Numerical characterization for affine varieties be a cone over nonsingular projective varieties

Stephen S.-T. Yau ${ }^{1}$

§1. Introduction

Let V be an affine variety in \boldsymbol{C}^{n+1}. It is a natural question to ask when V is a cone over a nonsingular projective variety in $\boldsymbol{C P} \boldsymbol{P}^{n}$ after a biholomorphic change of coordinates in \boldsymbol{C}^{n+1}. This seems to be a very difficult problem even if V is a hypersurface in \boldsymbol{C}^{n+1}.

For example, let $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{3}+x_{3}^{4}$. Take a generic change of coordinates $x_{i}=\sum_{j=1}^{3} a_{i j} y_{j}, 1 \leq i \leq 3$. Then we get a new polynomial

$$
\begin{aligned}
\tilde{f}\left(y_{1}, y_{2}, y_{3}\right)= & \left(a_{11} y_{1}+a_{12} y_{2}+a_{13} y_{3}\right)^{2} \\
& +c\left(a_{21} y_{1}+a_{22} y_{2}+a_{23} y_{3}\right)^{3} \\
& +\left(a_{31} y_{1}+a_{32} y_{2}+a_{33} y_{3}\right)^{4}
\end{aligned}
$$

On the other hand, consider $g\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$. Take a generic change of coordinates $x_{i}=\sum_{j=1}^{3} b_{i j} y_{j}+q_{i}$, where $q_{i}, 1 \leq i \leq 3$, are quadratic polynomials in y_{1}, y_{2}, y_{3}. Then we get a new polynomial

$$
\begin{aligned}
\tilde{g}\left(y_{1}, y_{2}, y_{3}\right)= & \left(b_{11} y_{1}+b_{12} y_{2}+b_{13} y_{3}+q_{1}\right)^{2} \\
& +\left(b_{21} y_{1}+b_{22} y_{2}+b_{23} y_{3}+q_{2}\right)^{2} \\
& +\left(b_{31} y_{1}+b_{32} y_{2}+b_{33} y_{3}+q_{3}\right)^{2}
\end{aligned}
$$

Observe that both \tilde{f} and \tilde{g} are degree 4 polynomials in y_{1}, y_{2} and y_{3}. The hypersurface defined by \widetilde{g} is a cone over nonsingular projective curve in $\boldsymbol{C} \boldsymbol{P}^{2}$ after biholomorphic change of coordinates while the hypersurface defined by \tilde{f} does not have this property.

[^0]In this paper, we shall treat the simplest case when V is a hypersurface in C^{n+1}. Obviously if V is a cone over a nonsingular projective variety in $\boldsymbol{C} \boldsymbol{P}^{n}$, then V only has an isolated singularity at 0. Therefore we need to give a characterization when an analytic function $f\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ with isolated critical point of 0 is a homogeneous polynomial after biholomorphic change of coordinate. In this paper we shall formulate a numerical criterion for this purpose.

§2. Geometric Genus and Milnor Number

Let $f\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ be a germ of an analytic function at the origin such that $f(0)=0$. Suppose that f has an isolated critical point at the origin. f can be developed in a convergent Taylor series $f\left(z_{0}, z_{1}, \ldots, z_{n}\right)=$ $\Sigma_{\lambda} a_{\lambda} z^{\lambda}$ where $z^{\lambda}=z_{0}^{\lambda_{0}} \ldots z_{n}^{\lambda_{n}}$. Recall that Newton boundary $\Gamma(f)$ is the union of the compact faces of $\Gamma_{+}(f)$ where $\Gamma_{+}(f)$ is the convex hull of the union of the subsets $\left\{\lambda+\left(\boldsymbol{R}_{+}\right)^{n+1}\right\}$ for λ such that $a_{\lambda} \neq 0$. Finally, let $\Gamma_{-}(f)$, the Newton polyhedron of f, be the cone over $\Gamma(f)$ with cone point at 0 . For any closed face Δ of $\Gamma(f)$, we associate the polynomial $f_{\Delta}(z)=\sum_{\lambda \in \Delta} a_{\lambda} z^{\lambda}$. We say that f is nondegenerate if f_{Δ} has no critical point in $\left(\boldsymbol{C}^{*}\right)^{n+1}$ for any $\Delta \in \Gamma(f)$ where $\boldsymbol{C}^{*}=\boldsymbol{C} \backslash\{0\}$.

Let $(V, 0)$ be an isolated hypersurface singularity defined by holomorphic function $f:\left(\boldsymbol{C}^{n+1}, 0\right) \longrightarrow(\boldsymbol{C}, 0)$. Let $\pi: M \longrightarrow V$ be a resolution of the singularity at 0 . Define the geometric genus of the singularity $(V, 0)$ to be $p_{g}=\operatorname{dim} H^{n-1}(M, O)$. Let ω be a holomorphic n-form on $V-\{0\} . \omega$ is said to be L^{2}-integrable if $\int_{W-\{0\}} \omega \wedge \bar{\omega}<\infty$ for any sufficiently small relatively compact neighborhood W of 0 in V. Let $L^{2}\left(V-\{0\}, \Omega^{n}\right)$ be the set of all L^{2}-integrable holomorphic n-forms on $V-\{0\}$, which is a linear subspace of $\Gamma\left(V-\{0\}, \Omega^{n}\right)$. Then

$$
p_{g}=\operatorname{dim} \Gamma\left(V-\{0\}, \Omega^{n}\right) / L^{2}\left(V-\{0\}, \Omega^{n}\right)
$$

(See Laufer [1] for $n=2$ and Yau [11] for $n>2$).
We say that a point p of the integral lattice \boldsymbol{Z}^{n+1} in \boldsymbol{R}^{n+1} is positive if all the coordinates of p are positive. The following theorem is due to Merle-Teissier [3].

Theorem 2.1. (Merle-Teissier) Let $(V, 0)$ be an isolated hypersurface singularity defined by a nondegenerate holomorphic function f : $\left(\boldsymbol{C}^{n+1}, 0\right) \longrightarrow(\boldsymbol{C}, 0)$. Then the geometric genus $p_{g}=\#\left\{p \in \boldsymbol{Z}^{n+1} \cap\right.$ $\Gamma_{-}(f): p$ is positive $\}$.

Notice that in the above formula, positive lattice points on $\Gamma(f)$ are counted.

Let $f:\left(\boldsymbol{C}^{n+1}, 0\right) \longrightarrow(\boldsymbol{C}, 0)$ be the germ of a complex analytic function with an isolated critical point at the origin. For $\epsilon>0$ suitably small and δ yet smaller, the space $V^{\prime}=f^{-1}(\delta) \cap D_{\epsilon}$ (where D_{ϵ} denotes the closed disk of radius ϵ about 0) is a real $2 n$-manifold with boundary whose diffeomorphism type depends only on f. Milnor [4] proved that V^{\prime} has the homotopy type of a wedge of n-spheres. The number of these n-spheres is called Milnor number μ. In fact, $\mu=\operatorname{dim} \boldsymbol{C}\left\{z_{0}, z_{1}, \ldots, z_{n}\right\} /\left(f_{z_{0}}, f_{z_{0}}, \ldots, f_{z_{n}}\right)$. Recall also that $\tau:=$ $\operatorname{dim} \boldsymbol{C}\left\{z_{0}, \ldots, z_{n}\right\} /\left(f, f_{z_{0}}, \ldots, f_{z_{n}}\right)$ is an analytic invariant.

A polynomial $f\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ is a weighted homogeneous of type $\left(w_{0}, w_{1}, \ldots, w_{n}\right)$, where $w_{0}, w_{1}, \ldots, w_{n}$ are fixed positive rational numbers, if it can be expressed as a linear combination of monomials $z_{0}^{i_{0}} z_{1}^{i_{1}} \ldots z_{n}^{i_{n}}$ for which $i_{0} / w_{0}+i_{1} / w_{1}+\cdots+i_{n} / w_{n}=1$.

Theorem 2.2. (Milnor and Orlik) [5] Let $f\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ be a weighted homogeneous polynomial of type $\left(w_{0}, w_{1}, \ldots, w_{n}\right)$ with isolated singularity at the origin. Then the Milnor number is $\mu=\left(w_{0}-1\right)\left(w_{1}-\right.$ 1) $\ldots\left(w_{n}-1\right)$.

The following deep theorem which gives a numerical characterization of weighted homogeneous polynomial is due to Saito [7].

Theorem 2.3. (Saito) Let $f:\left(\boldsymbol{C}^{n+1}, 0\right) \longrightarrow(\boldsymbol{C}, 0)$ be the germ of a complex analytic function with an isolated critical point at the origin. Let μ and τ be defined as above. Then $\mu=\tau$ if and only if f is a weighted homogeneous polynomial after biholomorphic change of coordinates.

§3. Numerical Characterization of Homogeneous Polynomial

In view of Theorem 2.3 above, we only need to give intrinsic numerical characterization when a weighted homogeneous polynomial is actually an homogeneous polynomial. The first theorem is due to Xu and Yau [9] in 1993.

Theorem 3.1. (Xu-Yau) Let $(V, 0)$ be a two-dimensional isolated singularity defined by a weighted homogeneous polynomial $f\left(z_{0}, z_{1}, z_{2}\right)=$ 0 . Let μ be the Milnor number, p_{g} be the geometric genus and ν be the multiplicity of the singularity. Then

$$
\mu-\nu+1 \geq 6 p_{g}
$$

with equality if and only if $(V, 0)$ is defined by the homogeneous polynomial.

Theorem 3.1 implies the Durfee conjecture $\mu \geq 3!p_{g}$ in this case.

Theorem 3.2. (Xu-Yau) [9]. Let $(V, 0)$ be a two-dimensional isolated hypersurface singularity defined by $f(x, y, z)=0$. Let μ be the Milnor number, p_{g} be the geometric genus, ν be the multiplicity of the singularity and $\tau=$ dimension of the semi-universal deformation space of $\left.(V, 0)=\operatorname{dim} C\{x, y, z\} / C f, f_{x}, f_{y}, f_{z}\right)$. Then after a biholomorphic change of coordinate f is a homogeneous polynomial if and only if $\mu-$ $\nu+1=6 p_{g}$ and $\mu=\tau$.

In view of Theorem 3.2, we have made the following conjecture in 1995.

Conjecture Let $f:\left(\boldsymbol{C}^{n+1}, 0\right) \longrightarrow(\boldsymbol{C}, 0)$ be a weighted homogeneous polynomial with an isolated critical point at the origin. Then

$$
\mu-h(\nu) \geq(n+1)!p_{g}
$$

with equality if and only if f is a homogeneous polynomial, where $h(\nu)$ is a polynomial function on multiplicity with the properties $h(\nu) \geq 0$ and $h(\nu)=0$ if and only if $\nu=1$. Note that h is a polynomial function from \boldsymbol{Z}_{+}to $\boldsymbol{Z}_{+} \cup\{0\}$.

For two-dimensional isolated singularity, Theorem 3.2 asserts that Yau conjecture is true. In fact $h(\nu)=\nu-1$. For 3-dimensional singularity, the conjecture is very challenging because we need to find $h(\nu)$ explicity. After several years of hard work, we have proved the conjecture for a 3-dimensional case with K.-P. Lin [2].

Theorem 3.3. (Lin-Yau) Let $(V, 0)$ be a three dimensional isolated singularity defined by a weighted homogeneous polynomial $f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0$. Let p_{g} be the geometric genue, ν be the multiplicity and μ be the Milnor number of the singularity. Then we have

$$
\mu-\left(2 \nu^{3}-5 \nu^{2}+2 \nu+1\right) \geq 4!p_{g}
$$

with equality if and only if $(V, 0)$ is defined by a homogeneous polynomial.
Theorem 3.2 implies the Durfee conjecture $\mu \geq 4!p_{g}$ in this case.
As a corollary of Theorem 2.3 and Theorem 3.3, we have the following theorem.

Theorem 3.4. (Lin-Yau) Let $(V, 0)$ be a three dimensional isolated hypersurface singularity defined by $f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0$. Let μ be the Milnor number, p_{g} be the geometric genus, ν be the multiplicity of the singularity and $\tau=$ dimension of the semi-universal deformation space of $(V, 0)=\operatorname{dim} \boldsymbol{C}\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\} /\left(f, f_{x_{0}}, f_{x_{1}}, f_{x_{2}}, f_{x_{3}}\right)$. Then after a biholomorphic change of coordinates f is a homogeneous polynomial if and only if $\mu-\left(2 \nu^{3}-5 \nu^{2}+2 \nu+1\right)=24 p_{g}$ and $\mu=\tau$.

Theorem 3.3 is related to the following theorem of Xu and Yau [10].
Theorem 3.5. (Xu-Yau) Let $a \geq b \geq c \geq d \geq 2$, and P_{4} be the number of positive integral solutions of $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}+\frac{w}{d} \leq 1$, i.e. $P_{4}=\#\left\{(x, y, z, w) \in Z_{+}^{4}: \frac{x}{a}+\frac{y}{b}+\frac{z}{c}+\frac{w}{d} \leq 1\right\}$. If $P_{4}>0$, then
$24 P_{4} \leq a b c d-\frac{3}{2}(a b c+a b d+a c d+b c d)+\frac{11}{3}(a b+a c+b c)-2(a+b+c)$
and equality is attained if and only if $a=b=c=d=$ integer.
However Theorem 3.3 does not follow from Theorem 3.5 because the minimal weight of the variables x_{i} may not be an integer and we also need to analyze the case when the geometric genus vanishes. It is quite easy to see that the multiplicity ν is given by $\inf \left\{n \in \boldsymbol{Z}_{+}: n \geq\right.$ $\inf \left\{w_{0}, w_{1}, w_{2}, w_{3}\right\}$ where w_{i} is the weight of $\left.x_{i}\right\}$, see for example Saeki [6]. We observe that if $w_{0} \geq w_{1} \geq w_{2} \geq w_{3}$ and w_{3} is not an integer, then $w_{3}=\left[w_{3}\right]+\beta, 0<\beta<1$ and β is either $\frac{w_{3}}{w_{0}}$, or $\frac{w_{3}}{w_{2}}$. We then get an even sharper estimate in these three particular cases in the following Theorem 3.6 and Theorem 3.7 then those obtained in Theorem 3.5 of Xu and Yau [10].

Theorem 3.6. (Lin-Yau) Let $a \geq b \geq c \geq d \geq 3$ be real numbers. Consider $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}+\frac{w}{d} \leq 1$. Let P_{4} be the number of positive integral solutions of the above equation, i.e., $P_{4}=\#\left\{(x, y, z, w) \in Z_{+}^{4}: \frac{x}{a}+\frac{y}{b}+\right.$ $\left.\frac{z}{c}+\frac{w}{d} \leq 1\right\}$. Suppose d is not an integer and $d=[d]+\beta$ where β is either $\frac{d}{c}$ or $\frac{d}{b}$ or $\frac{d}{a}$. Define $\mu=(a-1)(b-1)(c-1)(d-1)$. Then

$$
\begin{aligned}
24 P_{4}< & \mu-\left.\left(2 \nu^{3}-5 \nu^{2}+2 \nu+1\right)\right|_{\nu=d-\beta+1} \\
= & a b c d-(a b c+a b d+a c d+b c d) \\
& +(a b+a c+a d+b c+b d+c d) \\
& -(a+b+c)-\left(2 d^{3}+d^{2}-d-1\right) \\
& +2 \beta^{3}-\beta^{2}(6 d+1) \\
& +\beta\left(6 d^{2}+2 d-2\right)
\end{aligned}
$$

Theorem 3.7. (Lin-Yau) Let $a \geq b \geq c \geq d \geq 2$ be real numbers. Consider $\frac{x}{a}+\frac{y}{b}+\frac{z}{d} \leq 1$. Let P_{4} be the number of positive integral solutions of the above equation, i.e., $P_{4}=\#\left\{(x, y, z, w) \in Z_{+}^{4}: \frac{x}{a}+\frac{y}{b}+\right.$ $\left.\frac{z}{c}+\frac{w}{d} \leq 1\right\}$. Suppose $P_{4}>0$ and d is not an integer and $d=[d]+\beta$ where β is either $\frac{d}{c}$, or $\frac{d}{b}$, or $\frac{d}{a}$. Then the same assertion of Theorem 3.6 holds.

Unlike the surface singularities treated in Xu and Yau [9], we still need to handle the case when the geometric genus is equal to zero. Thus Theorem 3.3 is substantially harder to prove than Theorem 3.1.

References

[1] H.B. Laufer, On rational singularities, Amer. J. Math. 94 (1972), 597-608.
[2] K.-P. Lin and S.S.-T. Yau, Sharp upper estimate of geometric genus in terms of Milnor number and multiplicity, (preprint).
[3] M. Merle and B. Teissier, Conditions d'adjonction d'aprĕs Du Val, Sěminaire sur les singularités des surfaces (Center de Math. de l'Ecole Polytechniqe, 1976-1977), Lecture Notes in Math., Vol. 777, Springer, Berlin, 1980, 229-245.
[4] J. Milnor, Singular points of complex hypersurfaces, Ann. Math. Studies, 61, Princeton University Press, 1968.
[5] J. Milnor and P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970), 385-393.
[6] O. Saeki, Topological invariance of weights for weighted homogeneous isolated singularities in C^{3}, Proc. Amer. Math. Soc. 103 (1998), 905909.
[7] K. Saito, Quasihomogene isolierte singularitäten von Hyperflachen, Invent. Math. 14 (1971), 123-142.
[8] Y.-J. Xu and S.S.-T. Yau, Sharp estimate of number of integral points in a tetrahedron, J. reine angew. Math. 423 (1992), 199-219.
[9] Y.-J. Xu and S.S.-T. Yau, Durfee conjecture and coordinate free characterization of homogeneous singularities, J. Diff. Geom. 37 (1993), 375-396.
[10] Y.-J. Xu and S.S.-T. Yau, Sharp estimate of number of integral points in a 4-dimensional tetrahedron, J. reine angew. Math. 473 (1996), 1-23.
[11] S.S.-T. Yau, Two theorems in higher dimensional singularities, Math. Ann. 232 (1977), 44-59.

Department of Mathematics, Statistics
and Computer Science, M/C 249
851 S. Morgan Street
Chicago, IL 60607-7045
USA

[^0]: Received January 9, 2002.
 ${ }^{1}$ Research supported in part by National Science Foundation.

