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Integral Representation of Linear Functionals on 
Vector Lattices and its Application to BV Functions 

on Wiener Space 

Masanori Hino 

Abstract. 

We consider vector lattices II} generalizing quasi-regular Dirichlet 
spaces and give a characterization for bounded linear functionals on 
II} to have a representation by an integral with respect to smooth 
measures. Applications to BV functions on Wiener space are also 
discussed. 

§1. Introduction 

Let X be a compact Hausdorff space and C(X) the Banach space 
of all continuous functions on X with supremum norm. The Riesz rep­
resentation theorem says that every bounded linear operator on C(X) 
is realized by an integral with respect to a certain finite signed measure 
on X. As a variant of this fact, Fukushima [7] proved that, for any 
quasi-regular Dirichlet form (£,F) and for u E F, £(u, ·) is represented 
as an integral by a smooth signed measure if and only if 

for all v E Fb,Fk, kEN 

holds for some nest {Fk}kE!II and some constants Ck, k EN. As its ap­
plications, he gave a characterization for additive functionals of function 
type for ( £, F) to be semimartingales, and also proved the smoothness 
of the measures associated with BV functions ([7, 8, 9]). 

In this paper, we show a corresponding result in the framework of 
vector lattices generalizing quasi-regular Dirichlet spaces. The proof is 
similar to that in [7] but based on a purely analytical argument, unlike 
[7] where probabilistic methods are used together. Typical examples 
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which lie in this framework are first order Sobolev spaces derived from a 
gradient operator and fractional order Sobolev spaces by a real interpo­
lation method with differentiability index between 0 and 1. Using such 
results, we can improve the smoothness of the measure associated with 
BV functions on Wiener space, discussed in [8, 9]. 

We can find several studies closely related to this article regarding 
the Riesz representation theorem, e.g., in [22, 14]. Their frameworks are 
based on Markovian semigroups and the function spaces are derived from 
their generators, which seems to be suitable for complex interpolation 
spaces. Ours is based on the lattice property instead and fits for real 
interpolation spaces. 

The organization of this paper is as follows. In Section 2, we give a 
general framework and preparatory lemmas, which are slight modifica­
tions of what have been developed already in the case of Dirichlet spaces 
or in the framework of the nonlinear potential theory. We also give some 
examples there. In Section 3, the representation theorems are proved. 
In Section 4, we discuss some applications to BV functions on Wiener 
space. 

§2. Framework and main results 

Let X be a topological space and>. a Borel measure on X. Let L0 (X) 
be the space of all >.-equivalence classes of real-valued Borel measurable 
functions on X. We will adopt a standard notation to describe function 
spaces and their norms, such as LP(X) (or simply LP) and II ·IILP· 

We suppose that a subspace ID> of L 0 (X) equipped with norm II ·lhlll 
satisfies the following. 

(A1) (ID>, II · lblll) is a separable and uniformly convex Banach space. 
(A2) (Consistency condition) If a sequence in ID> converges to 0 in ID>, 

then its certain subsequence converges to 0 >.-a.e. 

Since ID> is assumed to be uniformly convex, it is reflexive and the Banach­
Saks property holds: every bounded sequence in ID> has a subsequence 
whose arithmetic means converge strongly in ll)) (see [16, 19, 13] for the 
proof). The following lemma is proved by a standard argument. 

Lemma 2.1. Let {fn}nEN be a sequence bounded in ID>. Then, there 
exists a subsequence {fnkhEN such that fnk converges to some f weakly 

in ID> and the arithmetic means (1/k) E~=l fni converge to f strongly in 
ID>. Moreover, llfllllll ::::; liminfk->oo llfnk llllll· If furthermore fn converges 
to some g >.-a.e., then it holds that g E ID> and fn weakly converges tog 
in ID>. 
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Proof By virtue of the Banach-Alaoglu theorem and the reflexivity 
of][]), {/n}nEN is weakly relatively compact in][]). Using the Banach-Saks 
property together, we can prove the first claim. The second one follows 
from the Hahn-Banach theorem. The last one is a consequence of the 
consistency condition {A2). Q.E.D. 

We further assume the following. 

{A3) (Normal contraction property) For every f E ][]), j := 0 V fA 1 
belongs to][]) and llflh!) :::; llflln· 

{A4) For every f in ][])b := ][]) n L00 , j2 belongs to ][]). Moreover, 
sup{IIPIID lllfiiD + llfllvoo :S 1} is finite. 

The condition {A4) is equivalent to the following: 

{A4)' for every f and gin ][])b, fg belongs to][]). Moreover, sup{llfYIID I 
llflln + llfllvoo :S 1, IIYIIn + IIYIIL"" :S 1} is finite. 

Indeed, it is clear that {A4)' implies {A4). To show the converse im­
plication, use the identity fg = ({! + g)/2)2 - ({! - g)/2)2 and the 
subadditivity of the norm II · liD· 

We introduce a sufficient condition for {A3) and {A4). 

Lemma 2.2. Under {A1) and {A2), the following condition {C) 
implies {A3) and {A4): 

{C) when x is a bounded and infinitely differentiable function on IR 
with x(O) = 0 and llx'lloo :::; c for some c > 0, then X o v E ][]) 
and llx o viiD :::; cllviiD for every v E ][]). 

Proof. To show {A3), apply Lemma 2.1 with a sequence {xnov }nEN 
so that llxnlloo :::; 1 and llx~lloo :::; 1 for every n, and Xn converges 
pointwise to x(x) = 0 v X A 1. {A4) is similarly proved. Q.E.D. 

For f E L0 {X), we set f+(z) = f(z) V 0 and f_(z) = -{f(z) A 0). 

Lemma 2.3. Let f E ][]). Then f+ E ][])and llf+lln :S llflln-

Proof. Define fn := 0 V fAn = n(O V {! /n) A 1), n E N. Then 
llfniiD:::; nllf /niiD = llfllo by {A3) and fn--+ f+ pointwise. Lemma 2.1 
finishes the proof. Q.E.D. 

Lemma 2.4. For every f E ][]), (-a) V f A a --+ 0 weakly in ][]) as 
a 10 and (-a) V fA a--+ f weakly in][]) as a--+ oo. 

Proof. It is enough to notice that 

II( -a) V fA a liD= 110 V fA a- 0 V (-f) A alln :S 2llflln, 

{-a) V f A a --+ 0 pointwise as a 1 0, 

{-a) V fA a--+ f pointwise as a--+ oo 



124 M. Hino 

and to use Lemma 2.1. Q.E.D. 

For a measurable set A, we let IDJA := {! E IDll f = 0 >.-a.e. on X\A} 
and IDlb,A := IDJA n £ 00 • A sequence {Fk}kEN of increasing sets in X is 
called a nest if each Fk is closed and U:'=1 1Dlpk is dense in IDJ. A nest 
{Fk}kEN is called (>.-)regular if, for all k, any open set 0 with >.(OnFk) = 
0 satisfies 0 C X\ Fk. A subset N of X is called exceptional if there is a 
nest {FkhEN such that N C n~1 (X\Fk)· When A is a subset of X, we 
say that a statement depending on z E A holds quasi everywhere ( q.e. in 
abbreviation) if it does for every z E A\ N for a certain exceptional set 
N. For a nest {FkhEN, we denote by C( {Fk}) the set of all functions f 
on X such that f is continuous on each Fk. A function f on X is said to 
be quasi-continuous ifthere is a nest {Fk}kEN such that f E C({Fk}). 
We say that a Borel measure J-t on X is smooth if it does not charge 
any exceptional Borel sets and there exists a nest { Fk} kEN such that 
J-t(Fk) < =for all k. A set function von X which is given by v = v1 -v2 
for some smooth measures v1 and v2 with finite total mass is called a 
finite signed smooth measure. A signed smooth measure v with attached 
nest {Fk}kEN is a map from R :={A C X I A is a Borel set of some Fk} 
to lR such that vis represented as v(A) = v1(A)- v2 (A), A E R, for 
some smooth Borel measure v1 and v2 satisfying vi(Fk) < = for each 
i = 1, 2 and k EN. When we want to emphasize the dependency of IDJ, 
we write IDJ.-nest, IDJ.-smooth, and so on. 

We further assume the following quasi-regularity conditions. 

( QR1) There exists a nest consisting of compact sets. 
(QR2) There exists a dense subset of lDl whose elements have quasi­

continuous >.-modifications. 
(QR3) There exists a countable subset { 'Pn}nEN in lDl and an ex­

ceptional set N such that each 'Pn has a quasi-continuous >.­
modification 'Pn and { 'Pn}nEN separates the points of X\ N. 

Every quasi-regular symmetric Dirichlet form ( £, :F) satisfies all con­
ditions (A1)-(A4) and (QR1)-(QR3) (and (C)) when letting][))= :F and 
11/IIJI} =(£(!,f)+ llflli2)112. We give other examples in the last part of 
this section. 

Lemma 2.5. There exist some p E ][)) and some countable subset 
C = {hn}nEN oflDlb such that 0::::; p::::; 1 >.-a.e., hn ~ 0 >.-a.e. for all n, 
C- C := {h- hI h, hE C} is dense in IDJ, and for each n EN, p ~ Cnhn 
.X-a.e. for some Cn E (0,=). 

Proof. Let {frn}rnEN be a countable dense subset of IDJ. Denote by 
C = {hn}nEN the set of all arithmetic means of finite number offunctions 
in {(frn)+ 1\ M, Urn)- 1\ M}rnEN, MEN· Then C- C is dense in lDl by 
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Lemma 2.4 and the Banach-Saks property. Define 

Then p and C satisfy the conditions in the claim. Q.E.D. 

We will fix p and C satisfying the statement in the lemma above. Note 
that we can always take p = 1 if 1 E J[)), 

Take a strictly increasing and right-continuous function ~ : [0, oo) ---t 

[0, oo) with ~(0) = 0. For an open set 0 C X, we define 

(1) cap~(O) = inf{~(llfii][Jl) If E J[)) and f ~ p .X-a.e. on 0}. 

For any subset A of X, we define the capacity of A by 

cap~(A) = inf{cap~(O) I 0 ::J A, 0: open}. 

It should be noted that cap~(A) ~ ~(IIPII][Jl) < oo for every A C X. 
The following lemma is proved in the same way as in [10]. 

Lemma 2.6. For every open set 0, there exists a unique function 
e0 in J[)) attaining the infimum in (1). Moreover, 0 ~eo ~ 1 .X-a.e. 

Proof. The uniqueness follows from the uniform convexity of J[)), 

The existence is deduced by the Banach-Saks property and (A2). The 
last claim is a consequence of (A3). Q.E.D. 

We will discuss some basic properties of the capacity. 

Lemma 2.7. Let {On}nEN be a sequence of open sets such that 
cap~ (On) ---t 0. Then, there exists a sequence { nk} j oo such that 
eonk ---t 0 .X-a.e. 

Proof. Since II eon II][)) ---t 0, the claim is clear from (A2). Q.E.D. 

Lemma 2.8. If cap~(A) = 0, then An {p > 0} is a .A-null set. 

Proof. Take a decreasing open sets { On}nEN such that A C On and 
cap~( On) ---t 0. Since eon ~ p .X-a.e. on n;::1 Ok, we have p = 0 .X-a.e. on 
n~=l Ok by virtue of Lemma 2. 7. This implies the assertion. Q.E.D. 

Lemma 2.9. Let {Ak}kEN be a sequence of increasing closed sets. 
Then the following are equivalent. 

(i) {Ak}kEN is a nest. 
(ii) limk--+oo cap~(X \ Ak) = 0. 
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Proof Suppose (i) holds. Take a sequence {/kheN in][) such that 
fk E ll)Ak and /k ~pin][). Since p- fk = p >.-a.e. on X\ Ak, we have 
cape(X \ Ak) ~ e(IIP- !kilo) ~ o as k ~ oo. 

Next, suppose (ii) holds. It suffices to prove that each h E C can 
be approximated in ][) by functions in uk ][) Ak. Since p ~ ch >.-a.e. for 
some c > 0, it holds that ex\Ak ~ ch >.-a.e. on X\ Ak for each k. Let 
fk = (h- c-1ex\Ak)+ E ll)Ak· By Lemma 2.7, there exists a sequence 
{k'} diverging to infinity such that ex\Ak' ~ 0 >.-a.e. Therefore, fk' ~ h 

>.-a.e. ask'~ oo. On the other hand, 11/kiiJD ~ llhiiJD + c-1llex\AkiiJD, 
which is bounded ink. From Lemma 2.1, we can take arithmetic means 
of some subsequence of {fk'}, which belong to Ukll)Ak' SO that they 
converge to h in ][). Q.E.D. 

As is seen from this lemma, any choices of C, p and e are consistent with 
the notion of nest. From now on, we treat only the case e(t) = t and 
write cap in place of cape. 

Lemma 2.10. For any sequence of subsets {AkheN in X, it follows 
that cap(U;::1 Ak)~ L:%"=1 cap(Ak)· 

Proof. When 0 1, ... , Ok are open sets, it is easy to see the inequal­
ity cap(U;=1 0;) ~ E;=1 cap(O;). Indeed, since L:;=1 eoi ~ p >.-a.e. 

on u;=1 0;, we have 

Now, let c > 0. Take an open set Ok for each k E N such that Ok :J Ak 

and cap(Ok) < cap(Ak) + c2-k. Let uk = u;=1 0;. Since lleuk IIJD ~ 
IIPIIo < oo, Lemma 2.1 assures the existence of a subsequence { euk,} 
of { euk} and e E ][) such that euk, converges to e weakly in ][) and the 
arithmetic means of { euk,} converge to e in ][). Since e ~ p >.-a.e. on 
U;::1 Ok by using (A2), we have 

cap(Q Ak) ~ cap(Q Ok )~ lleiiJD ~ ~~_}~ lleuk,llo 

k 00 

= lim cap(Uk) ~ lim '"'cap(O;) ~ c + '"'cap(Ak)· 
k-+oo k-+oo L....J L....J 

j=1 k=1 

Since c is arbitrary, we obtain the claim. Q.E.D. 

The following series of lemmas are now proved in a standard way as in 
the case of quasi-regular Dirichlet spaces; see e.g. [11, 15] for the proof. 
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Lemma 2.11. Suppose that f E II) has a quasi-continuous >.-modifi­
cation f. Then, we have cap({]>>..})::::; >..-1 11/llo for each>.> 0. 

Lemma 2.12. (i) When {fn}neN is a sequence of quasi-conti-
nuous functions, there exists a nest {Fk}kEN such that fn E 

C({Fk}) for every n. 
(ii) If fn E II) has a quasi-continuous >.-modification in and con­

verges to f in II) as n -t oo, then f has a quasi-continuous 
>.-modification i and there exists a sequence { nz} j oo and a 
nest {FkhEN such that every in belongs to C({Fk}) and inz 
converges to i uniformly on each Fk. In particular, in, con­
verges to i q. e. 

(iii) Every f E II) has a quasi-continuous >.-modification j. 
Lemma 2.13. There exists a regular nest {Kk}keN such that Kk 

is a separable and metrizable compact space with respect to the relative 
topology for any k. 

Lemma 2.14. Suppose that {FkheN is a regular nest and f E 

C({Fk}). Iff~O>.-a.e. onanopensetO, thenf~O onOnUkFk. 

Lemma 2.15. If u 1 and u2 are quasi-continuous functions and u 1 = 
u 2 >.-a.e., then u 1 = u 2 q.e. 

In what follows, i always means a quasi-continuous >.-modification 
of a function f, a particular version of which is sometimes chosen to suit 
the context. 

We can also prove the next two propositions as in [10] (see also [21, 
Section 2]) by using Lemma 3.1 below together, though they are not 
used later in this article. 

Proposition 2.16. For any subset A of X, there exists a unique 
element eA in the set{! E II) I i ~ p q.e. on A} minimizing the norm 
II/IlD· Moreover, 0::::; eA::::; 1 >.-a.e. and cap(A) =IleA lin-

Proposition 2.17. cap is a Choquet capacity. 

We remark tha:t the assumption (A4) is not necessary so far. The 
following are our main theorems, which are stated in [7] in the case of 
quasi-regular Dirichlet spaces. 

Theorem 2.18. Under (A1)-(A4) and (QR1)-(QR3), for a bound­
ed linear functional T on II), the next two conditions are equivalent. 

(i) There exist a nest {FkhEN and positive constants { Ck}kEN 
such that for each k E N, 

IT(v)l::::; Ckllvllv="'(X) for all v E ll)b,Fr.· 
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(ii) There exists a signed smooth measure 11 with some attached 
nest { Fk heN such that 

00 

T(v) = L ii(z)11(dz) for allv E U ll)b,F~· 
k=1 

Moreover, the measure 11 is uniquely determined. 

Theorem 2.19. Under (A1)-(A4) and (QR1)-(QR3), for a bound­
ed linear functional T on II) and a positive constant C, the next two 
conditions are equivalent. 

(i) IT(v)l ~ CllviiL""(X) for all v E ll)b· 

(ii) There exists a finite signed smooth measure 11 on X such that 
the total variation of 11 is dominated by C and 

T(v) = L ii(z) 11(dz) for all v E ll)b· 

In addition, 11 is uniquely determined. Moreover, if (C) in Lemma 2.2 
holds, we may replace ll)b in (i) by C that satisfies the following: 

(C) C is a !I)-dense subspace of ll)b such that, for each c > 0, there 
is a 0 00 function X on JR. with lxl ~ 1+c, 0 ~ X1 ~ 1, x(x) =X 

on [-1, 1], and x o v E C for every v E C. 

Before ending this section, we give a few examples of II) other than 
quasi-regular Dirichlet spaces. Suppose that X is a separable Banach 
space and H a separable Hilbert space which is continuously and densely 
imbedded to X. The inner product and the norm of H will be denoted 
by (·, ·)H and II · IIH, respectively. The topological dual X* of X is 
identified with a subspace of H. Let >. be a finite Borel measure on X. 
When K is a separable Hilbert space, we denote by IJ'(X --t K) the LP 
space consisting of K-valued functions on the measure space (X,.>.). 

Define function spaces FCl and (FCl )x• on X by 

{u,x~nt u(z) = f(l1(z), ... , lm(z)), 

}' FCl = £1, ... ,lm EX*, f E Cl(JR.m) 
for some mEN 

(FCl)x• {c,x ~x· G(z) = Ej:1 gj(z)lj, 

}' = 91, ... ,gm E FCl, 
it, ... , lm E X* for some m E N 

where Cl (JR.m) is the set of all bounded functions f on JR.m that have 
bounded and continuous first-order derivatives. Let u E FCl and l E 
X* C H C X. We define 8tu by 8tu(z) = lime:-+o(u(z +d)- u(z))/c. 
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The H-derivative V'u is a unique map from X to H that satisfies the 
relation 

(V'u(z),£}H = 8tu(z), .e EX* C H. 

We assume that, if u E :FCt and v E :FCt coincide on a measurable 
set A, then V'u = V'v .X-a.e. on A. Let p ~ 1. We also assume that 
(V',:FCt) is closable as a map from £P to LP(X-+ H). We denote by 
W 1·P the domain of the closure of (V', :FCt) and extend the domain of 
V' to W 1•P naturally. The space W 1·P is a separable Banach space with 
norm llfllwl,p = IIJIILP + IIVJIILP(X---+H)· 

Proposition 2.20. Suppose alsop > 1. Then, when we regard W 1·P 

as IDl, the conditions (A1)-(A4), (QR1)-(QR3), and (C) are satisfied. 

Proof. From the results of [21], (A1) and (QR1) hold. Since X 
is separable, X* is also separable with respect to the weak* topology 
(see Corollary after Proposition 8 in Chapter IV of [5] for the proof). 
When {£n}nEI'ti is a countable dense set of X*, <!'nO= arctan£n(·) and 
N = 0 assure the validity of (QR3). The remaining conditions are easily 
checked. Q.E.D. 

In order to give another example, we introduce real interpolation 
spaces. Let B0 and B1 be separable Banach spaces. We assume that 
B0 is continuously imbedded to B1 for simplicity. For parameters q E 
(1, oo) and () E (0, 1), we define the space (B0 , B1)6,q by all elements 
f E B1 such that there exist some Brvalued measurable functions uj(t) 
on [0, oo) (j = 0, 1) satisfying 

roo . dt 
(2) uo(t) + U1(t) = f a.e. t, lo (t3-6 liuj(t)iiB;)q t < 00 (j = 0, 1). 

We set the norm off E (Bo, Bt)B,q by 

[ (1 00 • dt) 1/q] 
llfii(B0 ,Bl)o,0 = inf ~axo 1 . (t'-6 iiuj(t)iiB;)q -t , 

uo,ut J- , 0 

where the infimum is taken over all pairs u0 and u1 satisfying (2). From 
the general theory of real interpolation, (Bo, B1)6,q is a Banach space, we 
have continuous imbeddings Bo <.....+ (Bo, Bt)B,q <.....+ Bt, and Bo is dense 
in (B0 , B1 )B,q· Keeping the notation in the previous example, we have 
the following proposition. 

Proposition 2.21. Let p E {1, oo), q E {1, oo), and() E {0, 1). Then 
][)) := (W1•P,£P)6,q satisfies (A1)-(A4), (QR1)-(QR3) and (C). 



130 M. Hino 

Proof. In general, we can prove that (B0 , B1)9,q is uniformly convex 
if B 0 or B 1 is, in the same way as Proposition V.l of [3]. Therefore, llll is 
uniformly convex. The separability, (QR1) and (QR2) come from those 
of W 1·P. (QR3) is proved in the same way as the case of W 1•P. (A2) 
is clearly true. We will prove (C). Let x be as in (C) in Lemma 2.2. 
Let f E llll and take u0 and u1 satisfying (2). Set vo(t) = x o uo(t) and 
v1(t) =X of- x o uo(t). Then vo(t) + v1(t) =X of and it is easy to 
see that llvo(t)llwl,p ~ clluo(t)llwl,p and llvl(t)IILP ~ cllul(t)IILP· This 
implies that x of E llll and llx o /llllli ~ cll/llllli· Q.E.D. 

§3. Proof of Theorems 2.18 and 2.19 

First, we will prove that (ii) implies (i) in Theorem 2.18. We take 
Fk = F~ and Ck = lvi(Fk) < oo. Let v E llll&,Fk and M = liviiL""(X)· 
We can take a quasi-continuous A-modification ii so that liil ~ M every­
where. Then IT(v)l ~ Mlvi(Fk) = CkM. Therefore, (i) holds. 

Next, we will prove that (i) implies (ii) in Theorem 2.18. Take a 
nest {Ek1)heN so that jj E C({Ek1)}). Define Ek2) = Ek1) n {jj ~ 1/k}. 

Lemma 3.1. { Ek2) heN is a nest. 

Proof. Clearly, { Ek2)} kEN is a sequence of increasing closed sets. 
Define Pk = p 1\ (1/k), k E N. Then Pk ---+ 0 weakly in llll by Lemma 2.4. 
Take a sequence {kj} j oo so that Pm := (1/m) E;1 Pk; converges to 

0 in llll as m ---+ oo. Since Pm + eX\Ek~ ~ p .X-a.e. on X\ Ek~, we 

have cap(X \ Ek~) ~ llfJmllllli + lleX\Ek~ llllli---+ 0 as m---+ oo. Therefore, 

{ Ek2 ) heN is a nest. Q.E.D. 

Define Ek3) = Fk n Kk n Ek2), k E N, where Kk is what appeared in 

Lemma 2.13. Then {Ek3)heN is a regular nest consisting of separable 
and metrizable compact sets. Given k E N, let {Uk,n}neN be a countable 

open basis of Ek3 ). The totality of every union of finite elements in 
{Uk,n}nEN will be denoted by {Vk,n}neN· Take a countable family 0 of 
open sets in X such that for every kEN, n EN and c > 0, some 0 E 0 
satisfies that 0 ::J Vk,n and cap(O) < cap(Vk,n) +c. 

Recall the condition (QR3) and set S = {( -M) V cj;n 1\ M I n E 
N, M E N}. The functions of S separate the points of X \ N. Fix a 
countable subset V of llll such that {! E 'D 111/IIL""(X) ~ M} is a dense 

set of{! E lllliii/IIL""(X) ~ M} for each MEN. Take a nest {AheN so 

that pk c Ek3) for each k, N c nkEN(X\ A) and the quasi-continuous 
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A-modifications of all elements in S U V U {eo I 0 E 0} belong to 
C({Fk}). Denote by A the algebra generated by SU{1A.Mp I MEN}. 
Note that all functions in A and p belong to C({A}). From the Stone­
Weierstrass theorem, {flpk I f E A} is dense in C(Fk) with uniform 
topology for any k. 

Lemma 3.2. There exist a nest { Fk heN and functions { tPn }neN in 
uk IDlpk satisfying the following: 

(i) Fk C Fk for all k; 
(ii) the quasi-continuous A-modification ~n belongs to C( { Fk}) for 

all n; 
(iii) 0 ~ tPn ~ 1 A-a.e. on X and ~n = 1 on F~ for all n. 

Proof. Take a sequence {77n}neN c uk IDlpk such that ll77n- PIID < 
1/(n2n+l ), n E N. By Lemma 2.11, there exists an open set Gn so 
that Gn ::::> {liin- PI > 1/(2n)} and cap(Gn) < 2-n for each n. Take 
a nest {EkheN such that Ek C A and {iin}neN C C({Ek}). Then 
iin 2:: 1/(2n) on En \Gn since p 2:: 1/n on En· Define Fk = Ek \U~=k Gn 

and tPn = 0 V 2n7]n A.l. Then tPn E UklDlF~o' ~n = 1 on F~, {FkheN 
is a sequence of increasing closed sets, and by Lemma 2.10, we have 
cap(X \ Fk) ~ cap(X \ Ek) + L:~=k cap(Gn)-+ 0 ask-+ oo. Q.E.D. 

Now, fix n EN and take m EN so that tPn E IDlp.,.. Define Tn : IDlb -+ 
lR by Tn(f) = T(.,Pnf). Since tPnf E IDlb,Fm C IDlb,F.,., the statement (i) 
of Theorem 2.18 implies ITn(f)l ~ CmlltPnfiiLoo(X) ~ CmllfiiLoo(X)· 

For an arbitrary f E C(Fm), we can take {!;heN C A such that 
limj-+oo II!; - fllc(F.,.) = 0. Then, 

ITn(fi)- Tn(fi)l ~ CmlltPn(h -!;)IIL00 (x') ~ Cmllh- J;IILoo(fr.,.) -+ 0 

as i 2:: j -+ oo. The limit of {Tn(fj)}jeN, denoted by Tn(f), satisfies 
ITn(f)l ~ Cmllfllc(F.,.)" Therefore, Tn is a bounded linear functional on 

C(Fm)· On account of the Riesz representation theorem, there exists an 
associated finite signed measure Vn on Fm such that Tn(f) = fp.,. f dvn 

for every f E C(Fm)· We extend Vn to a measure on X by letting 
Vn(A) := Vn(A n Fm)· 

Lemma 3.3. The measure Vn charges no exceptional sets. 

Proof. Since the measure lvnl restricted on Fm is regular, it is 
enough to prove that lvni(K) = 0 for any compact set K C Fm of null 
capacity. Take such K. Then we can take a sequence {Oj};eN from 0 
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so that K C 0; for all j and lim;_.00 cap(O;) = 0. Indeed, for each j, 
take an open set 0 such that K C 0 and cap(O) < 1/j. Since K is 
compact, there is a set V in {Vk,mhEN such that K C V C 0. Choose 
0; E 0 so that V C 0; and cap(O;) ~ cap(V) + 1/j. 

Let !; := eo;- Since {Fk} is a regular nest, Lemma 2.14 implies 

that !; = 1 on K C 0; n Fm. We may also assume that 0 ~ !; ~ 1 
everywhere. Since lim;-+oo ll!;llllll = 0, we can suppose!; -t 0 ..X-a.e. as 
j -t oo by taking a subsequence if necessary. Since {1; hEN is bounded 

in L 2 (lvnl), the arithmetic means {/;};EN of a further subsequence of 
{!;};EN converge strongly in L 2 (lvnl). Take a sequence {it} j oo such 

that h converges lvnl-a.e. as l -too. Define f(z) = liminft-+oo h(z). 
Then 0 ~ f ~ 1 on X, f = 1 on K, and f = 0 ..X-a.e. by the way of 
construction. 

Given h E A, we have 

When l tends to oo, the left-hand side of (3) converges to fp,. fhdvn by 

the dominated convergence theorem. On the other hand, { '¢nh h hEN 
is bounded in ][)) by (A4)'. Since they converge to 0 ..X-a.e., they also 
converge weakly to 0 in ][)) by Lemma 2.1. Therefore, the right-hand 
side of (3) converges to 0 as l -t oo. Namely, fp,. fhdvn = 0. Since 

{hlp,. I hE A} is dense in C(Fm), we conclude that f dvn = 0, therefore, 
lvni(K) = 0. Q.E.D. 

Lemma 3.4. For all f E ][))b, Tn(f) = fx 1 dvn. 

Proof. We can take a sequence {!;};EN from V so that {!;};EN 
is bounded in L 00 (X), f; converges to f in ][)) and 1; converges to 1 
outside some Borel exceptional set No. Note that 1; lp,. E C(Fm)· Then, 
Tn (!;) -t Tn (!) as j -t oo, while 

Tn(/;) Tn(i;lp ) = { 1; dvn = { 1; dvn 
"' lx lx\No 

j~ { 1dvn = { 1dvn 
Jx\No Jx 

by means of the dominated convergence theorem. Q.E.D. 

For any k, l E N, we have ,(fik dv1 = ,(fil dvk. Indeed, For f E A, 

[ f'¢k dvt = T,(f'¢k) = T( '¢d'¢k) = Tk(f'¢l) = [ f'¢t dvk. 
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Therefore, we can define a signed smooth measure v by v = vn on F~ 
(n = 1, 2, ... ), which is well-defined by the fact that ,(fn = 1 on F~. Then 
for any f E IDlb,F~, we have 1/Jkf = f and 

T(f) = T('l/Jk!) = Tk(f) = L 1 dvk = L 1 dv. 

Thus, (ii) holds. 
In order to prove the uniqueness of v, it is enough to show that v = 0 

if J X v dv = 0 for all v E uk IDlb,Fk' where { Fk hEN is a nest attached 
with v. Following the same procedure as in the proof of (i)::::}(ii), take 
the nests {F'dkEN and {F~hEN, the function space A, and the sequence 
of functions { 1/Jn }nEN. For any n E N and f E A, we have f'l/Jn E IDlb F: C 

' n 

IDlb,Fn, therefore fx f,(fn dv = 0. Since {flfrn If E A} is dense in C(Fn), 
we have ,(fn dv = 0. In particular, v = 0 on F~ because ,(fn = 1 on F~. 
This implies that v = 0. 

The implication (ii)::::}(i) of Theorem 2.19 is proved in the same way 
as in Theorem 2.18. Because of the result and the proof of (i)::::}(ii) 
of Theorem 2.18, Theorem 2.19 (i) implies that there exists a finite 
signed smooth measure v with some attached nest {F~hEN such that 
the total variation is dominated by C and T(v) = fx v(z) v(dz) for all 
v E Uk IDlb,F~. It is easy to show that this identity holds for all v E IDlb 
by an approximation argument. 

The uniqueness of v is clear from the corresponding result of Theo­
rem 2.18. The final claim is also deduced by an approximation argument 
and the use of Lemma 2.1. 

This completes the proof of Theorems 2.18 and 2.19. 

§4. Application to BV functions on Wiener space 

First, we will review some results of [9]. Let E be a separable Banach 
space and H a separable Hilbert space which is continuously and densely 
imbedded to E. We use the notations in the end of Section 2 with letting 
X= E. Define a Gaussian measure 11 onE by the following identity: 

L exp( H R(z)) f.-L(dz) = exp( -11£11~/2), £ E E* C H. 

When Y is a separable Hilbert space and p is a nonnegative mea­
surable function on E, we denote by LP(E --+ Y; p) in this section the 
LP space consisting of Y -valued functions on E with underlying mea­
sure p df.J,. We omit E --+ Y and p from the notation when Y = IR and 
p = 1, respectively, and write simply £P for LP(E --+ IR; 1). We also set 
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Loo- = np>1 LP and denote by L~ the set of all nonnegative functions 
in LP. 

H u E FCl and v E FCl coincide on a measurable set A, then 
V'u = V'v p.-a.e. on A. See Proposition 1.7.1.4 of [4] for the proof. 

For p ~ 1, Clp(E) denotes the set of all functions p in L~ such 
that (V', FCl) is closable as a map from LP (p) to LP ( E ---+ H; p). A 
simple example for such p is a function which is uniformly away from 0. 
Suppose p E Clp(E). We write W 1·P(p) instead of W 1·P when regarding 
(E, pdp.) as (X,>.) in Section 2. When p > 1, W 1·P(p) satisfies all the 
conditions (A1)-(A4), (QR1)---,(QR3) and (C). 

Let FP be the topological support of the measure pdp.. Since L 0 ( E ---+ 

Y; p) is identified with L 0 (FP ---+ Y; p), we abuse the notation and 
W 1•P(p) is also regarded as a function space on FP. When p E Cl2(E), 
an associated Dirichlet form (eP, W 1•2 (p)) on L2(FP; p) is defined by 

f, g E w1,2(p). 

This is a quasi-regular Dirichlet form and a finite signed measure v on 
FP is smooth with respect to eP if and only if vis W 1•2 (p)-smooth. 

For each G E (FCl )E•, the (formal) adjoint V'*G is defined by the 
following identity: 

for all u E FCl. 

Denote by L(log£)112 the space of all functions f on E such that 
ci> o lfl E £ 1 , where ci>(x) = x((logx) V 0) 112 . We say that a real 
measurable function p on E is of bounded variation (p E BV(E)) if 
p E L(log£) 112 and 

V(p) :=sup f (V'*G)pdp. < oo, 
G jE 

where G is taken over all functions in (FCJ)E• such that IIG{z)IIH ~ 1 
for every z E E. 

Let {Tt}t>O be the Ornstein-Uhlenbeck semigroup, which is associ­
ated with e1 . It is strongly continuous, analytic and contractive on LP 
for any p E (1, oo). 

We recall some results discussed in [9]. 

Theorem 4.1. (i) For p E BV(E), IIY'TtPIIu ~ V(p) for 
every t > 0. 

(ii) BV(E) is a vector lattice. Namely, it is a vector space, and 
for each p E BV(E), P+ also belongs to BV(E). 
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(iii) A function p belongs to BV(E) if and only if p E £1 and 
there exists a sequence {Pn}nEN in W 1•1(:= W 1•1 (1)) such that 
IIPnllw'·' is bounded inn and Pn-+ p in L 1 as n-+ oo. 

(iv) Each p E BV(E) has a unique finite Borel measure ll and a 
unique H -valued Borel function a on E such that llaiiH = 1 
ll-a.e. and for every G E (FCt )E•, 

l ('\l*G)pdp, = l (G, a)H dll. 

The measure ll is W 1•2 ( IPI + 1) -smooth. If moreover ll E Cl2 (E), 
then liiE\FP = 0 and ll is W 1•2 (p)-smooth. 

In what follows, we will write lip for ll in the theorem above. In this 
section, we improve the result for the smoothness of lip· In view of the 
proof of Theorem 4.1 (iv) (Theorem 3.9 of [9]), the smoothness of lip is 
derived from the smoothness of lit for each £ E E*, where lit is a unique 
finite signed measure on E satisfying 

l8tu(z)p(z) p,(dz) = -2l u(z) llt(dz), 

Therefore, applying Theorem 2.19 with£ = FCt, if we show that the 
functional 

(4) It: FCt 3 u f-+ l8tu(z)p(z) p,(dz) E JR. 

extends continuously on][)), where][)) satisfies (A1)-(A4), (QR1)-(QR3), 
and (C), and has FCt as a dense set, then we can say that lit, hence lip, 
is ][))-smooth. It is obvious that It extends to a continuous functional on 
W 1·P(IPI+1) (and W 1·P(p) if furthermore p E Clp) for every p ~ 1. Also, 
if p E Lq for some q E (1, oo ), then It extends to a continuous functional 
on W 1,q/(q-1l(:= W 1•q/(q- 1l(1)) by Holder's inequality. Therefore, we 
have the following results. 

Proposition 4.2. Let p E BV(E). Then, lip is W 1·P(IPI+1)-smooth 
for every p > 1. If moreover p E Clp, then ll is W 1·P(p)-smooth. 

Proposition 4.3. Let p E BV(E) n Lq for some q E (1, oo). Then, 
lip is W 1·q/(q-l)_smooth. 

In Proposition 4.2, the smaller pis, the stronger the claim is. 
Now, we will give other examples of][)) so that lip is !Dl-smooth. Let 

us recall the Sobolev spaces in the context of Malliavin calculus. We 
give several notations in somewhat informal way. We refer to [12] for 
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precise definitions. Let L = -V*V be the Ornstein-Uhlenbeck operator, 
which is regarded as a generator of {Tth>o· The Sobolev space IIJl<>,p, 
a E JR, 1 < p < oo, is given by IIJl<>,p = (1- L)-<>12 (LP). Each IIJl<>,p is 

a separable Banach space with norm llflblli"'·P := 11(1- L)<>/2 fib- The 
topological dual of IIJl<>,p is identified with IIJl-<>,q, q = pf(p- 1). When 
n E N, by Meyer's equivalence, vn is defined as a continuous operator 
from IDln,p to LP(E---> H®n) and II·IILP + IIVn ·IILP(E--+H0") gives a norm 
on IDln,p which is equivalent to ll·llllli"·P· In particular, W 1·P(:= W 1·P(1)) 
is identical with 1Dl1·P as a set and their norms are mutually equivalent. 

We define another Sobolev space JE<>,p, a E JR, 1 < p < oo, firstly 
introduced in [24], by 

JE<>,p = { IIJl<>,p if a E Z, 
(IIJlk+l,p, IIJlk,p)k+l-a,p if k < a < k + 1, k E Z. 

The general theory of real interpolation implies that (JE<>,P)* is identified 
with JE-<>,q, where q = pf(p- 1) (see also [24]). When 0 <a< 1 and 
1 < p < oo, JE<>,p satisfies conditions (A1)-(A4), (QR1)-(QR3), and (C) 
by virtue of Proposition 2.21, if JE<>,p is equipped with a norm deduced 
by (W1·P, LPh-a,p· For such indices, FCt is dense in JE<>,p since W 1·P 
is dense in JE<>,P. For later use, following [1, 2], we introduce another 
equivalent norm on JE<>,p based on the K-method by 

where 

The connection between BV (E) and JE<>,p is given as follows. 

Theorem 4.4. Let q > 1. Then BV(E) n Lq c JE<>,p if 1 < p < q 
and a< (1/p- 1/q)/(1- 1/q). Also, this inclusion is continuous when 
BV(E) n Lq is equipped with norm llfiiBv(E)nL• = V(f) + IIJIIL•· In 
particular, BV(E) n £=- C JE<>,p if p > 1 and ap < 1. 

For the proof, we need the following estimates. 

Lemma 4.5. (i) When Of a+ (1- 0)/b = 1/p with 0 < () < 1, 
a, b, p ~ 1, we have IIJIILP :::; llflllj,ai!JIIi-;;-9 . 

(ii) For each r ~ 0 and p E (1, oo), there exists some C such that 
11(1- LYTtfiiLP :::; crrii!IILP for every t E (0, 1] and f E LP. 

Proof. The claim (i) follows from a simple application of Holder's 
inequality. The claim (ii) is a consequence of Theorem 6.13 (c) of Chap­
ter 2 in [18], since {Tt}t>O is an analytic semigroup on LP. Q.E.D. 
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Proof of Theorem 4.4. Let f E BV(E)nLq with V(/)+li!IILq ~ 1. 
In the following, Ci denotes a constant depending only on p and q. By 
Theorem 4.1 (i), IIVTtfll£1 ~ V(f) ~ 1 for any t > 0. By virtue of 
Meyer's equivalence and Lemma 4.5 (ii), fortE (0, 1], 

IIVTtflb ~ ci!i(1- L)112Ttf11Lq ~ ~r112 . 

Applying Lemma 4.5 (i) with a = 1 and b = q, that is, () = (1/p -
1/q)/(1-1/q), we have IIVTtfiiLP ~ (c2r1l2)1- 11 fortE (0, 1), therefore, 

(5) 

From the identity 

f-Ttf 

we obtain, fort E (0, 1], 

(6) II/- TtfiiLP < 1t 11((1- L) 112Tsj2)2 JIILP ds + tii/IILP 

< 1t C4S-l/2ll(1- L)112Tsj2/IILP ds + t 

< 1t css-1/211Ts!dllwl,p ds + t 

< 1t ct;s-1/2s-(1-ll)/2 ds + t ~ C7tllf2. 

Here we used Lemma 4.5 (ii) in the second line and (5) in the last line. 
By combining (5) and (6), for each e E (0, 1], 

K(e:, f) ~ II/- T"2/IILP + e:IIT.:2/IIwt,p ~ cse:6 , 

and, if a E (0, 0), 

( t de:)l/p 
Jo (e:-a K(e:, f))P~ ~ cs{p(O- a)}-l/p < oo. 

This proves the claim. Q.E.D. 

Using Theorem 4.4, we obtain the lE01•P-smoothness of Vp by the following 
proposition. 
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Proposition 4.6. Let p E BV(E) n Lq, q > 1. Then the map It 
in (4) extends continuously on E<>,p if p > qf(q- 1) and ap > qf(q-
1). Therefore, Vp is E<>,P_smooth for such a and p with a E (0, 1). In 
particular, if p E BV(E) n L 00-' then Vp is E<>,p_smooth for any a, p 
with a E (0, 1) and ap > 1. 

Proof. Due to Meyer's equivalence, the map u ~----> a~.u is continuous 
from JD>1,P to LP and from LP to JD>-1,P, respectively. By the real interpola­
tion theorem, it is continuous from Ea,p to E<>-1,P for any a E (0, 1). The 
claim follows from the fact (E1-a,p/(P-1))* = E<>-1,P and BV(E) nLq c 
JE1-<>,p/(P-1) by the assumption and Theorem 4.4. Q.E.D. 

REMARK 4.7. (i) In [24], it is proved that JD><>+.o,p <--+ JE<>,p <--+ 

JD><>-.o,p for every a E JR, 1 < p < oo and E: > 0. Therefore, 
Theorem 4.4 and Proposition 4.6 remain valid if we replace 
JE<>,p by ][))<>,p. 

(ii) When p E BV(E) is an indicator function of some set A, Vp can 
be regarded as a surface measure of A. The smoothness of Vp 

that is proved in the proposition above is consistent with The­
orem 9 of [6] saying that the Hausdorff measure of codimension 
n on Wiener space does not charge any set of (a, p )-capacity 
as long as p > 1 and ap > n. 

Lastly, we give a few nontrivial examples of BV functions, referring 
to the work [2]. Note that by combining Theorem 4.8 and Theorem 4.4 
we recover a part of the results in [2]. 

Theorem 4.8. (i) Let F be a function such that F E JD>2 ,P 
andii"VFII!/ E Lq forsomep > 1 andq > 1 with1fp+1fq < 1. 
Let A= {F < x} with x E JR. Then 1A E BV(E). 

(ii) Suppose that (E, H, JL) is a classical Wiener space on [0, 1]. 
For x > 0, set A= {w E E I maxo<s<11w(s)l < x}. Then 
1A E BV(E). - -

Proof. (i): From the assumptions, we have Y'*(Y'F/IIY'FIIH) E La 
for some a> 1. Indeed, keeping in mind the fact IIY'FIIH, IIY'2 FIIH®H E 
LP due to Meyer's equivalence, let E: tend to 0 in the identity 

V'* ( Y' F ) = _ LF + (Y' F ® V' F, "\72 F) H®H 

JII"VFII~+c JIIY'FII~+c (IIY'FII~+c)312 . 

Now, set 1/Jn(Y) = n1[x-1/n,x] (y), 'Pn(Y) = Jyoo 1/Jn(z) dz, and Pn = 

'Pn(F). Then we have 

IIY'PnllucE->H) = L 1/Jn(F)IIY'FIIHdJL 
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which is bounded inn. Since {Pn}nEN is uniformly bounded and con­
verges to 1A pointwise, Theorem 4.1 (iii) completes the proof. 

(ii): Set Pn(w) = 0 V n (1- maxo~s91w(s)l/x) 1\1, wEE for each 
n E N. By the calculation in the proof of Theorem 3.1 of [2], we have 
Pn E W 1•1 and IIPnllw1,1 is bounded inn. Since {Pn}nEN is uniformly 
bounded and tends to 1A pointwise, Theorem 4.1 (iii) completes the 
proof. Q.E.D. 
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