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Problems related to hyperbolicity of almost complex 
structures 

Shoshichi Kobayashi 

The contents of my talk at this conference are in two papers [4] 
and [5]. So the emphasis here is on what I was unable to deliver at the 
conference for lack of time. 

§1. Generic almost complex structures and hyperbolicity 

Let (M, J) be an almost complex manifold. Because of paucity of 
local holomorphic functions in general, there is no complex function 
theory on (M, J). However, there is an abundant supply of holomorphic 
mappings from a disk of C into ( M, J) [6], and we can define the intrinsic 
pseudo-distance dM and hyperbolicity for an almost complex manifold 
!VI exactly in the same way as in the complex manifold case. 

It is obvious that if M is hyperbolic, every holomorphic map f: C ---+ 
M is constant. Conversely, if M is compact and if there exist no non
constant holomorphic maps from C into M, then M is hyperbolic. In 
order to state the theorem a little more precisely, let z denote the nat
ural coordinate system in C, and take a length function E on M. We 
call a non-constant holomorphic map f: C ---+ M a complex line if 

for some constant C. If f(C) is contained in a compact subset of M, 
then this condition is independent of the choice of E. Let S be a subset 
(usually a domain) in M. We say that a complex line f: C---+ M is a 
limit complex line coming from S if on each disk DR= {izl < R} 
of radius R the mapping JIDR is the limit of a sequence of holomorphic 
mappings of DR into S. In this case, we have f(C) C S. Trivially, every 
complex line in M is a limit complex line coming from M. 
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The proof for the following Brody's hyperbolicity criterion is exactly 
the same as in the complex case ([3; pp.l00-103]). 

(1.1) Theorem. If a compact almost complex manifold M is not hyper
bolic, then there is a complex line f: C ___, M. 

The following almost complex version of (3.6.8) in [3; p.106] holds. 

(1.2) Theorem. Let Z be an almost complex manifold, andY a compact 
almost complex submanifold of Z. If Y is hyperbolic, there is a relatively 
compact neighborhood U of Y which is hyperbolically imbedded in Z. 

(1.3) Corollary. Let 1r: Z ___, X be an almost complex fiber space with 
compact fiber. If the fiber 1r- 1 (p0 ) at a point Po EX is hyperbolic, then 
in a small neighborhood of p0 every fiber is hyperbolic. 

Remark. The infinitesimal form FM of the pseudo-distance dM can 
be defined as in the complex case. As we remarked in [3; p.101], for the 
proofs of the results above we use only the most basic properties of Fx 
that are obvious from the definition. We need not know whether Fx is 
upper semi-continuous and dM is the integrated form of Fx, although 
this is also an interesting question. 

In view of (1.3) it seems to be reasonable to conjecture that if (M, Jo) 
is a compact hyperbolic almost complex manifold, all nearby almost 
complex structures J are hyperbolic. (By "nearby" we mean the first 
and second partial derivatives of J are close to those of J 0 ). Unlike the 
moduli space of complex structures on a compact manifold, the set of 
almost complex structures (modulo diffeomorphisms) is huge and has no 
nice structures. So, (1.3) by itself does not prove the conjecture. 

If (M, J0 , g0 ) is an almost Hermitian manifold with its holomorphic 
sectional curvature bounded by a negative constant, then for J suffi
ciently close to J0 and for the Hermitian metric g defined by 

1 
g(u, v) = 2(go(u, v) + go(Ju, Jv)), 

the holomorphic sectional curvature remains bounded by a negative con
stant. On the other hand, as we have shown in [4], an almost Hermitian 
manifold with its holomorphic sectional curvature bounded by a nega
tive constant is hyperbolic. So this is also another supporting evidence 
for the conjecture above. 

A related question is hyperbolicity of a generic almost complex struc
ture. Let (Af, J 0 ) be a compact non-hyperbolic almost complex mani
fold. In view of (1.1) it seems that an arbitrarily small, but suitable 
deformation of J0 would result in a hyperbolic almost complex struc
ture. 
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§2. Automorphisms of almost complex manifolds 

Generalizing the old theorem of Bochner for compact complex man
ifolds, Boothby, Wang and I proved in [1] that the automorphism group 
Aut(M, J) of a compact almost complex manifold (M, J) is a Lie group 
with Lie algebra aut(M, J) consisting of infinitesimal automorphisms 
of (M, J). The condition that a (real) vector field u is an infinitesimal 
automorphism of (M, J) is given by 

(2.1) for all vector fields v, 

where Lu denotes the Lie differentiation with respect to u. Since Luv = 
[u, v], the condition above may be written as 

(2.2) [u, Jv] = J[u, v] for all vector fields v. 

In the complex case, the automorphism group is a complex Lie 
group. This is because if u E aut(M, J), then Ju E aut(M, J). How
ever, this is not the case for almost complex manifolds. 

The integrability condition for J is given by vanishing of the Nijen
huis tensor N defined by 

N(u, v) = [Ju, Jv]- J[Ju, v] + J(J[u, v]- [u, Jv]). 

So, if u, Ju E aut(M, J), then N(u, v) = 0 for all v. It is now clear that 
we cannot expect to have, in general, a complex Lie group acting on an 
almost complex manifold. 

Now, if (M, J) is a compact hyperbolic almost complex manifold, 
Aut(M, J) is compact since it preserves the intrinsic distance dM. We 
know that for a compact hyperbolic complex manifold (M, J), the group 
Aut(M, J) is finite. The reason is that if dim Aut(M, J) > 0, then 
Aut(M, J) has a complex one-parameter subgroup and the action of 
this one-parameter subgroup gives rise to nonconstant holomorphic maps 
from C into M, in violation of the hyperbolicity. Clearly, this argument 
cannot be used in the almost complex case. 

However, we can circumvent this obstacle by using a slightly modi
fied argument. If u E aut(M, J), then by (2.2) we have 

[u, Ju] = J[u, u] = 0. 

Hence, the one-parameter groups e•u and etJu commute. Given a point 
Po E M, the map f: C --+ M defined by 

f(s + ti) = e•u+tJu(Po), s +tiE C 
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is holomorphic. For a suitable choice of Po this map is nonconstant, 
which proves the following theorem. 

(2.3) Theorem. The automorphism group of a compact hyperbolic al
most complex manifold is finite. 

Let X andY be compact almost complex manifolds, Hol(X, Y) be 
the family of holomorphic maps from X into Y, and Sur(X, Y) the 
family of surjective holomorphic maps from X toY. If Y is hyperbolic, 
then Hol(X, Y) and Sur(X, Y) are compact. If, moreover, X and Y 
are complex manifolds, then Sur(X, Y) is finite. This has been proved 
under various additional assumptions and finally by Noguchi [7] in the 
most general form, see also [3; Chapter 6, §6]. The natural question is 
whether this holds also in the almost complex case. 

At the moment, for a complete generalization there are too many 
obstacles. However, in some special cases it should be possible to find 
arguments avoiding the use of complex structures. 

Consider, for example, Urata's theorem [9] which says that the fam
ily of surjective holomorphic maps with connected fibers from a compact 
complex manifold X to a compact hyperbolic complex manifold Y is 
finite. The simplified proof of this theorem by Simha [8] depends on 
the following two facts: (i) finiteness of Aut(Y) and (ii) constancy of a 
bounded holomorphic function on a compact complex space. The lat
ter fact is used to show that a holomorphic map from a closed complex 
subspace of X into a coordinate neighborhood in Y is constant. 

Simha's proof (which does not make us of the complex analytic struc
ture of Hol(X, Y)) seems to be adaptable to the almost complex case. 
As we have shown in (2.3) above, we have (i) in the almost complex case 
as well. As for (ii), from the elliptic differential equation satisfied by a 
holomorphic map between almost complex manifolds (see (2.2) in [1]), 
it is not hard to see that a holomorphic map from a compact almost 
complex manifold V into a coordinate neighborhood in Y is constant. 
However, we need to know this when Vis a fiber of a surjective holomor
phic map from X toY, which may have singularities. In other words, 
we have to consider almost complex spaces (with singularities) whatever 
their definition may be. 

If a holomorphic map f: X ---+ Y from an almost complex manifold 
X to a hyperbolic almost complex manifold Y is finite-to-one, then X 
is also hyperbolic. This is a result in metric space topology, see (1.3.14) 
of [3; p.l3]. If we can prove something like the Stein factorization theo
rem for almost complex manifolds, then we would be one step closer to 
dropping the assumption of connected fibers from Urata's theorem. 
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§3. Local hyperbolicity 

One of the sufficient conditions for an almost complex manifold to 
be (complete) hyperbolic (in the sense that its intrinsic pseudo-distance 
is a (complete) distance) is that it admits a (complete) Hermitian met
ric with holomorphic sectional curvature bounded above by a negative 
constant, (see [4]). 

As an application, we proved that every point of an almost com
plex manifold has a hyperbolic neighborhood. (In real dimension 4, the 
existence of a complete hyperbolic neighborhood was established by De
balme and Ivashkovich [2] by a completely different method.) In [4] I 
claimed that it has a complete hyperbolic neighborhood. However, at 
this conference it was pointed out by Forstneric that the neighborhood I 
had constructed might not be complete. (The almost Hermitian metric 
constructed in [5] is a little simpler although it does not essentially differ 
from the one in [4].) 

So the problem of constructing a complete hyperbolic neighborhood 
is still open. 
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