Fixed points of polynomial automorphisms of \mathbf{C}^{n}

Tetsuo Ueda

Abstract

. We study the fixed point indices of some polynomial automorphisms of \mathbf{C}^{n}. In particular, it is shown that, for a composition of generalized Hénon maps, the sum of the fixed point indices vanishes. A consequence is that a generic polynomial automorphism of \mathbf{C}^{2} has a saddle fixed point.

§1. Statement of the results

A bijective map F of the space of n complex variables \mathbf{C}^{n} onto itself defined by polynomials $f_{1}(x), \ldots, f_{n}(x), x=\left(x_{1}, \ldots, x_{n}\right)$, is said to be a polynomial automorphism of \mathbf{C}^{n}. The set $\operatorname{Aut}\left(\mathbf{C}^{n}\right)$ of all polynomial automorphisms of \mathbf{C}^{n} forms a group under composition. Two maps $F_{1}, F_{2} \in \operatorname{Aut}\left(\mathbf{C}^{n}\right)$ are conjugate if there exists a $\operatorname{map} G \in \operatorname{Aut}\left(\mathbf{C}^{n}\right)$ such that $F_{2}=G^{-1} \circ F_{1} \circ G$.

For a fixed point of a holomorphic map of \mathbf{C}^{n} to itself, holomorphic Lefschetz index can be defined (see §2, also Griffiths-Harris [2]). We will study the indices for the fixed points of polynomial automorphisms, since they are important invariants under conjugation.

For the case of two variables, Friedland-Milnor [1] showed that any map in Aut $\left(\mathbf{C}^{2}\right)$ is conjugate to either (1) an affine map, (2) an elementary map or (3) a composition $F_{m} \circ \cdots \circ F_{1}$ of generalized Hénon maps

$$
F_{\mu}(x, y)=\left(y, p_{\mu}(y)-\delta_{\mu} x\right), \quad \mu=1, \ldots, m
$$

where $p_{\mu}(y)$ are polynomials of degree ≥ 2 and $\delta_{\mu} \neq 0$.
We denote by H_{0} the set consisting of compositions of generalized Hénon maps, and by H the set of all maps conjugate to one of the maps in H_{0}.

Let $\operatorname{Fix}(F)$ denote the set of all fixed points of F. It was shown in [1] that, if $F \in H_{0}$ and $\operatorname{deg} F=k$, then F has k fixed points counting multiplicity. i.e., $\sum_{a \in \operatorname{Fix}(F)} \operatorname{Mult}(F, a)=k$.

Now we have
Theorem 1. If $F \in H$, then we have

$$
\sum_{a \in \operatorname{Fix}(F)} \operatorname{Ind}(F, a)=0
$$

We note that the formula fails in general for maps $\notin H$. A proof of this formula for a generalized Hénon map is given in [3]. A similar result for holomorphic maps on projective spaces is given in [4].

Corollary 1. Let $F \in H$ and suppose that F has only simple fixed points $a_{j}(j=1, \cdots, k)$. Let $\lambda_{j, 1}, \lambda_{j, 2}$ denote the eigenvalues of $F^{\prime}\left(a_{j}\right)$. Then we have

$$
\sum_{j=1}^{k}\left(\frac{1}{1-\lambda_{j, 1}}+\frac{1}{1-\lambda_{j, 2}}\right)=k
$$

Corollary 2. Let $F \in H$ and $\delta=\operatorname{det} F^{\prime}$. Suppose that $|\delta| \neq 1$ or $\delta=1$. Then (1) F has either a saddle fixed point or a multiple fixed point, and (2) F has infinitely many periodic points that are either saddle or multiple.

The condition on δ cannot be dropped as the following example shows.

Example Let F be a Hénon map defined by

$$
F(x, y)=\left(y, y^{2}+c-\delta x\right) .
$$

Then F has at least one saddle fixed point if and only if $(\delta, c) \notin \Delta \cup \Gamma$, where $\Delta=\left\{(\delta+1)^{2}-4 c=0\right\}$ and

$$
\Gamma=\left\{|\delta|=1, \frac{c}{\delta} \text { is real and } \sqrt{2(1+\operatorname{Re} \delta)}-1 \leq \frac{c}{\delta}<\frac{1+\operatorname{Re} \delta}{2}\right\}
$$

We can generalize the index formula to maps of certain class of polynomial automorphisms of \mathbf{C}^{n} :

Theorem 2. Let $F=F_{m} \circ \cdots \circ F_{1}$ be the composition of shift-like maps $F_{\mu}: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}(\mu=1, \ldots, m)$ defined by

$$
F_{\mu}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{2}, \ldots, x_{n}, a_{\mu} x_{1}+p_{\mu}\left(x_{2}, \ldots, x_{n}\right)\right)
$$

where p_{μ} are polynomials in $n-1$ variables. Suppose that there exist $\nu(2 \leq \nu \leq n)$ such that

$$
P_{\mu}\left(x_{2}, \ldots, x_{n}\right)=c_{\mu} x_{\nu}^{k_{\mu}}+(\text { lower order terms }), c_{\mu} \neq 0 .
$$

Then we have $\quad \sum_{a \in \operatorname{Fix}(F)} \operatorname{Ind}(F, a)=0$.
We remark that, for general (compositions of) shift-like maps, the set Fix (F) may be non-isolated. Even if $\operatorname{Fix}(F)$ is isolated, the index formula does not necessarily hold.

Example Consider the map $F: \mathbf{C}^{3} \rightarrow \mathbf{C}^{3}$ defined by

$$
F(x, y, z)=\left(y, z, \delta x+(y-z)^{2}\right) .
$$

If $\delta \neq 1$, then $\operatorname{Fix}(F)=\{0\}$ and $\operatorname{Ind}(F, 0)=1 /(1-\delta)$. If $\delta=1$, then $\operatorname{Fix}(F)=\{x=y=z\}$.

§2. Multiplicity and Index

Let $G: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ be a holomorphic map and suppose that a is an isolated zero of G. Then there exist neighborhoods U of a and V of 0 such that $G^{-1}(0) \cap U=\{a\}$ and that $G \mid U: U \rightarrow V$ is a branched cover. We define the zero multiplicity mult (G, a) of G at a to be the sheet number of this map $G \mid U$. We call that a is a simple zero of G if mult $(G, a)=1$, or in other words, if $\operatorname{det} G^{\prime}(a) \neq 0$.

If a is a simple zero, we define the zero index by $\operatorname{ind}(G, a)=$ $1 / \operatorname{det} G^{\prime}(a)$. For the general case ind (G, a) is defined as follows: We set $\omega=d x_{1} \wedge \cdots \wedge d x_{n}$ and

$$
\eta=\frac{c_{n}}{\|x\|^{2 n}} \sum_{i=1}^{n}(-1)^{i-1} \bar{x}_{i} d \bar{x}_{1} \wedge \cdots \widehat{d \bar{x}}_{i} \cdots \wedge d \bar{x}_{n}
$$

Where $c_{n}=\sqrt{-1}^{n^{2}}(n-1)!/(2 \pi)^{n}$. We define

$$
\operatorname{ind}(G, a)=\int_{\partial B}\left(G^{*} \eta\right) \wedge \omega
$$

where B denotes a ball with center a of sufficiently small radius so that a is the only zero of G in B.

We will apply the following lemma in the proof of Theorem 2.
Lemma 3. Let $G(x)=\left(g_{1}(x), \ldots, g_{n}(x)\right)$ be a polynomial map of \mathbf{C}^{n} to \mathbf{C}^{n}. Suppose that g_{ν} is of the form
$g_{\nu}(x)=c_{\nu} x_{\sigma(\nu)}^{k_{\nu}}+($ lower order terms $), \quad k_{\nu} \geq 2, c_{\nu} \neq 0, \quad(\nu=1, \ldots, n)$. where σ is a permutation of $\{1, \ldots, n\}$. then $\sum_{a \in G^{-1}(0)}$ ind $(G, a)=0$.

To see this, we note that

$$
\sum_{a \in G^{-1}(0)} \operatorname{ind}(G, a)=\int_{\partial B}\left(G^{*} \eta\right) \wedge \omega
$$

where B is a sufficiently large ball in \mathbf{C}^{n}. By estimating the integral, we conclude the lemma.

Now let $F: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ be a holomorphic map and suppose that a is an isolated fixed point of F. This is equivalent to say that a is an isolated zero of the map $I d-F$. We define the fixed point multiplicity and the fixed point index by

$$
\operatorname{Mult}(F, a)=\operatorname{mult}(I d-F, a), \quad \operatorname{Ind}(F, a)=\operatorname{ind}(I d-F, a)
$$

§3. Outline of the proof

3.1 To prove Theorem 2, let us first introduce the concept of vectorial shift-like map. We denote the points in $\mathbf{C}^{m n}$ as (m, n)-matrices and also as a row of column vectors: $\widehat{\xi}=\left(\xi_{i j}\right)=\left(\xi_{1}, \ldots, \xi_{n}\right)$. A map $\Phi \in \operatorname{Aut}\left(\mathbf{C}^{m n}\right)$ is said to be a vectorial shift-like map if it is of the form

$$
\Phi\left(\xi_{1}, \ldots, \xi_{n}\right)=\left(\xi_{2}, \ldots, \xi_{n}, A \xi_{1}+Q\left(\xi_{2}, \ldots, \xi_{n}\right)\right)
$$

where $A \in G L(m, \mathbf{C})$ and Q is a column vector of polynomials in $m(n-1)$ variables $\xi_{i j}(1 \leq i \leq m ; 2 \leq j \leq n)$.

The fixed points of Φ are of the form $\hat{b}=(b, \ldots, b)$, where $b \in \mathbf{C}^{m}$ are the roots of the equation $A \xi+Q(\xi, \ldots, \xi)=\xi$. We define a linear $\operatorname{map} L:\left(\xi_{1}, \ldots, \xi_{n}\right) \mapsto\left(\eta_{1}, \ldots, \eta_{n}\right)$ by

$$
\eta_{\nu}=\xi_{\nu}-\xi_{\nu+1}(\nu=1, \ldots, n-1) \quad \text { and } \quad \eta_{n}=\xi_{n}
$$

Then $(I d-\Phi) \circ L^{-1}$ takes the form $\left(\eta_{1}, \ldots, \eta_{n}\right) \mapsto\left(\eta_{1}, \ldots, \eta_{n-1}, \eta_{n}-\right.$ $\left.A\left(\eta_{1}+\cdots+\eta_{n}\right)-Q\left(\eta_{2}+\cdots+\eta_{n}, \ldots, \eta_{n}\right)\right)$. The sum of the zero point indices of this map is equal to that of the map $\eta \mapsto \eta-A \eta-Q(\eta, \ldots, \eta)$. If this satisfies the condition of Lemma 3, then $\sum_{\hat{b} \in \operatorname{Fix}(\Phi)} \operatorname{Ind}(\Phi, \hat{b})=0$.
3.2 Let $F_{\mu}: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ be holomorphic maps $(\mu=1, \ldots, m)$, and let $F=F_{m} \circ \cdots \circ F_{1}$ be their composition. To study the fixed points of F, we consider the map $\hat{F}: \mathbf{C}^{m n} \rightarrow \mathbf{C}^{m n}$ defined as follows. We denote the points in $\mathbf{C}^{m n}$ by a (m, n)-matrix and also as a column of row vectors :
$\hat{x}=\left(x_{i j}\right)={ }^{t}\left(x_{1}, \ldots, x_{m}\right)$. We define \hat{F} by

$$
\hat{F}(\hat{x})=\hat{F}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)=\left(\begin{array}{c}
F_{m}\left(x_{m}\right) \\
F_{1}\left(x_{1}\right) \\
\vdots \\
F_{m-1}\left(x_{m-1}\right)
\end{array}\right)
$$

There is a one-to-one correspondence between the sets Fix (F) and Fix (\hat{F}). In fact, if a is in $\operatorname{Fix}(F)$, then the point $\hat{a}={ }^{t}\left(a_{1}, \ldots, a_{m}\right)$ with $a_{1}=a, a_{\mu}=F_{\mu-1}\left(a_{\mu-1}\right)(\mu=2, \ldots, m)$ is in $\operatorname{Fix}(\hat{F})$. Conversely, if $\hat{a}={ }^{t}\left(a_{1}, \ldots, a_{m}\right)$ is in $\operatorname{Fix}(\hat{F})$, then a_{1} is in $\operatorname{Fix}(F)$.

Further we can prove that, if $a \in \operatorname{Fix}(F)$ and $\hat{a} \in \operatorname{Fix}(\hat{F})$ are corresponding fixed points, then

$$
\operatorname{Mult}(F, a)=\operatorname{Mult}(\hat{F}, \hat{a}), \quad \text { and } \quad \operatorname{Ind}(F, a)=\operatorname{Ind}(\hat{F}, \hat{a})
$$

3.3 Now we apply the above obserbations to a composition $F=F_{m}$ 。 $\cdots \circ F_{1}$ of shift-like maps F_{μ}. Then $\hat{F}(\hat{x})$ takes the form

$$
\left(\begin{array}{cccc}
x_{m 2} & \cdots & x_{m n} & \delta_{m} x_{m 1}+p_{m}\left(x_{m 2}, \ldots, x_{m n}\right) \\
x_{12} & \cdots & x_{1 n} & \delta_{1} x_{11}+p_{1}\left(x_{12}, \ldots, x_{1 n}\right) \\
\vdots & \ddots & \vdots & \vdots \\
x_{m-1,2} & \cdots & x_{m-1, n} & \delta_{m-1} x_{m-1,1}+p_{m-1}\left(x_{m-1,2}, \ldots, x_{m-1, n}\right)
\end{array}\right) .
$$

We can reduce \hat{F} to a vectorial shift-like map by conjugation. To see this, consider the linear map $M: \mathbf{C}^{m n} \ni\left(x_{i j}\right) \mapsto\left(\xi_{i j}\right) \in \mathbf{C}^{m n}$ defined by $\xi_{i j}=x_{[i-j+1], j}$ where $[\ell]$ denotes the number such that $1 \leq[\ell] \leq m$ and $[\ell] \equiv \ell \bmod m$. Then the conjugate $\Phi=M \circ \hat{F} \circ M^{-1}$ is a vectorial shift-like map $\Phi\left(\xi_{1}, \ldots, \xi_{n}\right)=\left(\xi_{2}, \ldots, \xi_{n}, A \xi_{1}+Q\left(\xi_{2}, \ldots, \xi_{n}\right)\right)$, where

$$
A \xi_{1}+Q\left(\xi_{2}, \ldots, \xi_{n}\right)=\left(\begin{array}{c}
\delta_{[1-n]} \xi_{[1-n], 1}+p_{[1-n]}\left(\xi_{[2-n], 2}, \ldots, \xi_{m, n}\right) \\
\delta_{[2-n]} \xi_{[2-n], 1}+p_{[2-n]}\left(\xi_{[3-n], 2}, \ldots, \xi_{1, n}\right) \\
\vdots \\
\delta_{[m-n]} \xi_{[m-n], 1}+p_{[m-n]}\left(\xi_{[1-n], 2}, \ldots, \xi_{m-1, n}\right)
\end{array}\right) .
$$

The map $\eta \mapsto \eta-A \eta-Q(\eta, \ldots, \eta)$ takes the form

$$
\left(\begin{array}{c}
\eta_{1} \\
\eta_{2} \\
\vdots \\
\eta_{m}
\end{array}\right) \mapsto\left(\begin{array}{c}
\eta_{1}-\delta_{[1-n]} \eta_{[1-n]}-p_{[1-n]}\left(\eta_{[2-n]}, \ldots, \eta_{m}\right) \\
\eta_{2}-\delta_{[2-n]} \eta_{[2-n]}-p_{[2-n]}\left(\eta_{[3-n]}, \ldots, \eta_{1}\right) \\
\vdots \\
\eta_{m}-\delta_{[m-n]} \eta_{[m-n]}-p_{[m-n]}\left(\eta_{[1-n]}, \ldots, \eta_{m-1}\right)
\end{array}\right)
$$

Under the condition of Theorem 2, this map satisfies the condition of Lemma 3. Thus Theorem 2 is proved.

References

[1] S. Friedland and J. Milnor, Dynamical properties of plane polynomial automorphisms, Ergod. Th. and Dynam. Sys., 9 (1989),67-99.
[2] Ph. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley \& Sons, 1978.
[3] S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics, Cambridge U. Press, 2000.
[4] T. Ueda, Complex dynamics on projective spaces - index formula for fixed points. Dynamical systems and chaos, Vol. 1, 252-259, World Sci. Publishing, 1995.

Division of Mathematics
Faculty of Integrated Human Studies
Kyoto University
Kyoto 606-8501
Japan
Current address:
Department of Mathematics
Kyoto University
Kyoto 606-8502
Japan

