable to investigate the Martin boundary 
and the behavior of the Martin kernel. 

This note is organized as follows. In Section 2, we state the results, 
obtained in [2], about the number of minimal Martin boundary points 
of John domains. In Sections 3 and 4, we give the results, studied in 
[17] and [18], about the boundary behavior of the Martin kernels and 
comparison estimates for the Green function and the Martin kernel. 
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§2. Minimal Martin boundary points of John domains 

From the viewpoint of the representation theorem, the most inter­
esting problem is to investigate that for what kind of domains the Martin 
boundary and the minimal Martin boundary are homeomorphic to the 
Euclidean boundary. For instance, see [19] for Lipschitz domains, [20] 
for NTA domains, and [1] for uniform domains. However, in general, 
the Martin boundary need not to be homeomorphic to the Euclidean 
boundary. There may be even infinitely many minimal Martin bound­
ary points at a Euclidean boundary point (cf. [22, Example 3]). Here, 
a Martin boundary point at y E 8!1 (the Euclidean boundary of !1) is 
a positive harmonic function in n which can be obtained as the limit 
of {Go.(-, Yi)/Gn(xo, Yi)h for some sequence {yj} inn converging toy. 
It is also interesting to investigate that for what kind of domains the 
number of minimal Martin boundary points at every Euclidean bound­
ary point is finite. For example, see [7] for Denjoy domains, [5, 6] and 
[13] for Lipschitz-Denjoy domains, [15] for sectorial domains, and [21] for 
quasi-sectorial domains. One of the main interests of these papers was 
to give a criterion for the number of minimal Martin boundary points 
at a fixed Euclidean boundary point. As a generalization of some parts 
of them, we study minimal Martin boundary points of John domains. 
A domain n is said to be a general John domain with John constant 
CJ > 0 and John center Ko, a compact subset of n, if each point X inn 
can be connected to some point in Ko by a rectifiable curve 'Yin n such 
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that 
dist(z, an) ~ CJ£(1-(x, z)) for all z E "(, 

where dist(z, an) stands for the distance from z to an and £(1-(x, z)) 
denotes the length of the subarc 'Y(x, z) of 'Y from x to z. Note that 
every general John domain is bounded. We can obtain the following. 

Theorem 2.1 ([2, Theorem 1.1]). Let n be a general John domain 
with John constant CJ' and let y E an. Then the following statements 
hold: 

(i) 

(ii) 

The number of minimal Martin boundary points at y is bounded 
by a constant depending only on CJ and n. 
If CJ > v'3/2, then the number of minimal Martin boundary 
points at y is at most two. 

Remark 2.2. The bound CJ > v'3/2 in Theorem 2.1(ii) is sharp. See 
[2, Remark 1.1]. 

For a class of general John domains represented as the union of open 
convex sets, we give a sufficient condition for the Martin boundary to 
be homeomorphic to the Euclidean boundary. For 0 < 0 < 7r, we write 
r o ( z, w) = { x E ~n : Lxzw < 0} for the open circular cone with vertex 
at z, axis [z, w] and aperture 0. Let Ao ~ 1 and Po > 0. We consider a 
bounded domain n with the following properties: 

(I) n is the union of a family of open convex sets {C..\} ..\EA such 
that 

B(z..\, Po) c C" c B(z..\, Aopo); 

(II) for each yEan, there are positive constants 01 :=:; sin-1(1/Ao) 
and P1 :=:; Po cos 81 such that 

U fo1 (y, w) n B(y, 2pl) is connected and non-empty. 
wE!l 

ro1 (y,w)nB(y,2pl)C!1 

Obviously, a bounded domain satisfying (I) is a general John domain 
with John center {z..\hEA and John constant A01. 

Theorem 2.3 ([2, Theorem 1.2]). Let n be a bounded domain satis­
fying (I). If y E an satisfies (II), then there is a unique Martin boundary 
point at y and it is minimal. Furthermore, if every Euclidean boundary 
point satisfies (II), then the Martin boundary of n is homeomorphic to 
the Euclidean boundary. 

Remark 2.4. The bounds 81 :=:; sin-1(1/Ao) and P1 :=:; Po cos81 are 
sharp. See [2, Examples 8.1 and 8.2]. 
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Theorem 2.3 is a generalization of Ancona's result [4]. He considered 
a bounded domain represented as the union of open balls with the same 
radius. His key lemma [4, Lemme 1] relies on the reflection with respect 
to a hyperplane, and is applied to a ball by the Kelvin transform. This 
approach is not applicable to our domains. Our approach is based on a 
new geometrical notion, the system of local reference points. We define 
the quasi-hyperbolic metric on n by 

. 1 ds(z) 
kn(x, y) = mf d' ( an) 

I I 1St z, 
for x,y En, 

where the infimum is taken over all rectifiable curves"'( inn connecting x 
toy and ds stands for the line element on "Y· Let N EN and 0 < 'f/ < 1. 
We say that y E an has a system of local reference points of order N with 
factor 'f/ if there exist Ry > 0 and Ay > 1 with the following property: 
for each positive R < Ry there are N points Yl = Yl (R), .. · , YN = 
YN(R) E n n aB(y, R) such that dist(yj, an) 2: A;;- 1 R for j = 1, · · · , N 
and 

for x E n n B(y, 'fiR). For example, if n is a (sectorial) domain in JR2 

whose boundary near y E an lies on m-distributed rays emanating from 
y, then y has a system of local reference points of order N = m. For a 
general John domain n with John constant CJ, we can show that 

• each y E an has a system of local reference points of order N 
with N::; N(cJ,n) < oo. Moreover, if CJ > VJ/2, then we 
can let N ::; 2 by choosing a suitable factor "'· 

• if n satisfies (I) andy E an satisfies (II), then y has a system 
of local reference points of order 1. 

These observations played essential roles in the proofs of Theorems 2.1 
and 2.3. Indeed, Theorems 2.1 and 2.3 can be reunderstood as follows. 

Proposition 2.5. ([2, Proposition 2.3]). Let n be a general John 
domain, and suppose that y E an has a system of local reference points 
of order N. Then the following statements hold: 

(i) The number of minimal Martin boundary points at y is bounded 
by a constant depending only on N. 

(ii) If N ::; 2, then there are at most N minimal Martin boundary 
points at y. Moreover, if N = 1, then there is a unique Martin 
boundary point at y and it is minimal. 
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In Proposition 2.5(ii), the condition N ~ 2 may be omitted, and we 
expect that the number of minimal Martin boundary points at y is at 
most N even for N ~ 3. We raise the following question. 

Problem. Let n be a general John domain and let N ~ 3. Suppose 
that y E an has a system of local reference points of order N. Is the 
number of minimal Martin boundary points at y at most N '? 

§3. Boundary behavior of quotients of Martin kernels 

In [9, 10], Burdzy obtained a result on the angular derivative prob­
lem of analytic functions in a Lipschitz domain. The important step was 
to study the boundary behavior of the Green function. We now write 0 
for the origin of JR.n to distinguish from 0 E JR., and denote x = (x', Xn) E 
JR.n- 1 x JR. and e = (0', 1). Suppose that ¢ : JR.n- 1 ---+JR. is a Lipschitz 
function such that ¢(0') = 0, and put Oq, = {(x', Xn) : Xn > ¢(x')}. We 
set 
(3.1) 

I+= 1 max{¢
1
(x'),O} dx', 

{lx'l<1} lx In 
I- = 1 max{ -¢(x'), 0} dx'. 

{lx'l<1} lx'ln 

Theorem A. Let I+ and I- be as in (3.1). Then the following 
statements hold: 

(i) If I+ < oo and I- = oo, then 

. Gn"'(te, e) 
hm = oo. 

t-+0+ t 

(ii) If I+ = oo and I- < oo, then 

. Gn"'(te, e) 
hm =0. 

t-+0+ t 

(iii) If I+ < oo and I- < oo, then the limit of Gn"' (te, e)jt, as 
t ---+ 0+, exists and 

. Gn"'(te,e) 
0 < lim < oo. 

t-+0+ t 

Burdzy's approach was based on probabilistic methods. Analytic 
proofs were given by Carroll [11, 12] and Gardiner [16]. As we see from 
their proofs, the convergence of the integrals I+ and I- are related to 
the minimal thinness of the differences Oq, \ JR.+ and JR.+ \ Oq,, where 
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JR+ = { (x', Xn) : Xn > 0}. A subset E of 0 is said to be minimally thin 
at ~ E ~1 (0) with respect to 0 if 

where 0R~ denotes the regularized reduced function of a positive su­
perharmonic function u relative to E in 0. We say that a function f, 
defined on a minimal fine neighborhood U of~, has minimal fine limit l 
at ~ with respect to 0 if there is a subset E of 0, minimally thin at ~ 
with respect to 0, such that f(x) ---> l as x---> ~along U \ E, and then 
we write 

mf- lim f(x) = l. 
n x-->e 

Theorem A was shown by using Nai:m's characterization (23, Theoreme 
11] of the minimal thinness for a difference of domains in terms of the 
boundary behavior of the quotient of the Green functions. 

We are now interested in the boundary behavior of Martin kernels. 
In this case, we can not apply the Na'im's characterization. Alternatively, 
we can characterize the minimal thinness for a difference of domains in 
terms of the boundary behavior of the quotient of the Martin kernels 
(see (17, Lemma 3.1]), and then obtain the following general result. 

Theorem 3.1 ((17, Theorem 2.1]). Suppose that 0 and D are Gree­
nian domains such that 0 n D is a non-empty domain. Let~ E ~1 (0), 
where ~ is in the closure of 0 n D in the Martin compactification of 
0. Let ( E ~1(D), where ( is in the closure of 0 n D in the Martin 
compactification of D. If 0 \ D is minimally thin at ~ with respect to 0, 
then KD(·, ()/ Ko.(-, ~) has a finite minimal fine limit at~ with respect 
to 0. Furthermore, the following statements hold: 

(3.2) 

(i) If D \0 is not minimally thin at ( with respect to D, then 

mf- lim KD(x, () = 0. 
n x'--+e Kn(x, ~) 

(ii) If D \ 0 is minimally thin at ( with respect to D, where ( is 
the point such that 

for some positive constant a, then 

0 < mf- lim KD(x, () < oo. 
n x-->e Kn(x, ~) 

onOnD 



Martin kernels of general domains 151 

(iii) If D \ 0 is minimally thin at ( with respect to D, where ( is 
a point such that (3.2) is not satisfied, then 

mf- lim KD(x, () = 0. 
n x-.E Kn(x, ~) 

As a consequence of Theorem 3.1, we can obtain a result correspond­
ing to Theorem A. Note that Oq, has a unique Martin boundary point 
at the origin 0, so we write Kn.p(·,O) for the Martin kernel at 0. 

Corollary 3.2 ([17, Theorem 1.1]). Let I+ and I- be as in (3.1). 
Then the following statements hold: 

(i) If I+ < oo and I- = oo, then 

lim tn- 1 Kn, (te, 0) = 0. 
t-->0+ 'P 

(ii) If I+ = oo and I- < oo, then 

lim tn- 1Kn.p(te,O) = oo. 
t-->0+ 

(iii) If I+< oo and I-< oo, then the limit oftn-1Kn,"(te,O), as 
t --> 0+, exists and 

Remark 3.3. When I+ = oo and I- = oo, the limit oftn- 1 Kn.p (te, 0) 
may take any values 0, positive and finite, or oo (see [17, Example 1.2]). 

§4. Comparison estimates for the Green function and the 
Martin kernel 

For two positive functions h and h, the symbol h ~ h means that 
there exists a constant A> 1 such that A- 1 h ~ h ~ Af2. L,From The­
orem A and Corollary 3.2, we expect the following relationship between 
the Green function and the Martin kernel: 

or, more generally, if 0 is a Lipschitz domain and ~ E 80, then 
( 4.1) 
Gn(x, xo)Kn(x, 0 ~ lx-~1 2-n for X E r a(~)\ B(xo, 2-1 dist(xo, 80)), 

where r a(~)= {x E 0: lx-~1 < adist(x, 80)} with a> 1large enough. 
If we restrict to the case of bounded Lipschitz domains 0 in !Rn with 
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n 2:: 3, then only the upper estimate in (4.1) can be obtained from the 
following 3G inequality: 

Gn(x, z)Gn(x, y) :::; A(lx- Yl2-n + lx- zl2-n) for x, y, zEn, 
Gn(z, y) 

which was first proved by Cranston, Fabes and Zhao [14] in the study of 
conditional gauge theory for the Schrodinger operator. See also Bogdan 
[8]. Recently, Aikawa and Lundh [3] extended this inequality to the case 
of bounded uniformly John domains in JRn with n 2:: 3. 

Now, let n be a bounded Lipschitz domain in JRn with n 2:: 3 and 
let {y1 } be a sequence in n converging to ~ E an. Then, substituting 
z = x 0 and y = y1 into the 3G inequality and letting j __, oo, we obtain 
the upper estimate: for x En\ B(xo, 2-1 dist(xo, an)), 

The lower estimate in (4.1) does not follow from the 3G inequality, 
but the boundary Harnack principle would enable us to obtain (4.1). We 
consider ( 4.1) in a uniform domain. A domain n is said to be uniform 
if there exists a constant A1 > 1 such that each pair of points x and y 
in n can be connected by a rectifiable curve 1 in n such that 

£('"'():::; A1lx- Yl, 

min{£('"Y(x,z)),£('"Y(z,y))}:::; A1 dist(z,an) for all z E '"Y· 

It is known that if n is a uniform domain, then there is a unique (mini­
mal) Martin boundary point at each Euclidean boundary point (cf. [1]). 
As above, we write Kn(-, ~)for the Martin kernel at~ E an. Our conclu­
sions are different between n 2:: 3 and n = 2, so we state them separately. 
See [18] fortheir proofs. 

Theorem 4.1. Let n be a uniform domain in JRn, where n 2:: 3, 
and let~ E an. Then 
(4.2) 
Gn(x, xo)Kn(x, ~) ~ lx- ~~ 2-n for X Era(~) n B(~, 2-1 dist(xo, an)), 

where the constant of comparison depends only on a and n. 

When n = 2, the comparison estimate (4.2) does not hold in general 
as seen in the following example. 

Example 4.2. Suppose that n = 2. Let n = B(O, 1) \ {0} and 
let Xo = (1/2, 0). Then n is a uniform domain, and we have for X E 
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B(O, 1/4) \ {0}, 

-loglxl (1lx-4xol) 1 
Kn(x, O)Gn(x, xo) = 1 log - I I ~log -1 1. 

og2 2 X- Xo X 

We say that ~ E an satisfies the exterior condition if there exists a 
positive constant K such that for each r > 0 sufficiently small, there is 
Xr E B(~, r) \ n with B(xr, Kr) c ~n \ n. 

Theorem 4.3. Let n be a uniform domain in ~2 . Then the follow­
ing statements hold: 

(i) If~ E an satisfies the exterior condition, then 

Gn(x, xo)Kn(x, ~) ~ 1 for x Era(~) n B(~, 2-1 dist(xo, an)), 

where the constant of comparison depends only on a and n. 
(ii) If~ E an is an isolated point and n is bounded, then there 

exists 8 > 0 such that 

1 
Gn(x, xo)Kn(x, ~) ~log lx _ ~~ for x E B(~, 8) \ {0, 

where the constant of comparison is independent of x. 

Finally, we note that if n is a Lipschitz domain, then every ~ E an 
satisfies the exterior condition and so Theorem 4.3(i) holds. 
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