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Abstract. 

We exhibit some mutual interactions between potential theory 
for concrete function spaces on IRn and the Dirichlet space theory 
associated with symmetric Markov processes. Our first concern is 
the role of the Dirichlet form version of the capacitary strong type 
inequality in the study of the ultracontractivity of the transition semi
group of time changed symmetric Markov processes. In particular, 
we study time changes of symmetric stable processes in relation to 
d-bounds of measures. We next show how the theory on capacity and 
the spectral synthesis for the Dirichlet space can be well inherited to 
a general function space with contractive p-norm. A link connecting 
those two topics is a contractive Besov space over a d-set of IRn. 

§1. Introduction 

Since the publication of the seminal work of Beurling and Deny [5], 
their axiomatic potential theory of the Dirichlet space (F, £) has been 
unified under one roof with the theory of the symmetric Markov process 
M. In particular, any a-finite positive measure 1-L charging no set of 
zero capacity can now be studied in relation to the trace Dirichlet space 
(J:, E) on the support F of 1-L and the time changed process M on F of 
M by means of the positive continuous additive functional associated 
with 1-L ([13]). 

In §2, we shall see for K E (0, 1) that a simple capacitary isoperimet
ric inequality 

(1) !-L(Ky< ~ 8 Cap(K), 'v'K(compact), 
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is equivalent to the ultmcontmctivity 

(2) (H) 1!.,. 
ih(x,y) ~ t , t > 0, 

of the transition function fit of :M, with the isoperimetric constant e for 
the measure J.L and the heat constant H for the process M controlling 
each other. When the (extended) Dirichlet space is the Riesz potential 
space £a•2 (JR.n) and M is the symmetric 2a-stable process (0 <a< 1), 
we shall also see in §3 that the isoperimetric constant can be replaced 
by the d-bound 

(3) vd(J.L) = sup 
xEJRn,r>O 

J.L(B(x, r)) 
rd 

of the measure J.L. Detailed proof of theorems in §2 and §3 can be found 
in [16]. 

An important ingredient in proving the above equivalence is the 
capacitary strong type inequality 

(4) 100 
Cap({x EX: iu(x)l ~ t})d(t2 ) ~ 4t:(u,u) VuE Fn Co(X), 

which readily ensures the equivalence of (1) to a Sobolev type imbed
ding of the trace Dirichlet space f:. We can then invoke the works by 
Carlen,Kusuoka and Stroock[8] and Bakry,Coulhon,Ledoux and Saloff
Coste[2] to relate (1) and (2). 

In the meantime, potential theory have advanced being modelled 
on concrete function spaces like Sobolev spaces wr,p, Bessel potential 
spaces La,p, Besov spaces B~·q and so on. Imbedding theorems and 
spectral synthesis have been among important issues in potential theory 
([1], [4], [23]). 

Actually the capacitary strong type inequality was first established 
by Maz'ya[22] for the Sobolev space W 1·P(JR.n), 1 < p < oo. It was then 
extended to a large class of function spaces on JR.n including the Riesz 
and Bessel potential spaces. It has been also proved in [21], [14] for a 
general function space with contmctive p-norm (1 ~ p < oo) 

(5) { II lull I~ = fxxX\d iu(.x)- u(y)IPN(x, dy)m(dx) 

Fp = {u E LP(X; m): II lull I~< oo}, 

which include as an important example the contmctive Besov space 
B~·P(F), 0 < a < 1, 1 ~ p < oo, over a d-set F C JR.n defined as 
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II II (If lu(x)-u(y)IP ( ) ( )) l/p 
= u LP(F;p,) + FxF lx-yid+"'P J..L dx J..L dy 

= { u is measurable : llu; B~,p (F) II < oo} . 

J..L being taken to be the restriction to F of the d-dimensional Hausdorff 
measure. 

Its Dirichlet space version (4) accompanied by the best constant 4 
was proved rather recently by Vondraeek (25]. (16] provides an alterna
tive simple proof of (4). 

When p = 2, the contractive Besov space on a d-set is a regular 
Dirichlet space on L 2 (F; J..L) and the properties of the associated jump 
type Markov process on F have been studied in (14], (6] and (9]. As we 
shall see in §3, this space is closely related to the Dirichlet space (:f, t) 
on L2 ( F; J..L) of the time changed process of a symmetric stable process on 
IR.n in the sense that the former is continuously imbedded into the latter, 
although these two spaces are generally different because the latter may 
involve a killing term in general. 

Even when p # 2, the function space (5) with contractive p-norm 
shares with the Dirichlet space a common feature that every normal 
contraction operates on it and deserves to be studied on its own light. 
We shall see in §4 that the well known theory on capacity and spectral 
synthesis for the Dirichlet space ((5], (10], [13]) can be well inherited to 
the function space (5). 

In particular, the spectral synthesis is possible for the contractive 
Besov space on a d-set F C IR.n for 1 < p < oo. As an application, we 
shall get in §4 the following criterion for an relatively open set H C F 
such that F \ H has a locally finite positive d-dimensional Hausdorff 
measure with d < d: 

(7) 
d-d BP'P(H) = BP,P(F) ~a<--

a,o a - p ' 

B~'~(H) being the closure of B~'P(F) n C0 (H) in the space B~'P(F). 
' This completes and extends the corresponding results by Caetano 

[7] and Farkas and Jacob (11]. When p = 2, d = n, F = D, H = D, for 
an open set D C IR.n, (7) has been shown by Bogdan,Burdzy and Chen 
[6] giving a complete characterization for almost no sample path of the 
censored 2a-stable process on D to approach the boundary 8D in finite 
time. Detailed proof of theorems in §4 can be found [15]. 
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§2. Capacitary bounds of measures and time changed pro
cesses 

Let (X, m, e, :F) be a regular transient Dirichlet space. By this, 
we mean that X is a locally compact separable metric space, m is an 
everywhere dense positive Radon measure on X, and that ( e, :F) is a 
regular transient Dirichlet form on L2 (X; m). The 0-order capacity of a 
compact set K C X is then defined by 

(8) Cap(K) = inf {e(u, u) : u E :F n C0 (X), u(x) ~ 1, x E K} 

and extended to any subsets of X as a Choquet capacity. :Fe denotes 
the extended Dirichlet space. In what follows, any function u E :Fe will 
be always taken to be quasi-continuous (cf. [13]). 

Owing to Vondraeek [25], we then have the capacitary strong type 
inequality (4), which in turn implies the following (cf. [1, §7.2]): 

Theorem 1. Let J.L be a Borel measure on X and, E (0, 1]. 
(i) If the capacitary isoperimetric inequality (1) holds for some positive 
constant e, then J.L is a smooth Radon measure and 

(9) 

for some positive constantS~ (4/~t),.,e. 
(ii) Conversely, if (9) holds for any u E :FnC0 (X) and for some positive 
constantS, then (1) holds for some positive constant 9 ~ S. 

For a measure J.L on X, we introduce its isoperimetric constant and 
Sobolev constant respectively by 

(10) 

(11) 

J.L(K),., 
e,.,(J.L) = s~ Cap(K) 

S ( ) llulli'~(J.&) 
'1 J.L = sup 

uE.1'"nCo(X) e(u,u) 

~t E (0, 1], 

11 E [2, oo). 

The supremum in (11) can be taken for all u E :Fe. S2 (J.L) may be called 
the Poincare constant of J.L· Theorem 1 can be rephrased as follows: 

Corollary 1. For a measure J.L on X and for, E (0, 1], 0 < 
9,.,(J..L) < oo if and only ifO < S2;,.,(J.L) < oo. Moreover, 

(12) 1t E (0, 1]. 
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Let M = {Xt, P,,J be an m-symmetric Hunt process on X associated 
with the Dirichlet form £ and A = At be a PCAF of M whose Revuz 
measure is a given smooth Radon measure J-L. Denote by F and F the 
support of J-L and A respectively. Then F C F q.e., J-L(F \F) = 0 and 
further F is a quasi-support of J-L, namely, if quasi-continuous functions 
coincide J..L-a.e., then they coincide q.e. on F. Recall that each element 
u E Fe is taken to be quasi-continuous. 

We consider the time changed process M = (Xt, Px)xEF defined by 

Tt = inf { s > 0 : A 8 > t}. 

M is a J..L-symmetric transient right process, whose Dirichlet form ( £, F) 
on L2 (F; J-L) and the extended Dirichlet space Fe can be described as 
follows ( cf. [13, §6.2]) : 

(13) Fe = { 'P = uiF J-L- a.e. : u E Fe} 

(14) E(cp, cp) = £ (H pu, Hpu) cp = uiF E Fe, 

where 
Hpu(x) =Ex (u (Xap)) x EX, 

Ex denoting the expectation with respect to Px and a p being the hitting 
time of the set F by the sample path Xt. Two elements of Fe are regarded 
identical if they coincides J..L-a.e. Since F is a quasi-support of J-L, the 
definition (14) of£ makes sense. 

We can restate (14) as follows (the Dirichlet principle): 

(15) E(cp,cp) = inf{£(u,u): u E Fe, u = cp J..L-a.e. on F}, cp E Fe. 

The first half of the next theorem is immediate from (9) and (15). 

Theorem 2. Suppose a measure J-L satisfies 8~<(J-L) E (0, oo) for 
some "'E (0, 1). 
Then the following holds for S = S2;1<(J..L)(E (8~<(J-L), (4/"')~<e~<(J..L))). 
(i) 

(16) 

(ii) The transition function ih of the time changed process M on F 
satisfies the ultracontractivity (2) for J-L x J..L-a.e. (x, y) E F x F, where 
H is some positive constant with 

(17) 
1 

H<--·S. 
-1-/'i, 
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We know that (1) and (16) are equivalent by Voropoulos [24]. But 
we are more concerned with dependence of the isoperimetric constant 
e,. and the heat constant H. 

Simple mutual dependence of H and the constant N appearing in 
the Nash type inequality has been well studied in [8]. The Sobolev 
inequality (16) can be readily converted by a Holder inequality into the 
Nash type inequality with N = S and we can get the bound (17) easily. 
On the other hand, we know that the Sobolev inequality can be derived 
from the Nash type inequality under a certain control of S by N in 
view of [2, Cor, 4.4, Cor. 7.3], and we can get the following converse to 
Theorem 2. 

Theorem 3. Suppose that J.£ is a smooth Radon measure with sup
port F and that the transition function fit of the time changed process 
M on F with respect to the PCAF with Revuz measure JL satisfies the 
ultracontractivity (2) for some K E (0, 1), H > 0. Then 
(i) The Sobolev inequality (16) holds for some positive constantS with 

(18) 
2- .. 

S ~ 48 e2 ..!:. .( 2 - K) r=;c. H. 
K 1-K 

(ii) JL admits an isoperimetric constant e,.(J.£) with a bound 

(19) 

by the constantS of (i). 

Tierry Coulhon has called author's attention to the relevance of the 
capacitary isoperimetric inequality (1) to the Faber-Krahn inequality. 

For an open set G C X, we put 

:Fa = { u E :F: u = 0 q.e. on X\ G}. 

Due to the spectral synthesis theory for the Dirichlet space, £ with 
domain :Fa can be considered as a regular Dirichlet form on £ 2 ( G; m) 
which is called the part of(£, :F) on G ([13, §4.4]). For a measure J.£ on 
X, we let 

.\ ( ·G)= . f e(u,u) (= inf e(u,u) ) 
1 11' u~.ra llulli2(~) uEJ'"nCo(a) llulli2(~) ' 

which may be regarded, on account of the Dirichlet principle (15), as 
the first eigenvalue for the part of the trace Dirichlet space (f:", E) on the 
relatively open sunset F n GofF. Since .\1 (J.£; G) is the reciprocal of the 
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Poincare constant S2(p.;G) defined by (11) for the part form (&,:Fa), 
we get from (12) 

(20) 1 < 4 sup p.(K) 
AI(P.; G) - KeG Cap(K; G)' 

where Cap(K; G) is defined by (8) with X being replaced by G. 
Let us assume that 8,.(p.) is finite for some "' E (0, 1). Since 

Cap(K; G) ~ Cap(K) for K C G, we have 

(21) 1 < e,.(p.). 
Cap(K; G) - p.(K)"' 

(20) and (21) lead us to 

A ( 1. G) ~ 4 sup 8,.(p.) · p.(K)1-"' = 48~(p.). p.(G) 1-"' 
1 P,, KeG 

and 

(22) 

for any open set G C X of finite p.-measure. 
(22) is called the Faber-Kmhn inequality and the above procedure 

of getting (22) from (1) using the capacitary strong type inequality has 
been indicated by Grigor'yan [18]. Very intimate relationship among 
the Faber-Krahn inequality, ultracontractivity (2) and the Nash type 
inequality has been studied in [19]. However, in order to recover the 
capacitary isoperimetric inequality (1) from the ultracontractivity (2), 
one may need to path through Nash type inequality to Sobolev's one as 
being done in this section. 

§3. Application to time changes of symmetric stable processes 
on d-sets 

In this section, we consider the symmetric 2a-stable process M = 
(Xt, P.,) on !Rn for 0 < a~ 1, 2a < n. The transition function of M is 
a convolution semigroup {vt, t > 0} of symmetric probability measures 
on !Rn with 

Vt(x) ( = Ln ei(x,y)Vt(dy)) = e-tclxl2"'' 

c being a fixed positive constant. For simplicity, we take c = 1. In case 
that a= 1, M is then-dimensional Brownian motion with variance of 
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Jtt being equal to 2t. M is transient. The Dirichlet form (£,F) of M on 
L2 (JRn) is given by 

(23) { 
£(u,u) = 

F = 

[ u(x )~(x) lxl 2"'dx 
}R.n 
{u E L2 (1Rn): [ lu(xWixl 2"'dx < oo}. 

}R.n 

The extended Dirichlet space (Fe,£) of M can then be identified 
with the Riesz potential space L"''2 (1Rn) = {Ia * f: f E L2 (1Rn)}, where 
the Riesz potential of a measure v on !Rn is defined by 

f((n- a)/2)) 
"'a = 7rn/22"'f(a/2). 

The capacity defined by (8) for the present Dirichlet form coincides with 
the Riesz capacity defined for any compact set K C !Rn by 

(24) Ca,2(K) = inf{ilflli2(R.n): f E L~(!Rn), Ia * f(x);::: 1 Vx E K}. 

We call a closed subset F of !Rn a (semi global) d-set for 0 < d ::; n 

if there exists a positive measure p, supported by F satisfying, for some 
constants 0 < c1 ::; c2, 

c1rd::; p,(B(x,r)) \fx E F,Vr E (0, 1) 

p,(B(x,r))::; c2rd \fx E F, "irE (O,oo), 

where B(x,r) denotes then-dimensional ball with center x and radius 
r. Such a measure is called a d-measure. It is known that the restriction 
of the d-dimensional Hausdorff measure to a d-set F is a d-measure 
(c£.[20]). 

For ad-measure p,, we will be concerned with its d-bound defined by 
(3). We consider ad-measure p, on ad set F with 

n - 2a < d ::; n. 

Otherwise, Ca,2(F) = 0 and p, can not satisfy the isoperimetric inequal
ity with respect to the present Dirichlet form. Since 

we can immediately obtain a lower bound of the isoperimetric constant 
for p, by its d-bound: 

(25) 

We can also obtain an inequality in the opposite direction: 
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Theorem 4. For any Radon measure f.L with finite d-bound, it holds 
that 

(26) 

for 

(27) 
4d2 'Y~ Vn (n- a)2 

c(n, a, d)= (n- 2a)2{d- (n- 2a)}2' 

where Vn is the volume of the n dimensional unit ball. 

By setting K- = na,2a in Corollary 1 and using (25) and (26), we get 
the bound of the Sobolev constant S = S __u,_ (f.L) for f.L in terms of its 

n-2a 

d-bound vd(f.L): 

(28) c;;,~ Vd(f.L)~ :5: 8 :5: (4dj(n- 2a))~ c(n,a,d) Vd(f.L)~ 

for the constant c(n, a, d) of (27). 

By setting K- = nd.2a in Theorem 1 and Theorem 2, we have 

Theorem 5. Suppose f.L is a d-measure on !Rn with n- 2a < d ::;; n. 
Then we have the following for S satisfying the bounds (28): 
(i) 

(29) lluW __u,_ :5: S £(u,u) 
L n-2a (R.";I-') 

(ii) Let M be the time changed process on the support F of f.L ofM by the 
PCAF with Revuz measure f.L· Then its transition function fit satisfies 

(30) (H) d (: 2a) 

'fit(x, y) :5: t , t > 0, 

for f.L x f.J,-a.e. (x,y) E F x F, where His some positive constant with 

(31) H< d S. 
- d- (n- 2a) 

Actually inequality (29) together with the bounds 
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holding for some positive constants c3 , c4 independent of J.L goes back to 
the work of Adams ([23, 1.4.1]). Here we have made these contants C3 

and c4 more explicit in (28). 

We can also derive from Theorem 3 the following converse to The
orem 4. 

Theorem 6. Suppose that J.L is a smooth Radon measure on JRn with 
support F and that the transition function Pt of the time changed process 
M on F with respect to the PCAF with Revuz measure J.L satisfies the 
bound (30) for some dE (n- 2a, n] and H > 0. Then 
(i) The inequality (29) holds for some positive constantS with 

(32) 

2d-(n-2o) 

48de2 (2d- (n- 2a)) d (n 2a) 
S<-- ·H. 

- n- 2a d- (n- 2a) 

(ii) J.L is ad-measure whose d-bound vd(J.L) satisfies 

d 

(33) -- ~ vd(J.L) ~ (i:, 2 S)n-2a 
n - 2a ( s ) n-2 <> d 

4d c(n, a, d) ' 

for the constantS of (i) and for c(n, a, d) of (27). 

Let J.L, F, M be as in Theorem 5 and ( E, F) be the Dirichlet form of 
M on L 2 (F; J.L) the trace Dirichlet form of (23) on the d-set F. Put 

(34) 
n-d 

8 =a- - 2- E (0, 1] 

and consider the Besov space n;•2 (F) over F defined by 
(35) 

{ 
(<p, 'l/J)Bi·2(F) 

n;·2 (F) 

1 (<p(x)- <p(y))('l/J(x)- '1/J(y)) (d ) (d ) 
I ld+26 J.L X J.L y 

FxF\d X- Y 

{<p E L2 (F;J.L): (<p,<p) 8~,2(F) < oo}. 

n;•2 (F) is a Dirichlet form on L 2 (F; J.L) equipped with the norm 

By virtue of a Jonsson-Wallin trace theorem [20, chap. V], this space 
is related to the Bessel potential space L,,2 (JRn) as 

(36) 
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both the restriction and extension operators involved being continuous. 
Since the present Dirichlet space (23) equipped with £1-norm is known to 
be equivalent to the Bessel potential space, we are led from the Dirichlet 
principle (15) and (36) to the following continuous embedding: 

(37) 

for some positive constant C. 
Nevertheless 0-oder forms£ and(·, ·)8 ;,2(F) are not necessarily equiv

alent. For instance, let M be the standard Brownian motion on ~n with 
n ~ 3, F be the unit sphere :E cantered at the origin and J1, be the sur
face measure IJ on :E. Then we have the following expression of the trace 
Dirichlet form £ (f, f) for f E :f ( [ 17]): 
(38) 

tu, f)=~ f (!(~)- f(ry))21~ 1 In !J(d~)!J(dry)+vo f !(~)21J(~), 
H J'Ex'E\d - 77 J'E 

where n is the area of :E and Vo = n;-2 . The first term on the right 
hand side correponds to the form (35) for d = n- 1, 8 = 1/2. But the 
additional second term appears due to the transience of the Brownian 
motion. 

§4. Spectral synthesis for contractive p-norms and Besov spaces 

Let X be a locally compact separable metric space and m a positive 
Radon measure on X with supp[m] =X. Let N(x, dy) be a positive ker
nel on (X, B(X)) such that N(x, { x}) = 0, x E X, and N(x, dy)m(dx) 
is a symmetric measure over X X X- d, where d = {(x,x) : x EX}. 
For a fixed 1 :::; p < oo, we introduce the pseudo-norm Ill · lllv and the 
function space :Fp by (5). Denoting the norm of the space £P(X; m) by 
ll·llv, we equip :Fp with the norm 

(39) u E :Fv n £P(X; m). 

We assume the regularity of this space in the sense that :Fv n C0 (X) is 
dense in :Fv with norm (39) and in C0 (X) with uniform norm. 

Denote by CJ the family of all open sets in X. We define the Jr 
capacity of A E CJ by 
(40) 

Capp(A) = inf{lllulll~ +I lull~: u E Fp, u ~ 1 m-a.e. on A} A E CJ, 

and extend it to any set B C X by 

Capp(B) = inf{Capp(A): A E 0, B c A}. 
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'q.e.' will mean 'except for a set of zero p-capacity'. CapP-quasicontinuous 
function will be called simply quasicontinuous. In what follows, we also 
assume that 1 < p < oo. 

Although the space (Fp, II I · II lp,l is slightly more complicated than 
the ordinary £P space, we can well adopt the uniform convexity argu
ment to ensure the unique existence of the equilibrium potential for any 
A E 0 with finite p-capacity. Thus CapP on open sets can be seen to en
joy the continuity along the increasing limit as in [12). It is also strongly 
subadditive as in [21). Hence CapP is a Choquet capacity, each element 
u E Fp has a quasicontinuous version u, each set of finite p-capacity has 
a unique equilibrium potential just as in the case of the Dirichlet space. 
We also have the following nice property: 
(41) 
u is quasi-continuous and u = 0 m-a.e. on G( E 0) ===} u = 0 q.e. on G. 

ForGE 0, we let 

(42) ;:a =:F. n c, (G)III:IIIp,l 
p,O p 0 , 

where Co(G) denotes the family of continuous functions on X whose sup
port is compact and contained in G. We say that the spectml synthesis 
is possible for G E 0 if 

(43) .r;o = { u E Fp : u = 0 q.e. on X\ G}. 

Following the method of [1, §9.2) for the space W 1·P(JRn) and us
ing the contraction property of the space Fp together with the above 
mentioned properties of CapP, we can prove the next theorem. 

Theorem 7. (i) The spectml synthesis is possible for G E 0 if 
X \ G is compact. 

(ii) The spectml synthesis is possible for any G E 0 under the next 
assumption: 
{A) There exist non-negative functions Wn E C0 (X) increasing to 1 
such that 

sup sup Wn(x) < oo, lim sup Wn(x) = 0 for any compact K C X, 
n xEX n ..... oo xEK 

where 

(44) xEX. 
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As a consequence of Theorem 7 (i), the next useful identity holds 
for any compact set K C X: 

(45) Capp(K) = inf{lilulll~ +!lull~: u E Fp n Co(X), u ~ 1 on K}. 

We now let 

0 < d $ n, < a < 1, 1 < p < oo, 

and consider the contractive Besov space B~;P(F) on a d-set F C Rn 
defined by (6). This is a special example of the space Fp with contractive 
p-norm Ill· lllp,l· The associated p-capacity of a set A C F is denoted 
by Capa,p(A; F). It can be shown that condition A is satisfied by this 
space. By Theorem 7, the spectral synthesis is therefore possible for any 
relatively open setH C F with respect to B~·P(F), which immediately 
implies the equivalence 

(46) BP·P(H) = BP·P(F) ~Cap (F \ H· F)= 0 
a,O a a,p ' ' 

where B~·~(H) denotes the closure of Bg_·P(F) n C0 (H) in the space 
B~·P(F). ' 

On the other hand, the next implications have been proved in [14] 
by making use of the property (45) of Capa,p(·;F), a Jonsson-Wallin 
trace theorem ([20]) and the metric properties of the Bessel capacity on 
Rn ([1]): 

(47) Capa,p{A; F) = 0 ==> 'Hdim(A) $ d- ap, 

(48) Hd-ap(A) < oo ==> Capa,p(A; F) = 0. 

Here 1idim and H"' denote the Hausdorff dimension and -y-dimensional 
Hausdorff measure respectively. 

(46),(47) and (48) lead us to the next desired theorem. 

Theorem 8. Assume that H is a relatively open subset of F and 
that F \ H has a locally finite positive d-dimensional Hausdorff measure 

- d-d 
with d < d. Then B~·~ (H) = B~·P (F) if and only if a $ --. 

' p 
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