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Numerical characterization for affine varieties be 
a cone over nonsingular projective varieties 

Stephen S.-T. Yau1 

§1. Introduction 

Let V be an affine variety in cn+l. It is a natural question to ask 
when V is a cone over a nonsingular projective variety in C pn after a 
biholomorphic change of coordinates in cn+l. This seems to be a very 
difficult problem even if v is a hypersurface in cn+l. 

For example, let f ( X1, x2, x3) = x~ + x~ + x~. Take a generic change 
3 

of coordinates Xi = E aiiYi, 1 :::; i:::; 3. Then we get a new polynomial 
j=l 

(auYl + a12Y2 + a13Y3) 2 

+c(a21Y1 + a22Y2 + a23Y3)3 

+(a31Yl + a32Y2 + a33y3)4. 

On the other hand, consider g(x1, x2, x3) = xi+ x5 + x~. Take a generic 
3 

change of coordinates xi = E biiYi + qi, where qi, 1 :::; i :::; 3, are 
j=l 

quadratic polynomials in Yl, Y2, Y3. Then we get a new polynomial 

(buYl + b12Y2 + b13Y3 + qi)2 

+(b21Y1 + b22Y2 + b23Y3 + q2) 2 

+(b31Yl + b32Y2 + b33Y3 + q3) 2. 

Observe that both f and 9 are degree 4 polynomials in Yl> Y2 and Y3· The 
hypersurface defined by 9 is a cone over nonsingular projective curve in 
C P 2 after biholomorphic change of coordinates while the hypersurface 
defined by f does not have this property. 
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In this paper, we shall treat the simplest case when V is a hy
persurface in cn+l. Obviously if V is a cone over a nonsingular pro
jective variety in C pn, then V only has an isolated singularity at 0. 
Therefore we need to give a characterization when an analytic function 
f(z0, z1 , ... , zn) with isolated critical point of 0 is a homogeneous poly
nomial after biholomorphic change of coordinate. In this paper we shall 
formulate a numerical criterion for this purpose. 

§2. Geometric Genus and Milnor Number 

Let f(z0 , z1. ... , Zn) be a germ of an analytic function at the origin 
such that f(O) = 0. Suppose that f has an isolated critical point at the 
origin. f can be developed in a convergent Taylor series f(zo, z1, ... , zn) = 
E>,a>,Z>. where zA = z;0 ••• Z~". Recall that Newton boundary r(f) is 
the union of the compact faces of r +(f) where r +(f) is the convex hull 
of the union of the subsets {..\ + (R+)n+l} for..\ such that a>. =F 0. Fi
nally, let r _(f), the Newton polyhedron of J, be the cone over r(f) 
with cone point at 0. For any closed face ~ of r(f), we associate the 
polynomial ft:,. ( z) = E a>. z>.. We say that f is nondegenerate if f 1:!. has 

>.Et!. 
no critical point in (C*)n+l for any~ E r(f) where C* = C\{0}. 

Let (V, 0) be an isolated hypersurface singularity defined by holo
morphic function f : (cn+1 ,0) ~ (C,O). Let 7r : M ~ V be a 
resolution of the singularity at 0. Define the geometric genus of the 
singularity (V, 0) to be p9 = dimHn- 1 (M, 0). Let w be a holomorphic 
n-form on V- {0}. w is said to be L2-integrable if fw-{o} w A w < oo 
for any sufficiently small relatively compact neighborhood W of 0 in V. 
Let L 2(V- {0}, nn) be the set of all £ 2-integrable holomorphic n-forms 
on V - {0}, which is a linear subspace of f(V - {0}, nn). Then 

p9 = dimf(V- {O},nn)/L2 (V- {O},nn) 

(See Laufer [1] for n = 2 and Yau [11] for n > 2). 
We say that a point p of the integral lattice zn+l in Rn+l is positive 

if all the coordinates of p are positive. The following theorem is due to 
Merle-Teissier [3]. 

Theorem 2.1. (Merle-Teissier) Let (V,O) be an isolated hypersur
face singularity defined by a nondegenemte holomorphic function f : 
(cn+1 ,0) ~ (C,O). Then the geometric genus p9 = #{p E zn+l n 
r- (f) : p is positive}. 

Notice that in the above formula, positive lattice points on f(f) are 
counted. 
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Let f : (cn+t,o) ______, (C,O) be the germ of a complex analytic 
function with an isolated critical point at the origin. For E > 0 suit
ably small and J yet smaller, the space V' = f- 1(J) n D< (where 
D< denotes the closed disk of radius E about 0) is a real 2n-manifold 
with boundary whose diffeomorphism type depends only on f. Mil
nor [4] proved that V' has the homotopy type of a wedge of n-spheres. 
The number of these n-spheres is called Milnor number J.L. In fact, 
J-l = dimC{zo,zl,··· ,zn}/Uzo,fz0 , ••• ,fz,)· Recall also that T := 

dim C { Zo, ... , Zn} / (!, fzo, ... , fzJ is an analytic invariant. 
A polynomial f(z0 , z1, ... , zn) is a weighted homogeneous of type 

(wo, w1, ... , wn), where w0 , w1, ... , Wn are fixed positive rational num
bers, if it can be expressed as a linear combination of monomials 
z6° zi1 ••• z~· for which io/wo + il/wl + · · · + in/Wn = 1. 

Theorem 2.2. (Milnor and Orlik) [5] Let f(zo, z1, ... , Zn) be a 
weighted homogeneous polynomial of type ( wo, w1, ... , wn) with isolated 
singularity at the origin. Then the Milnor number is J-l = ( w0 - 1) ( w 1 -

1) ... (wn- 1). 

The following deep theorem which gives a numerical characterization 
of weighted homogeneous polynomial is due to Saito [7]. 

Theorem 2.3. (Saito) Let f : (en +I, 0) ______, ( C, 0) be the germ of 
a complex analytic function with an isolated critical point at the origin. 
Let J-l and T be defined as above. Then J-l = T if and only iff is a weighted 
homogeneous polynomial after biholomorphic change of coordinates. 

§3. Numerical Characterization of Homogeneous Polynomial 

In view of Theorem 2.3 above, we only need to give intrinsic nu
merical characterization when a weighted homogeneous polynomial is 
actually an homogeneous polynomial. The first theorem is due to Xu 
and Yau [9] in 1993. 

Theorem 3.1. (Xu-Yau) Let (V, 0) be a two-dimensional isolated 
singularity defined by a weighted homogeneous polynomial f(zo, z1, z2) = 

0. Let J-l be the Milnor number, p9 be the geometric genus and v be the 
multiplicity of the singularity. Then 

J.L- v + 1:::: 6pg 

with equality if and only if (V, 0) is defined by the homogeneous polyno
mial. 

Theorem 3.1 implies the Durfee conjecture J-l :::: 3!p9 in this case. 
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Theorem 3.2. (Xu-Yau) [9]. Let (V, 0) be a two-dimensional iso
lated hypersurface singularity defined by f(x, y, z) = 0. Let J.L be the 
Milnor number, p9 be the geometric genus, v be the multiplicity of the 
singularity and T = dimension of the semi-universal deformation space 
of (V,O) = dimC{x,y,z}/Cf,Jx,Jy,Jz)· Then after a biholomorphic 
change of coordinate f is a homogeneous polynomial if and only if J.L -
v + 1 = 6p9 and J.L = T. 

In view of Theorem 3.2, we have made the following conjecture in 
1995. 

Conjecture Let f : (cn+l, 0) ---> (C, 0) be a weighted homogeneous 
polynomial with an isolated critical point at the origin. Then 

J.L- h(v)? (n + 1)!p9 

with equality if and only iff is a homogeneous polynomial, where h(v) 
is a polynomial function on multiplicity with the properties h(v) ? 0 and 
h(v) = 0 if and only if v = 1. Note that h is a polynomial function from 
z+ to z+ u {O}. 

For two-dimensional isolated singularity, Theorem 3.2 asserts that 
Yau conjecture is true. In fact h(v) = v- 1. For 3-dimensional singu
larity, the conjecture is very challenging because we need to find h(v) 
explicity. After several years of hard work, we have proved the conjecture 
for a 3-dimensional case with K.-P. Lin [2]. 

Theorem 3.3. (Lin-Yau) Let (V, 0) be a three dimensional iso
lated singularity defined by a weighted homogeneous polynomial 
f(xo, x1. x2, x3) = 0. Let p9 be the geometric genue, v be the multi
plicity and J.L be the Milnor number of the singularity. Then we have 

J.L- (2v3 - 5v2 + 2v + 1) ? 4!p9 

with equality if and only if (V, 0) is defined by a homogeneous polynomial. 

Theorem 3.2 implies the Durfee conjecture J.L ? 4!p9 in this case. 
As a corollary of Theorem 2.3 and Theorem 3.3, we have the follow

ing theorem. 

Theorem 3.4. (Lin-Yau) Let (V, 0) be a three dimensional iso
lated hypersurface singularity defined by f(xo, XI. x2, x3) = 0. Let J.L be 
the Milnor number, p9 be the geometric genus, v be the multiplicity of 
the singularity and T = dimension of the semi-universal deformation 
space of (V, 0) = dimC{xo, X!,X2, X3}j(f, fxo• fx 1 , fx 2 , fx 3 ). Then after 
a biholomorphic change of coordinates f is a homogeneous polynomial if 
and only if J.L- (2v3 - 5v2 + 2v + 1) = 24p9 and J.L = T. 
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Theorem 3.3 is related to the following theorem of Xu and Yau [10]. 

Theorem 3.5. (Xu-Yau) Let a 2:: b 2:: c 2:: d 2:: 2, and P4 be 
the number of positive integml solutions of ~ + f + ~ + ~ :0:::: 1, i.e. 
P4 = #{ (x, y, z, w) E Z~ : ~ + f + ~ + ~ :0:::: 1}. If P4 > 0, then 

3 11 
24P4 :0:::: abed - '2 (abc+ abd + acd + bed) + '3 ( ab + ac + be) - 2 (a + b + c) 

and equality is attained if and only if a = b = c = d = integer. 

However Theorem 3.3 does not follow from Theorem 3.5 because 
the minimal weight of the variables Xi may not be an integer and we 
also need to analyze the case when the geometric genus vanishes. It is 
quite easy to see that the multiplicity v is given by inf{ n E Z+ : n ;::: 
inf{ wo, Wt, w2, w3} where Wi is the weight of xi}, see for example Saeki 
[6]. We observe that if wo 2:: w1 2:: w2 2:: W3 and W3 is not an integer, 
then W3 = [w3] + (3, 0 < (3 < 1 and (3 is either :!!Ca., or :!!Ca.. We then get 

WQ W2 

an even sharper estimate in these three particular cases in the following 
Theorem 3.6 and Theorem 3. 7 then those obtained in Theorem 3.5 of 
Xu and Yau [10]. 

Theorem 3.6. (Lin-Yau) Let a 2:: b 2:: c 2:: d 2:: 3 be real numbers. 
Consider ~ + f + ~ + ~ :0:::: 1. Let P4 be the number of positive integml 
solutions of the above equation, i.e., P4 = #{ (x, y, z, w) E Z~ : ~ + f + 
~ + ~ :0:::: 1}. Suppose d is not an integer and d = [d] + (3 where (3 is 
either~ or~ or~· Definqt = (a- 1)(b- 1)(c- 1)(d- 1). Then 

24P4 < J.t-(2v3 -5v2 +2v+1)1 
v=d-,6+1 

abed - (abc + abd + acd + bed) 

+(ab + ac +ad+ be+ bd + cd) 

-(a+ b +c)- (2d3 + d2 - d- 1) 

+2(33 - (32 (6d + 1) 

+f3(6d2 + 2d- 2). 

Theorem 3.7. (Lin-Yau) Let a 2:: b 2:: c 2:: d 2::2 be real numbers. 
Consider ~ + f + a :0:::: 1. Let P4 be the number of positive integml 
solutions of the above equation, i.e., P4 = #{ (x, y, z, w) E Z~ : ~ + f + 
~ + ~ :0:::: 1}. Suppose P4 > 0 and d is not an integer and d = [d] + (3 
where (3 is either ~, or ~, or ~. Then the same assertion of Theorem 
3.6 holds. 
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Unlike the surface singularities treated in Xu and Yau [9], we still 
need to handle the case when the geometric genus is equal to zero. Thus 
Theorem 3.3 is substantially harder to prove than Theorem 3.1. 
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