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Recent development on Grauert domains 

Su-Jen Kan 

§1. Introduction 

The purpose of this article is to give a short survey on the recent 
development of a canonical complex structure, the so called adapted 
complex structure, on the tangent bundle of a real-analytic Riemannian 
manifold. 

It was observed by Grauert [G] that a real-analytic manifold X 
could be embedded in a complex manifold as a maximal totally real 
submanifold. One way to see this is to complexify the transition func
tions defining X. However, this complexification is not unique. In [G-S] 
and [L-S], Guillemin-Stenzel and independently Lempert-Szoke encom
pass certain conditions on the ambient complex structure to make the 
complexification canonical for a given real-analytic Riemannian mani
fold. In short, they were looking for a complex structure, on part of 
the cotangent bundle T* X, compatible with the canonical symplectic 
structure on T* X. Equivalently, it is to say that there is a unique com
plex structure, the adapted complex structure, on part of the tangent 
bundle of X making the leaves of the Riemannian foliation on T X into 
holomorphic curves. The set of tangent vectors of length less than r 
equipped with the adapted complex structure is called a Grauert tube 
rr X. For each X, there corresponds a rmax(X) 2:: 0 which is the maxi
mal real number such that the adapted complex structure is defined on 
rr X for all r :::; rmax(X). Though each Grauert tube over the same 
Riemannian manifold are diffeomorphic to each other, it was proved in 
[Kl] and [Szl] that rr X and T 8 X are biholomorphically nonequivalent 
when r =f. s. A domain D in which the adapted complex structure is 
defined and X C D c T X, is called a Grauert domain. The largest one 
of such Grauert domains is called the maximal Grauert domain in T X. 
In general, the maximal Grauert domain is strictly larger than Trmar X. 
They are the same when X is a symmetric space of rank-one. The do
main of definition depends on the geometry of X. Lempert and Szoke 
have the following estimate on the existence of domain of definition. 
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Theorem (Lempert-Szoke). If the sectional curoatures of X 
are :::: .A, .A < 0 and the adapted complex structure exists on Tr X then 

r< 2R· 

§2. Rigidity of Grauert tubes 

Since the adapted complex structure is constructed canonically as
sociated to the Riemannian metric g of X, the differentials of the isome
tries of X are automorphisms of Tr X. Conversely, it is interesting to 
see whether all automorphisms of Tr X come from the differentials of 
the isometries of X or not. When the answer is affirmative, we say the 
Grauert tube is rigid. 

With respect to the adapted complex structure, the length square 
function p(x, v) = lvl 2 , v E TxX, is strictly plurisubharmonic. When the 
center X is compact, the Grauert tube Tr X is exhausted by p, hence 
is a Stein manifold with smooth strictly pseudoconvex boundary when 
the radius is less than the critical one. Applying the existence theorem 
of Cheng-Yau, there exists an invariant complete Kahler-Einstein met
ric g K E of negative scalar curvature -1. Let w K E, which is a symplectic 
form on rr X, denote the imaginary part of gKE· Burns and Hind proved 
that (TrX,wKE) is symplectomorphic to (T*X,d(pdq)) via a symplec
tomorphism fixing X where pdq is the canonical Liouville 1-form on the 
cotangent bundle. Together with the fact that the automorphism group 
of Tr X is a compact Lie group, they ( cf. [B], [B-H]) were able to prove 
the following rigidity result for Grauert tubes over compact real-analytic 
Riemannian manifolds. 

Theorem (Burns-Hind). Any Grauert tube of finite radius over 
a compact real-analytic Riemannian manifold is rigid. 

When X is non-compact nothing particular is known, not even to 
the general existence of a Grauert tube over X, i.e., the rmax could very 
well shrink to zero. When X is non-compact, most of the good properties 
in the compact cases were lacking since the length square function p is 
no longer an exhaustion. By now, the only two non-compact cases we 
are sure about the existence of Grauert tubes are those over co-compact 
real-analytic Riemannian manifolds, the Grauert tubes are simply the 
lifting of the Grauert tubes over their compact quotients, and Grauert 
tubes over real-analytic homogeneous Riemannian manifolds. In [K2], 
the author proved the following characterization on Grauert tubes. 

Theorem (Kan 1). If a Grauert tube Tr X is covered by the ball, 
then X is the real hyperbolic space. 
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Using this and an extended version of Wong-Rosay theorem on the 
characterization of the unit ball, Kan and Ma (cf. [K-M 1,2] and [K3]) 
proved the rigidity for Grauert tubes over compact or non-compact lo
cally symmetric spaces. 

Later on, the author generalized the Wong-Rosay characterization 
to a general setting in any complex manifold and hence obtained: 

Theorem (Kan 2). Let rr X be a Gmuert tube over homogeneous 
Riemannian manifold of r < r max. Then Tr X is either rigid or the ball. 

Here we need the condition r < r max since the proof heavily relies 
on the strictly pseudoconvexity of some good boundary points. We don't 
know whether it is possible to have more general rigidity other than this 
since the homogeneous spaces seem to be the best we could expect for 
Grauert tubes' construction to exist. 

§3. Maximal Grauert domains 

It is interesting to see whether the rigidity holds for Trrnar X when X 
is not compact. As mentioned in the introduction, the maximal Grauert 
domain coincide with Tr""a" X when X is a symmetric space of rank
one. In [BHH], the authors considered the maximal Grauert domains 
over non-compact symmetric spaces. They showed that such maximal 
Grauert domains could be described algebraically which are correspon
dent to domains defined and studied by Akhiezer and Gindikin in [A-G]. 
They proved that 

Theorem (Burns-Halverscheid-Hind 1). 

(1) The maximal Gmuert domain over a non-compact symmetric 
space is either rigid or Hermitian symmetric. 

(2) When X is a non-compact symmetric space of mnk-one, Trma• X 
is never rigid. 

They also verified a conjecture of Akhiezer and Gindikin on the 
Steinness of such domains. 

Theorem (Burns-Halverscheid-Hind 2). The maximal Gmuert 
domain over a non-compact symmetric space is Stein. 

By now, all examples we know are Stein. It is natural to ask whether 
all Grauert tubes or maximal Grauert domains are Stein. Recently 
Halverscheid and Iannuzzi [H-I] answer this question negatively. The 
example they consider is the 3-dimensional Heisenberg group. Their 
calculation works for generalized Heisenberg groups as well. 
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Theorem (Halverscheid-Iannuzzi). The maximal Grauert do
main over a generalized Heisenberg group is neither holomorphically sep
arable nor holomorphically convex. 

§4. On the Kahler potential and CR invariants 

Another characteristic feature of a Grauert tube over a compact 
Riemannian manifold is that it is exhausted by a non-negative strictly 
plurisubharmonic function whose square root satisfies the complex ho
mogeneous Monge-Ampere equation away form the zero section. Em
phasizing on this Monge-Ampere equation, some very nice results were 
obtained by Aguilar and by Stenzel. 

In this section, we ask X to be compact. It is clear from the con
struction that a Grauert tube yr X, r < rmax is a Stein manifold with 
smooth strictly pseudoconvex boundary points. The existence of an in
variant complete Kahler-Einstein metric of negative scalar curvature -1 
was guaranteed. Since the construction of a Grauert tube is decided 
by the Monge-Ampere equation, it was expected that there might be a 
chance that this Kiihler-Einstein metric is completely determined by the 
length square function p. R. Aguilar established a connection between 
potentials for Kiihler-Einstein metrics in a neighborhood of X and the 
Riemannian density function of X. He proved that this occurs only 
when the density function of X depends solely on the geodesic distance 
function( such kind of manifold is called a harmonic manifold ) . 

Theorem (Aguilar). Suppose the Grauert tube yr X admits a 
Kiihler-Einstein metric with a Kahler potential that solely depends on p. 
Then X is a harmonic manifold. 

It is clear that the (2n-1 )-dimensional strictly pseudoconvex bound
ary 8(Tr X) of the Grauert tube yr X is a CR manifold when X is 
compact. The one-form () = -Im 8p has provided a pseudohermitian 
structure on it. There are two natural families of curves on 8(Tr X): the 
orbits of the geodesic flows coming from the Riemannian metric of X 
and chains, which are CR-invariants used to characterize CR manifolds. 

In [St], Stenzel asked the question that whether the above two kinds 
of curves are related. He studied this pseudohermitian structure via 
the Fefferman metric and then related the pseudohermitian invariants 
of 8(Tr X) to the invariants of the ambient Kahler metric and eventually 
to the original metric of X. 

Theorem (Stenzel). 

(1) Suppose there exists a J > 0 such that the orbits of the geodesic 
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flows are chains on fJ(Tr X) for all r < 5. Then X is an Rie
mannian Einstein manifold. 

(2) If X is a harmonic manifold, then the orbits of the geodesic 
flows are chains on fJ(Tr X), for all r < r max. 

§5. Unbounded Grauert tubes 

When r = oo, i.e., when the whole tangent bundle T X is a Grauert 
tube of infinite radius, the situation is completely different from the cases 
of finite radii. In this case, we call T X an unbounded Grauert tube. 

One trivial example is by taking X = 8 2 with the standard metric. 
The adapted complex structure is defined on the whole tangent bun
dle, which is biholomorphic to the complex quadric Q = { ( z1 , z2 , z3 ) E 

C3 lzi + z~ + zg = 1}. The unbounded Grauert tube TS2 is clearly not 
rigid. 

One interesting question is to ask whether unbounded Grauert tubes 
over compact Riemannian manifolds have algebraic embeddings in eN 
similar to the above round sphere case. Verifying the existence of a 
pair of real-valued exhaustion functions with the growth properties re
lated to Demailly's conjecture on the characterization of affine algebraic 
manifolds. Aguilar and Burns proved the following 

Theorem (Aguilar-Burns 1). 
Suppose 0 = T X is an unbounded Grauert tube over a compact 

manifold X. Then 0 is an affine algebraic manifold. 

They also classify all possible unbounded Grauert tubes T X when 
X is of dimension 2. 

Theorem (Aguilar-Burns 2). 
Suppose 0 is an unbounded Grauert tube over a compact manifold 

X 2 . Then n is biholomorphic to one of C* X C*' ( C* X C*) I z2' Q or 
QjZ2. 

§6. Other applications 

There are also some interesting applications to this adapted complex 
structure done by R. Szoke in [Sz2] and [Sz3]. In [Sz2], Szoke tried to link 
the adapted complex structure over compact rank-one symmetric spaces 
to a complex structure J s defined on the punctured tangent bundle. 
The latter is preserved by the normalized geodesic flow which makes it 
possible to quantize the energy function over the symplectic manifold 
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0 

T X. He showed that the limit of the push forward of the adapted 
complex structure under an appropriate family of diffeomorphism exists 
and agrees with J s. 

In [Sz3], Szoke extended the method to treat all compact symmetric 
spaces. He proved that after appropriate rescalings, the bundle of (1,0) 
tangent vectors with respect to the adapted complex structure on T X 
has a specific limit bundle. 
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