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Fixed points of polynomial automorphisms of en 

Tetsuo Ueda 

Abstract. 

We study the fixed point indices of some polynomial automor
phisms of en. In particular, it is shown that, for a composition of 
generalized Henan maps, the sum of the fixed point indices vanishes. 
A consequence is that a generic polynomial automorphism of C 2 has 
a saddle fixed point. 

§1. Statement of the results 

A bijective map F of the space of n complex variables en onto itself 
defined by polynomials h(x), ... , fn(x), x = (x1, ... , Xn), is said to be 
a polynomial automorphism of en. The set Aut (en) of all polynomial 
automorphisms of en forms a group under composition. Two maps 
F1, Fz E Aut (en) are conjugate if there exists a map G E Aut (en) 
such that F2 = c-1 o F1 o G. 

For a fixed point of a holomorphic map of en to itself, holomorphic 
Lefschetz index can be defined (see §2, also Griffiths-Harris [2]). We 
will study the indices for the fixed points of polynomial automorphisms, 
since they are important invariants under conjugation. 

For the case of two variables, Friedland-Milnor [1] showed that any 
map in Aut (e2 ) is conjugate to either (1) an affine map, (2) an ele
mentary map or (3) a composition Fm o · · · o F 1 of generalized Henon 
maps 

where PJ.L(y) are polynomials of degree 2: 2 and JJ.L =f. 0. 
We denote by H 0 the set consisting of compositions of generalized 

Henon maps, and by H the set of all maps conjugate to one of the maps 
in H 0 . 
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Let Fix (F) denote the set of all fixed points of F. It was shown in 
[1] that, ifF E H0 and degF = k, then F has k fixed points counting 

multiplicity. i.e., L Mult (F, a) = k. 
aEFix(F) 

Now we have 

Theorem 1. If F E H, then we have 

L Ind(F,a)=O. 
aEFix(F) 

We note that the formula fails in general for maps t/. H. A proof 
of this formula for a generalized Henon map is given in [3]. A similar 
result for holomorphic maps on projective spaces is given in [4]. 

Corollary 1. Let F E H and suppose that F has only simple fixed 
points aj (j = 1, · · · , k). Let Aj,l, Aj,2 denote the eigenvalues ofF'( aj). 
Then we have 

k ( 1 1 ) 2:: 1 - .x. 1 + 1 - .x. 2 = k, 
j=l J, J, 

Corollary 2. Let FE H and 8 = detF'. Suppose that 181 # 1 or 
8 = 1. Then (1) F has either a saddle fixed point or a multiple fixed 
point, and (2) F has infinitely many periodic points that are either 
saddle or multiple. 

The condition on 8 cannot be dropped as the following example 
shows. 

Example Let F be a Henon map defined by 

F(x, y) = (y, y2 + c- 8x). 

Then F has at least one saddle fixed point if and only if (8, c) t/. ~ U r, 
where~= {(8 + 1)2 - 4c = 0} and 

{ c. c 1+Re8} r = 181 = 1, J 1s real andy'2(1 + Re 8) - 1 :; J < 2 . 

We can generalize the index formula to maps of certain class of 
polynomial automorphisms of en: 

Theorem 2. Let F = F m o · · · o F1 be the composition of shift-like 
maps FM: en-+ en (J.L = 1, ... , m) defined by 

FI-L(xl,··· ,xn) = (x2,··· ,xn,a~-Lxl +pi-L(x2,··· ,xn)), 
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where PJ.L are polynomials in n - 1 variables. Suppose that there exist 
v ( 2 ::; v ::; n) such that 

PJ.L(x2, ... , Xn) = cJ.Lx~"' +(lower order terms), cJ.L =1- 0. 

Then we have LaEFix(F) Ind (F, a)= 0. 

We remark that, for general (compositions of) shift-like maps, the 
set Fix (F) may be non-isolated. Even if Fix (F) is isolated, the index 
formula does not necessarily hold. 

Example Consider the map F : e 3 ----+ e 3 defined by 

F(x, y, z) = (y, z, c5x + (y- z) 2 ). 

If c5 =1- 1, then Fix(F) = {0} and Ind(F,O) = 1/(1- c5). If c5 = 1, then 
Fix(F)={x=y=z}. 

§2. Multiplicity and Index 

Let G : en ----+ en be a holomorphic map and suppose that a is an 
isolated zero of G. Then there exist neighborhoods U of a and V of 
0 such that c-1 (0) n U = {a} and that GIU: U----+ Vis a branched 
cover. We define the zero multiplicity mult ( G, a) of G at a to be the 
sheet number of this map GIU. We call that a is a simple zero of G if 
mult ( G, a) = 1, or in other words, if det G' (a) =1- 0. 

If a is a simple zero, we define the zero index by ind ( G, a) = 
1/ det G' (a). For the general case ind ( G, a) is defined as follows: We 
set w = dx1 1\ · · · 1\ dxn and 

2 

Where en= J=l (n- 1)!/(27r)n. We define 

ind(G,a) = { (G*ry) 1\w laB 
where B denotes a ball with center a of sufficiently small radius so that 
a is the only zero of G in B. 

We will apply the following lemma in the proof of Theorem 2. 

Lemma 3. LetG(x) = (g1(x), ... ,gn(x)) be a polynomial map of 
en to en. Suppose that 9v is of the form 

g11 (x) = C11 X~(v) +(lower order terms), k11 2: 2, C11 =1- 0, (v = 1, ... , n). 

where a is a permutation of {1, ... ,n}. then LaEG-l(O) ind(G,a) = 0. 
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To see this, we note that 

L ind(G,a) = l (G*rJ) Aw, 
aEG- 1 (0) aB 

where B is a sufficiently large ball in en. By estimating the integral, 
we conclude the lemma. 

Now let F : en -+ en be a holomorphic map and suppose that a 
is an isolated fixed point of F. This is equivalent to say that a is an 
isolated zero of the map I d - F. We define the fixed point multiplicity 
and the fixed point index by 

Mult (F, a)= mult (Id- F, a), Ind (F, a)= ind (Id- F, a). 

§3. Outline of the proof 

3.1 To prove Theorem 2, let us first introduce the concept of vectorial 
shift-like map. We denote the points in cmn as (m, n)-matrices and 

also as a row of column vectors: [ = (~ij) = (6, ... ,~n)· A map 
<I> E Aut ( cmn) is said to be a vectorial shift-like map if it is of the form 

<1>(6, · · · '~n) = (6, · · · '~n' A6 + Q(6, · · · '~n)) 

where A E GL(m, C) and Q is a column vector of polynomials in m(n-1) 
variables ~ij (1 :::; i:::; m; 2:::; j :::; n). 

The fixed points of <I> are of the form b = (b, ... , b), where bE em 
are the roots of the equation A~+ Q(~, ... , ~) = ~- We define a linear 
map L: (6, ... , ~n) >---+ (rJ1 1 ••• , rJn) by 

r]v = ~v- ~v+1 (v = 1, ... 'n- 1) and rJn = ~n· 

Then (I d- <I>) o L - 1 takes the form (rJ1, ... , rJn) >---+ (rJ1, ... , rJn-1, r]n -
A(rJ1 + · · · + rJn)- Q(rJ2 + · · · + rJn, ... , rJn)). The sum of the zero point 
indices of this map is equal to that of the map rJ >---+ rJ - Ar]- Q ( rJ, ... , rJ). 
If this satisfies the condition of Lemma 3, then ~bEFix (<I>) Ind (<I>, b) = 0. 

3.2 Let F~-' : en -+ en be holomorphic maps (f..l = 1, ... , m), and let 
F = Fm o · · · o F 1 be their composition. To study the fixed points ofF, 
we consider the map F : cmn -+ cmn defined as follows. We denote the 
points in cmn by a (m, n)-matrix and also as a column of row vectors : 
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( 

X1 ) ( Fm(Xm) ) 
A A x2 F1(xl) 

F(x) = F . = . . 

X~ Fm-1(.Xm-1) 

There is a one-to-one correspondence between the sets Fix (F) and 
Fix (F). In fact, if a is in Fix (F), then the point a= t(a1, ... , am) with 
a1 = a, all- = F~J--1(a~J-_1) (!-L = 2, ... , m) is in Fix (F). Conversely, if 
a= t(a1 , ... , am) is in Fix (F), then a1 is in Fix (F). 

Further we can prove that, if a E Fix (F) and a E Fix (F) are 
corresponding fixed points, then 

Mult (F, a)= Mult (F, a), and Ind (F, a)= Ind (F, a). 

3.3 Now we apply the above obserbations to a composition F = Fm o 
· · · o F 1 of shift-like maps Fw Then F(x) takes the form 

( 

Xm2 

X12 

Xm~1,2 

Xmn 
X1n 

Xm-1,n 

8mXm1 + Pm(Xm2, · · · , Xmn) 
81X11 + P1 (x12, · · · , X1n) 

8m-1Xm-1,1 + Pm-1(Xm-1,2, · · · ,Xm-1,n) 
) 

We can reduce F to a vectorial shift-like map by conjugation. To see 
this, consider the linear map M : cmn 3 ( Xij) f--> ( eij) E cmn defined 
by f.ij = X[i-H1],j where [£] denotes the number such that 1 ::=; [£] ::=; m 
and [£] = .e mod m. Then the conjugate <P = M oF o M-1 is a vectorial 
shift-like map <P(6, ... , f.n) = (f,2, ... , f.n, A6 + Q(6, ... , f.n)), where 

( 

8[1-n]f.(1-n],1 + P[1-nj(f.[2-n],2• · · · ,f.m,n) ) 
8(2-n]f.(2-n],1 + P[2-nJ(f.[3-n],2• · · · '6,n) 

A6+Q(6, ... ,f.n)= . · 

8[m-n]f.[m-n],1 + P[m-~] (f.[1-n],2• · · · 'f.m-1,n) 

The map 'T/ f--> 'T/- Ary- Q(ry, ... , TJ) takes the form 

( 

'T/1 ) ( 'T/1-8(1-n]'T/[1-n]-P[1-nj('T/[2-n]'"' ,TJm) ) 
'T/2 'T/2 - 8(2-n] 'T/[2-n] - P[2-n] ( 'T/[3-n]' · · · ''T/1) 

'T/~ f--> 'Tim- 8(m-n]'T/[m-n]- P[~-nj('T/[1-n]•" · ''T/m-d . 
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Under the condition of Theorem 2, this map satisfies the condition of 
Lemma 3. Thus Theorem 2 is proved. 

References 

[ 1] S. Friedland and J. Milnor, Dynamical properties of plane polynomial 
automorphisms, Ergod. Th. and Dynam. Sys.,9 (1989),67-99. 

[ 2] Ph. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley 
& Sons, 1978. 

[ 3] S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic 
Dynamics, Cambridge U. Press, 2000. 

[ 4] T. Ueda, Complex dynamics on projective spaces - index formula for 
fixed points. Dynamical systems and chaos, Vol. 1, 252-259, World Sci. 
Publishing, 1995. 

Division of Mathematics 
Faculty of Integrated Human Studies 
Kyoto University 
Kyoto 606-8501 
Japan 

Current address: 
Department of Mathematics 
Kyoto University 
Kyoto 606-8502 
Japan 


