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Some constructions of hyperbolic hypersurfaces
in P"(C)

Hirotaka Fujimoto

Abstract.

‘We show some methods of constructing hyperbolic hypersurfaces
in the complex projective space, which gives a hyperbolic hypersur-
face of degree 2™ in P"(C) for every n > 2. Moreover, we show that
there are some hyperbolic hypersurfaces of degree d in P™(C) for
every d > 2 x 6" for each n > 3.

§1. Introcution

Since S. Kobayashi asked whether a generic hypersurface of large
degree in P"*(C) is hyperbolic or not in [8], many papers were devoted
to constructing various examples of hypersurfaces in P*(C). In [2], R.
Brody and M. Green gave an example of hyperbolic hypersurface in
P3(C) of even degree > 50. Afterwards, new types of hyperbolic hy-
persurfaces of degree d in P3(C) were given by A. Nadel in the case of
d = 6p+ 3 for p > 3 in [10], by J. El Goul for d > 14 in [7], by J.
P. Demailly and by Y. T. Siu-S. K. Yeung for d > 11 in 1997 respec-
tively. Moreover, J. P. Demailly-J. El Goul proved that a very generic
hypersurface of degree at least 21 in P3(C) is hyperbolic in [4] and M.
Shirosaki constructed a hyperbolic hypersurface of degree 10 in [11]. On
the other hand, in [9], K. Masuda and J. Noguchi proved that there
exists a hyperbolic hypersurface of every degree d > d(n) for a posi-
tive integer d(n) depending only on n and some concrete examples of
hyperbolic hypersurfaces in P*(C) for n < 5.

Recently, the author constructed a family of hyperbolic hypersur-
faces of degree 2" in P™(C) for n > 3 in [6]. The purpose of this note
is to explain the results in [6] and to give some lower estimate of d(n)
in the above-mentioned results given by Masuda-Noguchi. The author
would like to thank J. Noguchi for useful suggestions to this work.
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§2. Construction of H-polynomials
For convenience’ sake, we introduce the following terminology.

Definition 2.1. We call a homogeneous polynomial Q(w) of degree
din w = (wg, w1, ... ,wy,) an H-polynomial if it satisfies the conditions:

(H1) If a holomorphic map f := (fo: f1:---: fn) of C into P*(C)
satisfies the identity Q(fo, f1,.-. , fn) = cf§ for some c € C, then f is a
constant.

(H2) If a holomorphic map f := (fy : -+ : f,) of C into P""}(C)
satisfies the identity Q(0, f1,..., fn) = cf%,, for some ¢ € C and entire
function f,41, then f is a constant.

Definition 2.2. We say a complex space M to be Brody hyperbolic
if there is no nonconstant holomorphic map of C into M.

As was shown by R. Brody in [1], a compact complex manifold
is Brody hyperbolic if and only if it is hyperbolic in the sense of S.
Kobayashi. In the following, a compact hyperbolic space means a com-
pact Brody hyperbolic space.

Proposition 2.3. Let () be an H-polynomial. Then,

(1) Vi={(wo: - :wy);Q(wy,...,w,) =0} is hyperbolic and

(ii) for W := {(wy : -+ : w,); Q(0, w1, ... ,w,) = 0} C P*}(C),
Pn~1(C) \ W is Brody hyperbolic.

In fact, (i) is nothing but the case ¢ = 0 of (H1), and (ii) is a
result of (H2) because we can find an entire function f,y; such that

QO0, f1,-. . fa) = F 1 £ Q(O, f1,. .., fr) has no zeros.

For the case where n = 2 we have the following:

Theorem 2.4. Let Q(ug, u1,u2) be a homogeneous polynomial of
degree d > 4 and consider the associated inhomogeneous polynomial
Q(v,w) := Q(1,v,w). Assume that

(C1) the simultaneous equations Q, (v, w) =
finitely many solutions, say Py := (vg,wy) (1 <

(C2) Q(Py) # Q(Pg) for1<k<f{<N,

(C3) Quy(1, vk, wi) #0 for 1 <k <N,

(C4) {(u1,u2); Qu, (0,u1,u2) = 0 i=0,1,2} = {(0,0)}.

(C5) Hessian ¢ = QuyQuw — @2, # 0 at (vk,wi) (1 < k < N).
Then, ) is an H-polynomial.

w (v, w) = 0 have only
< N),

Q
k

For the proof, refer to [6].
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Remark. We can show that generic homogeneous polynomials of
degree d > 4 satisfy the conditions in Theorem 2.4. Here, generic ho-
mogeneous polynomials mean all polynomials in some nonempty Zariski
open set in the space of all homogeneous polynomials of degree d.

For the case n > 3, we can prove the following:

Theorem 2.5. Let Q(uo,u1,... ,U,) be an H-polynomial of degree
do and P(up, un+1) & homogeneous polynomial of degree di(> 3) such
that P(ug,uny1) and P(w) := P(1,w) satisfies the conditions;

(P1) P(0,un41) #0,

(P2) P'(w) has only simple zeros a1, az, ... ,04, -1,

(P3) P(ay) # P(ay) for 1 <k <€<d; —1.

Form > 2, if di := mdy and 2/(d; — 2) +1/m < 1, then

R(UO,Ul, e 7unau‘n+1) = P(U’Oaun-f—l) - Q(U,O,U]_, e 7un)m

is an H-polynomial.

This is a slight improvement of [6, Theorem II|. We state the outline
of the proof. Consider holomorphic functions f;, some of which are
nonzero, such that R(fq,..., fat1) = cfgl. If fo =0, then

Q(Oaflv--- 7fn) =€ 204.1

for some constant e and hence f is a constant by (H2). Otherwise, setting
¢ 1= fas1/foand @ == Q(L, f1/fo,- .. , fu/ fo), we have P(p) —c = G
By the assumption, P(w) — ¢ has at least di — 2 simple zeros 3; and
¢ takes the values 3; with multiplicities at least m, whence ©,(5;) >
1 — 1/m, where ©,(8;) denote the truncated defects of 3;. By virtue
of the defect relation for meromorphic functions, we can conclude from
the assumption that f is a constant. We can prove that R satisfies (H2)
by the same argument as in the proof of [6, Theorem II]. We omit the
details.

By Theorem 2.4 and by using Theorem 2.5 repeatedly, we can easily
conclude the following:

Theorem 2.6. For each n > 2 there is a hyperbolic hypersurfaces
of degree 2" in P"(C) and a hypersurface W of degree 2" in P"~1(C)
such that P"~1(C) \ W is Brody hyperbolic.

We can also construct many hyperbolic hypersurfaces in the complex
projective space. For example, by Theorem 2.4, we can construct a
hyperbolic hypersurface of degree 5 in P2(C) and, by the use of the case
m = 3 of Theorem 2.5 repeatedly, hyperbolic hypersurfaces of degree
5 x 3"=2 in P"(C), which are used later.
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§3. Hyperbolic hypersurfaces of high degree

In this section, we construct some examples of hyperbolic hypersur-
faces of high degrees. We first give the following:

Theorem 3.1. Take a polynomial F:=3_, @iy, T oo T
and counsider the associated weighted homogeneous polynomial

*  — d—i1d1— - —tmdm .01 .
F (.’EO,IIJ},... ,Im) = E Ay, Lo ™ "’xl SRR i
%

1reeesbm

in (xg, x1,... ,Zn) with weights (1,dy, ... ,dy,) for some positive integers
d;, where d := max{i1dy + - - + imdm; ai,....,, # 0}. Assume that

(i) F*(0,z1,...,zm) consits of only one monomial,

(ii) if F(e1, ... ,¢m) = 0 for meromorphic functions p,; on C, then
at least one of ¢;’s is a constant.
Then, for arbitrary H-polynomials Q;(wo, ... ,w,) of degree d; (1 <1i <
m), the hypersurface

V.= {w = (wo:...:wp);wlF (Ql(w)/wgl, e ,Qm(w)/wg"’) = O}

in P™(C) is hyperbolic.

Proof. Consider a holomorphic map f := (fo : f1: - : fn) of
C into V(C P™(C)), where f; are entire functions without common
zeros. If fo =0, then Q;,(0, f1,..., fn) = 0 for some iy, whence f is a
constant by (H1). Assume that fo # 0. Then, F(¢1,...,9,) = 0 for
meromorphic functions @; := Q;(1, f1,... , fa)/f&. whence some ¢;, is
a constant and so f is a constant by (H1). This gives Theorem 3.1.

We give an example satisfying the assumptions of Theorem 3.1.

Proposition 3.2. Set F(z,y) := zP + y? + z"y® + 1 for positive
integers p,r,s. Assume that

(1) p<t, 6/p+2/t<l,

where t := min(r, s). Then, F(z,y) satisfies the assumptions (i) and (ii)
of Theorem 3.1 for arbitrary positive integers dy and d,.

Proof. Obviously, (i) holds. To see (ii), take nonconstant meromor-
phic functions ¢,y with F(p,y) = 0. We write ¢ = f1/fo.¢¥ = f2/fo
with entire functions f; such that f; and f; have no common zeros.
Consider the holomorphic map @ := (f§ : f: f7): C — P2?(C) and hy-
perplanes H; := {w;_; = 0} for j = 1,2,3 and Hy := {wo+w;+ws = 0},
which are in general position. Obviously, the pull-backs ®*(H;) of H; for
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j=1,2,3, considered as divisors, have no positive multiplicities smaller
than p. Take a point zg in f~1(H,). Since fZ+ fP+fF = — fI f3fp=(r+9),
if fo(z0) # 0, the multiplicity of ®*(H,) at 2o is at least t. Assume
that fo(zo) = 0. Then, fi(z0) # 0 and fo(z9) # 0, because oth-
erwise 212.:0 fi(20)? # 0. This is impossible by the assumption p <
r + s. In conclusion, ®*(Hy) has no positive multiplicities smaller than
t. Then, there are constants cg, ¢1, c2 with (cg, ¢1, c2) # (0,0,0) such that
co? + c1YP 4+ co = 0. Because, otherwise, the second main theorem for
holomorphic curves in P*(C) gives 3(1—2/p) + (1 —2/t) < 3, which con-
tradicts the assumption(cf., [5, Theorem 3.3.15]). If ¢o = 0, then ¢ and
1 are obviously constants. Otherwise, we have ¢y f§ + c1 1 + cafy = 0.
Since p > 4 by the assumption, ® is a constant. This gives Proposition
3.2

By Theorem 3.1 and Proposition 3.2, we have the following:

Proposition 3.3. Let Q;(w) be H-polynomials of degree d; (i =
1,2) in n + 1 variables w = (wp, w1, ... ,wy) and p,T, s positive integers
satisfying the condition (1). Then, the zero locus of the polynomial

R(w) := Q1 (w)Pwi ™™ + Qa(w) wi P® + w — Q1 (w) Q2 (w)*

is a hyperbolic hypersurface in P™(C) of degree d := rd; + sds.
This improves Masuda-Noguchi’s Theorem as follows:

Theorem 3.4. For each n > 3 we can take a positive integer
d(n) such that there are hyperbolic hypersurfaces of degree d for every
d > d(n) in P™(C). Here, for example, we can take

(2) d(n):=92" +5x3""2) +2"(5x 3" % ~1) +5x 322" -~ 1).

For the proof of Theorem 3.4, we give the following Lemma:
Lemma 3.5. Let di and d» be mutually prime positive integers.
For arbitrarily given positive integer my, every integer d with

d > mo(dl“i' d2) + d](dz — 1) + d2(d1 — 1)

can be written as d = rdy + sdy with r,s > my.

This is easily shown by the fact that, for each number £ with 0 < £ <
dy, we can find integers 7, s with |r| < d2,|s| < dy such that £ = rd; +sds.

The proof of Theorem 3.4. To this end, for each n(> 3) we
set di(n) := 2" and da(n) := 5 x 3”72, As is mentioned in the previous
section, we can find H-polynomials Q; and Qs of degree d;(n) and d2(n)
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respectively. Define d(n) by (2). By Lemma 3.5, we can write every d >
d(n) as d = rdy(n)+sdz(n) with r, s > mg := 9, because di (n) and dz(n)
are mutually prime. For p := 8 and these r, s, which satisfy the condition
(1), we apply Proposition 3.3 to find a homogeneous polynomial R of
degree d such that V := {R = 0} is a hyperbolic hypersurface in P*(C).
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