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Some constructions of hyperbolic hypersurfaces 
in pn(C) 

Hirotaka Fujimoto 

Abstract. 

We show some methods of constructing hyperbolic hypersurfaces 
in the complex projective space, which gives a hyperbolic hypersur­
face of degree 2n in pn(C) for every n 2: 2. Moreover, we show that 
there are some hyperbolic hypersurfaces of degree d in pn (C) for 
every d 2: 2 X 6n for each n 2: 3. 

§ 1. Introcution 

Since S. Kobayashi asked whether a generic hypersurface of large 
degree in pn(C) is hyperbolic or not in [8], many papers were devoted 
to constructing various examples of hypersurfaces in pn(C). In [2], R. 
Brody and M. Green gave an example of hyperbolic hypersurface in 
P 3 (C) of even degree :2: 50. Afterwards, new types of hyperbolic hy­
persurfaces of degree din P 3 (C) were given by A. Nadel in the case of 
d = 6p + 3 for p :2: 3 in [10], by J. El Gaul for d :2: 14 in [7], by J. 
P. Demailly and by Y. T. Siu-S. K. Yeung for d :2: 11 in 1997 respec­
tively. Moreover, J. P. Demailly-J. El Gaul proved that a very generic 
hypersurface of degree at least 21 in P 3 (C) is hyperbolic in [4] and M. 
Shirosaki constructed a hyperbolic hypersurface of degree 10 in [11]. On 
the other hand, in [9], K. Masuda and J. Noguchi proved that there 
exists a hyperbolic hypersurface of every degree d :2: d(n) for a posi­
tive integer d(n) depending only on n and some concrete examples of 
hyperbolic hypersurfaces in pn(C) for n :S 5. 

Recently, the author constructed a family of hyperbolic hypersur­
faces of degree 2n in pn(C) for n :2: 3 in [6]. The purpose of this note 
is to explain the results in [6] and to give some lower estimate of d(n) 
in the above-mentioned results given by Masuda-Noguchi. The author 
would like to thank J. Noguchi for useful suggestions to this work. 
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§2. Construction of H-polynomials 

For convenience' sake, we introduce the following terminology. 

Definition 2.1. We call a homogeneous polynomial Q(w) of degree 
din w = (w0 , w1 , ... , wn) an H-polynomial if it satisfies the conditions: 

(H1) If a holomorphic map f := (fo : fl : · · · : fn) of C into pn(C) 
satisfies the identity Q(fo, fl, ... , fn) = cftf for some c E C, then f is a 
constant. 

(H2) If a holomorphic map f := (!1 : · · · : fn) of C into pn-l(C) 
satisfies the identity Q(O, fl, ... , fn) = cf~+l for some c E C and entire 
function fn+l, then f is a constant. 

Definition 2.2. We say a complex space M to be Brody hyperbolic 
if there is no nonconstant holomorphic map of C into lv1. 

As was shown by R. Brody in [1], a compact complex manifold 
is Brody hyperbolic if and only if it is hyperbolic in the sense of S. 
Kobayashi. In the following, a compact hyperbolic space means a com­
pact Brody hyperbolic space. 

Proposition 2.3. Let Q be an H-polynomial. Then, 
(i) V := {(wo: · · ·: wn); Q(wo, ... , wn) = 0} is hyperbolic and 
(ii) for W := {(wl : · · · : Wn); Q(O, w1, ... , Wn) = 0} C pn-l(C), 

pn- 1(C) \ W is Brody hyperbolic. 

In fact, (i) is nothing but the case c = 0 of (H1), and (ii) is a 
result of (H2) because we can find an entire function fn+l such that 
Q(O, fl, ... , fn) = f~+l if Q(O, fl, ... , fn) has no zeros. 

For the case where n = 2 we have the following: 

Theorem 2.4. Let Q(uo, u1, uz) be a homogeneous polynomial of 
degree d ~ 4 and consider the associated inhomogeneous polynomial 
Q(v, w) := Q(1, v, w). Assume that 

(C1) the simultaneous equations Qv(v, w) = Qw(v, w) = 0 have only 
finitely many solutions, say Pk := ( Vk, wk) (1 ::; k ::; N), 

(C2) Q(Pk) =/= Q(Pt) for 1::; k < £::; N, 
(C3) Quo (1, Vk, wk) =/= 0 for 1 ::; k ::; N, 
(C4) {(u1, Uz); Qu, (0, u1, uz) = 0, i = 0, 1, 2} = {(0, 0)}. 
(C5) Hessian <p := QvvC.!ww- Q~w =/= 0 at (vk,Wk) (1::; k::; N). 

Then, Q is an H-polynomial. 

For the proof, refer to [6]. 
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Remark. We can show that generic homogeneous polynomials of 
degree d 2: 4 satisfy the conditions in Theorem 2.4. Here, generic ho­
mogeneous polynomials mean all polynomials in some nonempty Zariski 
open set in the space of all homogeneous polynomials of degree d. 

For the case n 2: 3, we can prove the following: 

Theorem 2.5. Let Q(u0 , u 1 , ... , un) be an H-polynomial of degree 
do and P(uo, Un+1) a homogeneous polynomial of degree d1 (2: 3) such 
that P(uo, Un+l) and F(w) := P(1, w) satisfies the conditions; 

(P1) P(O, Un+1) =/= 0, 
(P2) F' ( w) has only simple zeros a1, 0:2, ... , ad1 -1, 

(P3) F(ak) -=1- F(ac) for 1 ~ k < i! ~ d1 - 1. 
Form 2: 2, if d1 := mdo and 2/(d1- 2) + 1/m < 1, then 

is an H-polynomial. 

This is a slight improvement of [6, Theorem II]. We state the outline 
of the proof. Consider holomorphic functions iJ, some of which are 
nonzero, such that R(fo, ... , fn+1) = cjg1 • If fo = 0, then 

Q(O, JI, · ·. , fn) = ef~'f-1 

for some constant e and hence f is a constant by (H2). Otherwise, setting 
'P := fn+d fo and Q := Q(1, fd fo, ... , fn/ fo), we have F(r.p) -c = Qm. 
By the assumption, F( w) - c has at least d1 - 2 simple zeros (31 and 
r.p takes the values (Jj with multiplicities at least m, whence e<p (f3j) 2: 
1- 1/m, where 8"'((31) denote the truncated defects of (31. By virtue 
of the defect relation for meromorphic functions, we can conclude from 
the assumption that f is a constant. We can prove that R satisfies (H2) 
by the same argument as in the proof of [6, Theorem II]. We omit the 
details. 

By Theorem 2.4 and by using Theorem 2.5 repeatedly, we can easily 
conclude the following: 

Theorem 2.6. For each n 2: 2 there is a hyperbolic hypersurfaces 
of degree 2n in pn(C) and a hypersurface W of degree 2n in pn- 1(C) 
such that pn- 1(C) \ W is Brody hyperbolic. 

We can also construct many hyperbolic hypersurfaces in the complex 
projective space. For example, by Theorem 2.4, we can construct a 
hyperbolic hypersurface of degree 5 in P 2 (C) and, by the use of the case 
m = 3 of Theorem 2.5 repeatedly, hyperbolic hypersurfaces of degree 
5 x 3n-2 in pn(C), which are used later. 
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§3. Hyperbolic hypersurfaces of high degree 

In this section, we construct some examples of hyperbolic hypersur­
faces of high degrees. We first give the following: 

Theorem 3.1. Take a polynomial F := "·· ,· ai1 ···i x'1.1 • .. xmirn L......Jl,••·,rn rn 

and consider the associated weighted homogeneous polynomial 

F* ( ) ~ d-hdl -···-irnd-m i1 i-m Xo,Xl, ... ,Xm := L...J ai1 ... i"'x0 x1 · "Xm 
i1, ... ,irn 

in (x0 , x1, ... , Xn) with weights (1, dt, ... , dm) for some positive integers 
di, where d := max{i1d1 + · · · + imdm; ah .. ·i= =/= 0}. Assume that 

(i) F*(O, x 1, ... , xm) consits of only one monomial, 

(ii) if F('{)l, ... , 'Pm) = 0 for meromorphic functions 'Pi on C, then 
at least one of 'Pi's is a constant. 
Then, for arbitrary H-polynomials Qi(w0 , ... , wn) of degree di (1 ::::; i::::; 
m), the hypersurface 

V := { w = (wo: ... : Wn); wgF ( Ql(w)lwg1 , ••• , Qm(w)lwg=) = 0} 
in pn(C) is hyperbolic. 

Proof. Consider a holomorphic map I := Uo : !I : · · · : In) of 
C into V(c pn(C)), where fi are entire functions without common 
zeros. If lo = 0, then Qio (0, !I, ... , In) = 0 for some io, whence I is a 
constant by (H1). Assume that lo ~ 0. Then, F('{J1, ... , 'Pn) = 0 for 
meromorphic functions 'Pi:= Qi(1,fi, ... ,ln)llg1 • whence some 'Pio is 
a constant and so I is a constant by (H1). This gives Theorem 3.1. 

We give an example satisfying the assumptions of Theorem 3.1. 

Proposition 3.2. Set F(x, y) := xP + yP + xrys + 1 for positive 
integers p, r, s. Assume that 

(1) p < t, 6lp + 2lt < 1, 

where t := min(r, s). Then, F(x, y) satisfies the assumptions (i) and (ii) 
of Theorem 3.1 for arbitrary positive integers d1 and d2 . 

Proof. Obviously, (i) holds. To see (ii), take nonconstant meromor­
phic functions '{), 'ljJ with F('P, '1/J) = 0. We write 'P = !II lo, '1/J = hi lo 
with entire functions li such that fi and h have no common zeros. 
Consider the holomorphic map <I>:= UC: If: If) : C -t P 2 (C) and hy­
perplanesH/:= {wj-1 = O}forj = 1,2,3andH4 := {wo+w1+w2 = 0}, 
which are in general position. Obviously, the pull-backs <I>* (Hj) of Hi for 
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j = 1, 2, 3, considered as divisors, have no positive multiplicities smaller 
thanp. Take a point zo in f- 1(H4). Since JC+ ff+ If=-Hnfg-(r+s), 
if fo(zo) 1- 0, the multiplicity of <P*(H4) at zo is at least t. Assume 
that fo(zo) = 0. Then, !l(zo) 1- 0 and h(zo) f- 0, because oth­
erwise 'L~=O fi(z0)P f- 0. This is impossible by the assumption p < 
r + s. In conclusion, <P*(H4 ) has no positive multiplicities smaller than 
t. Then, there are constants c0 , c1, c2 with (eo, c1, c2) f- (0, 0, 0) such that 
c0r.pP + c1 'ljJP + c2 = 0. Because, otherwise, the second main theorem for 
holomorphic curves in pn(C) gives 3(1- 2/p) + (1- 2/t) ~ 3, which con­
tradicts the assumption(cf., [5, Theorem 3.3.15]). If c2 = 0, then r.p and 
'1/J are obviously constants. Otherwise, we have eo!C + cdf + c2f~ = 0. 
Since p ~ 4 by the assumption, <P is a constant. This gives Proposition 
3.2. 

By Theorem 3.1 and Proposition 3.2, we have the following: 

Proposition 3.3. Let Qi(w) be H-polynomials of degree di (i = 

1, 2) inn+ 1 variables w = (w0 , w1, ... , wn) and p, r, s positive integers 
satisfying the condition ( 1). Then, the zero locus of the polynomial 

is a hyperbolic hypersurface in pn(C) of degree d := rd1 + sd2 . 

This improves Masuda-Noguchi's Theorem as follows: 

Theorem 3.4. For each n ~ 3 we can take a positive integer 
d(n) such that there are hyperbolic hypersurfaces of degree d for every 
d ~ d(n) in pn(C). Here, for example, we can take 

For the proof of Theorem 3.4, we give the following Lemma: 

Lemma 3.5. Let d1 and d2 be mutually prime positive integers. 
For arbitrarily given positive integer mo, every integer d with 

can be written as d = rd1 + sd2 with r, s ~mo. 

This is easily shown by the fact that, for each number C with 0 ~ C < 
d1, we can find integers r, s with lrl < d2, lsi < d1 such that C = rd1 +sd2. 

The proof of Theorem 3.4. To this end, for each nk 3) we 
set d1(n) := 2n and d2(n) := 5 x 3n-2. As is mentioned in the previous 
section, we can find H-polynomials Ql and Q2 of degree d1 ( n) and d2 ( n) 
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respectively. Define d(n) by (2). By Lemma 3.5, we can write every d::::: 
d(n) as d = rd1(n)+sdz(n) with r, s::::: m0 := 9, because d1(n) and dz(n) 
are mutually prime. For p := 8 and these r, s, which satisfy the condition 
(1), we apply Proposition 3.3 to find a homogeneous polynomial R of 
degree d such that V := {R = 0} is a hyperbolic hypersurface in pn(C). 
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