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Equivariant Diffusions on Principal Bundles 

K. David Elworthy, Yves Le Jan and Xue-Mei Li 

Let 1r : P -> M be a smooth principal bundle with structure group G. 
This means that there is a coo right multiplication P x G -> P, u f-+ u · g 
say, of the Lie group G such that 1r identifies the space of orbits of G with the 
manifold M and 1r is locally trivial in the sense that each point of M has an 
open neighbourhood U with a diffeomorphism 

UxG 

u 
over U, which is equivariant with respect to the right action of G, i.e. if T u (b) = 
(n(b), k) then Tu (b·g) = (n(b), kg). Assume for simplicity that M is compact. 
Set n = dimM. The fibres, 1r- 1(x), x EM are diffeomorphic toG and their 
tangent spaces VTuP(= kerTun), u E P, are the 'vertical' tangent spaces 
to P. A connection on P, (or on n) assigns a complementary 'horizontal' 
subspace HTuP to VTuP in TuP for each u, giving a smooth horizontal sub­
bundle HT P of the tangent bundle T P to P. Given such a connection it is a 
classical result that for any C1 curve: O" : [0, T] -> M and u0 E n- 1 (0"(0)) 
there is a unique horizontal a: [0, T]-> P which is a lift of O", i.e. n(a(t)) = 
O"(t) and has a(O) = Uo. 

In his startling ICM article [8] Ito showed how this construction could be 
extended to give horizontal lifts of the sample paths of diffusion processes. In 
fact he was particularly concerned with the case when M is given a Riemann­
ian metric (, ) x, x E M, the diffusion is Brownian motion on M, and P is the 
orthonormal frame bundle 1r : OM -> M. Recall that each u E OM with 
u E 1r-1(x) can be considered as an isometry u : Rn -> TxM, (, )x and a 
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horizontal lift iT determines parallel translation of tangent vectors along a 

//t = //(a)t : Tu(·)M --t Tu(t)M 

v ~ a(t)(a(0))-1v. 

The resulting parallel translation along Brownian paths extends also to paral­
lel translation of forms and elements of f\PT M. This enabled Ito to use his 
construction to obtain a semi-group acting on differential forms 

As he pointed out this is not the semi-group generated by the Hodge-Kodaira 
Laplacian,~. To obtain that generated by the Hodge-Kodaira Laplacian,~. 
some modification had to be made since the latter contains zero order terms, 
the so called Weitzenbock curvature terms. The resulting probabilistic expres­
sion for the heat semi-groups on forms has played a major role in subsequent 
development. 

In [5] we go in the opposite direction starting with a diffusion with smooth 
generator Bon P, which is G-invariant and so projects to a diffusion generator 
A on M. We assume the symbol a A has constant rank so determining a sub­
bundle E of TM, (so E = TM if A is elliptic). We show that this set-up 
induces a 'semi-connection' on P over E (a connection if E = T M) with 
respect to which B can be decomposed into a horizontal component AH and a 
vertical part B v. Moreover any vertical diffusion operator such as B v induces 
only zero order operators on sections of associated vector bundles. 

There are two particularly interesting examples. The first when rr: G LM --t 

M is the full linear frame bundle and we are given a stochastic flow { et : 0 ~ 
t < oo} on M, generator A, inducing the diffusion { Ut : 0 ~ t < oo} on 
GLMby 

Ut = Tet(Uo). 

Here we can determine the connection on GLM in terms of the LeJan-Watanabe 
connection of the flow [12], [1], as defined in [6], [7], in particular giving con­
ditions when it is a Levi-Civita connection. The zero order operators arising 
from the vertical components can be identified with generalized Weitzenbock 
curvature terms. 

The second example slightly extends the above framework by letting rr : 
P --t M be the evaluation map on the diffeomorphism group DiffM of M 
given by rr(h) := h(xo) for a fixed point x0 in M. The group G corresponds 
to the group of diffeomorphisms fixing x0 • Again we take a flow {et(x) : x E 
M, t ~ 0} on M, but now the process on DiffM is just the right invariant 
process determined by { et : 0 ~ t < 00}. In this case the horizontal lift to 
the diffeomorphism group of the diffusion { et ( Xo) : 0 ~ t < 00} on M is 
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obtained by 'removal of redundant noise', c.f. [7] while the vertical process is 
a flow of diffeomorphisms preserving x0 , driven by the redundant noise. 

Here we report briefly on some of the main results to appear in [5] and give 
details of a more probabilistic version Theorem 2.5 below: a skew product 
decomposition which, although it has a statement not explicitly mentioning 
connections, relates to Ito's pioneering work on the existence of horizontal 
lifts. The derivative flow example and a simplified version of the stochastic 
flow example are described in§ 3. 

The decomposition and lifting apply in much more generality than with 
the full structure of a principal bundle, for example to certain skew products 
and invariant processes on foliated manifolds. This will be reported on later. 
Earlier work on such decompositions includes [4] [13]. 

§1. Construction 

A. If A is a second order differential operator on a manifold X, denote 
by a..A : T* X ----> T X its symbol determined by 

1 1 1 
df ( a.A ( dg)) = 2 A (f g) - 2 A (f) g - 2 fA (g) , 

for C2 functions J, g. The operator is said to be semi-elliptic if df ( aA( df)) 2::0 
for each f E C2 (X), and elliptic if the inequality holds strictly. Ellipticity is 
equivalent to aA being onto. It is called a diffusion operator if it is semi-elliptic 
and annihilates constants, and is smooth if it sends smooth functions to smooth 
functions. 

Consider a smooth map p : N ----> M between smooth manifolds M and 
N. By a lift of a diffusion operator A on M over p we mean a diffusion 
operator T3 on N such that 

(1) T3(fop) = (Af) op 

for all C 2 functions f on M. Suppose A is a smooth diffusion operator on M 
and T3 is a lift of A. 

Lemma 1.1. Let a 13 and aA be respectively the symbols for T3 and A The 
following diagram is commutative for all u E p- 1 (x ), x E M: 

a~ 
r:N------

(Tp)•l 
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B. Semi-connections on principal bundles. Let M be a smooth fi­
nite dimensional manifold and P (M, G) a principal fibre bundle over M with 
structure group G a Lie group. Denote by 7f : P --+ M the projection and Ra 
the right translation by a. 

Definition 1.2. Let E be a sub-bundle ofT M and 7f : P --+ M a principal 
G-bundle. An E semi-connection on 7f : P --+ M is a smooth sub-bundle 
HETP ofTP such that 

(i) Tv.1f maps the fibres HETv.P bijectively onto E1r(v.)!orall u E P. 
(ii) HETP is G-invariant. 

Notes. 
(1) Such a semi-connection determines and is determined by, a smooth hori­
zontal lift: 

uEP 

such that 

(i) Tv.1f o hv.(v) = v, for all v E Ex C TxM; 
(ii) hv.·a = Tv.Ra 0 hv.. 

The horizontal subspace H ETv.P at u is then the image at u of hv.. and the 
composition hu o Tv.P is a projection onto HETv.P. 
(2) Let F = P x V / "' be an associated vector bundle to P with fibre V. An 
element ofF is an equivalence class [(u,e)] such that (ug,g- 1e)"' (u,e). 
Set u(e) = [(u, e)]. An E semi-connection on P gives a covariant derivative 
on F. Let Z be a section ofF and w E Ex c TxM, the covariant derivative 
V' wZ E Fx is defined, as usual for connections, by 

V'wZ = u(dZ(hv.(w)), 

Here Z : P--+ Vis Z(u) = u-1 Z (1r(u)) considering u as an isomorphism 
u : V --+ F1r(u)· This agrees with the 'semi-connections onE' defined in 
Elworthy-LeJan-Li [7] when P is taken to be the linear frame bundle ofT M 
and F = T M. As described there, any semi-connection can be completed to 
a genuine connection, but not canonically. 

Consider on P a diffusion generator B, which is equiv~riant, i.e. 

Bj oRa= B(J oRa), 'ilf,g E C2 (P,R), a E G. 

The operator B induces an operator A on the base manifold M by setting 

(2) Af(x) = B (! o 1r) (u), 

which is well defined since 

B (! o 1r) (u ·a)= B ((f o 1r)) (u). 
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Let Ex :=Image( a:) C TxM. the image of a:. Assume the dimension 
of Ex = p, independent of x. Set E = UxEx. Then 1r : E -t M is a sub­
bundle ofT M. 

Theorem 1.3. Assume aA has constant rank Then a 8 gives rise to a 
semi-connection on the principal bundle P whose horizontal map is given by 

(3) 

where a E r;(u)M satisfies a:( a)= v. 

Proof. To prove hu is well defined we only need to show '¢(a8 (Tutr*(a))) = 
0 for every 1-form '¢on P and for every a in ker a:. Now aAa = 0 implies 
by Lemma 1.1 that 

0 = aaA(a) = (Ttr)*(a)a8 ((Ttr)*(a)). 

Thus Ttr*(a)a8 (Ttr*(a)) = 0. On the other hand we may consider a8 

as a bilinear form on T* P and then for all f3 E r;; P, 

a 8 (f3 + t(Ttr)*(a), f3 + t(Ttr)*(a)) 

= a 8 (f3,/3) + 2ta8 ({3, (Ttr)*(a)) + t 2a 8 ((Ttr)*a, (Ttr)*a) 

= a8 ({3,{3) + 2ta8 ({3, (Ttr)*(a)). 

Suppose a8 ({3, (Ttr)*(a)) =f. 0. We can then choose t such that 

a8 (f3+t(Ttr)*(a),f3+t(Ttr)*(a)) < 0, 

which contradicts the semi-ellipticity of B. 
We must verify (i) Tu7r o hu(v) = v, v E Ex C TxM and (ii) hu·a = 

T,_.Ra o hu. The first is immediate by Lemma 1.1 and for the second use the 
fact that Ttr o T Ra = Ttr for all a E G and the equivariance of a8 . • 

§2. Horizontal lifts of diffusion operators and decompositions of equi­
variant operators 

A. Denote by coonp the space of smooth differential p-forms on a mani­
fold M. To each diffusion operator A we shall associate a unique operator 8A. 
The horizontal lift of A can be defined to be the unique operator such that the 
associated operator 8 vanishes on vertical1-forms and such that 8 and 8A are 
intertwined by the lift map 7r* acting on 1-forms. 

Proposition 2.1. For each smooth diffusion operator A there is a unique 
smooth differential operator 8A : 0 00 (01 ) -t 0 000° such that 

(1) f5A (!¢) = dfaA(cP)x + f · f5A (¢) 
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(2) oA (df) = A(f). 

For example if A has Hormander representation 

1 m 

A= 2 L:.Cxdxi + .CA 
j=l 

for some C 1 vector fields Xi, A then 

where t A denotes the interior product of the vector field A acting on differential 
forms. 

Definition 2.2. LetS be a coo sub-bundle ofT N for some smooth man­
ifold N. A diffusion operator B on N is said to be along S if 88 ¢ = 0 for 
all 1-forms ¢ which vanish on S; it is said to be strongly cohesive if u 8 has 
constant rank and B is along the image of u8 . 

To be along S implies that any Hormander form representation of B uses 
only vector fields which are sections of S. 

Definition 2.3. When a diffusion operator B on P is along the vertical 
foliation VTP of the 1r : P ---+ M we say B is vertical, and when the bundle 
has a semi-connection and B is along the horizontal distribution we say B is 
horizontal. 

If 1r : P ---+ M has an E semi-connection and A is a smooth diffusion 
operator along E it is easy to see that A has a unique horizontal lift AH, i.e. 
a smooth diffusion operator A H on P which is horizontal and is a lift of A in 
the sense of (1). By uniqueness it is equivariant. 

B. The action of G on P induces a homomorphism of the Lie algebra g of 
G with the algebra of right invariant vector fields on P: if a E g, 

A"(u) = dd I uexp(ta), 
t t=O 

and A<> is called the fundamental vector field corresponding to a. Take a basis 
A1, ... , Ak of g and denote the corresponding fundamental vector fields by 
{Ai}. 

We can now give one of the main results from [5]: 
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Theorem 2.4. Let B be an equivariant operator on P with A the induced 
operator on the base manifold. Assume A is strongly cohesive. Then there is a 
unique semi-connection on P over E for which B has a decomposition 

where AH is horizontal and Bv is vertical. Furthermore Bv has the expres­
sion I: aij .CA; .CA; +I: j3k .CA;;. where aij and {3k are smooth functions on P, 

given by ak£ = r;} (o-8 (,;:/)), and /31. = 88 (C})forw any connection 1-form 
on P which vanishes on the horizontal subspaces of this semi-connection. 

We shall only prove the first part of Theorem 2.4 here. The semi-connection 
is the one given by Theorem 1.3, and we define AH to be the horizontal lift of 
A . . The proof that Bv := B-AH is vertical is simplified by using the fact 
that a diffusion operator V on P is vertical if and only if for all C 2 functions 
It on P and h on M 

(4) V(ft(h orr))= (h o rr)V(ft). 

Set 12 = h orr. Note 

H - - H H - B AH -
(B- A ) (/!h)= h(B- A )/1 + ft(B- A )h + 2(dft)o- - (dh). 

Therefore to show (B-AH) is vertical we only need to prove 

Recall Lemma 1.1 and use the natural extension of a-A to a-A : E* - E and 
the fact that by (3) h o a-:= o-8 (Turr)* to see 

o-AH (d12) = (h o o-Ah*) (dh o Trr) = h o a-Adh 

= o-8 (dh o Trr) = o-8 (d12), 

and so o-<8 -A H) ( d12) = 0. Also by equation (1) 

(B - AH)12 = Ah - AH 12 = 0. 

This shows that B - A H is vertical. 

Define a: P-g®gand/3: P-gby 

a( u) = L aij ( u )Ai ® Aj 

f3(u) = Lf3k(u)Ak. 

• 
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It is easy to see that Bv depends only on a, (3 and the expression is independent 
of the choice of basis of g. From the invariance of B we obtain 

a(ug) 

(3(ug) 

for all u E P and g E G. 

= (ad(g) ® ad(g)) a(u), 

ad(g)(3(u) 

C. Theorem 2.4 has a more directly probabilistic version. For this let 
1r : P --+ M be as before and for 0 $ l < r < oo let C(l, r; P) be the space 
of continuous paths y : [l, r] --+ P with its usual Borel a-algebra. For such 
write ly = landry = r. Let C(*, *i P) be the union of such spaces. It has 
the stanqard additive structure under concatenation: if y and y' are two paths 
with ry = ly' and y(ry) = y'(ly') let y + y' be the corresponding element in 
C(ly, ry'; P). The basic a-algebra of C( *• *• P) is defined to be the pull back 
by 1r of the usual Borel a-algebra on C( *• *i M). 

Consider the laws {lP'~r : 0 $ l < r, a E P} of the process running from 
a between times l and r, associated to a smooth diffusion operator Bon P. 
Assume for simplicity that the diffusion has no explosion. Thus {lP'~r, a E P} 
is a kernel from P to C(l, r; P). The right action R 9 by g in G extends to 
give a right action, also written R9 , of G on C( *, *• P). Equivariance of B is 
equivalent to 

pl,r = (R ) pl,r 
ag g * a 

for all 0 $ l $ rand a E P. If so rr*(IP'~r) depends only on rr(a), l, rand 
gives the law of the induced diffusion A on M. We say that such a diffusion 
B is basic if for all a E P and 0 $ l < r < oo the basic a-algebra on 
C(l, r; P) contains all Borel sets up to lP'~r negligible sets, i.e. for all a E P 
and Borel subsets B of C(l, r; P) there exists a Borel subset A of C(l, r, M) 
s.t. lP'a(rr- 1(A).6.B) = 0. 

For paths in G it is more convenient to consider the space Cid(l, r; G) of 
continuous a : [l, r] --+ G with a(l) = id for 'id' the identity element. The 
corresponding space Cid ( *, *, G) has a multiplication 

cid(s, t; G) X cid(t, u; G) - cid(s, u; G) 

(g, g') f--+ 9 X g' 

where (g x g')(r) = g(r) for r E [s, t] and (g x g')(r) = g(t)g'(r) for · 
r E [t,u]. 

Given probability measures Q, Q' on Cid(s, t; G) and Cid(t, u; G) respec­
tively this determines a convolution Q * Q' of Q with Q' which is a probability 
measure on Cid(s, u; G). 
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Theorem 2.5. Given the laws {lP'~r : a E P, 0 :::; l < r < oo} of an equi­
variant diffusion B as above with A strongly cohesive there exist probability 
kernels {1P':,l,r : a E P} from P to C(l, r; P), 0 :::; l < r < oo and Q~r, 
defined lP'l,r a.s. from C(l, r, P) to Cid(l, r; G) such that 

(i) {1P'~,l,r : a E P} is equivariant, basic and determining a strongly 
cohesive generator. 

(ii) y ~---> Q~r satisfies 

for JP'1Y ,ry ® JP'1y' ,r Y' almost ally, y' with r y = ly'. 
(iii) For U a Borel subset ofC(l, r, P), 

lP'~r(U) = j j xu(y. · g.)Q~r(dg)lP'~,l,r(dy). 

The kernels 1P'~,l,r are uniquely determined as are the {Q~r : y E JR.}, 1P'~,l,r 

a.s. in y for all a in P. Furthermore Q~r depends on y only through its 
projection 1r(y) and its initial point Yl· 

Proof. Fix a in P and let {bt : l :::; r :::; t} be a process with law lP'~r. By 
Theorem 2.4 we can assume that b. is given by an s.d.e. of the form 

(5) dbt = X(bt) 0 dBt + X 0 (bt)dt + A(bt) 0 df3t + V(bt)dt 

where X : P x JR.P ---+ T P is the horizontal lift of some X : M x JR.P ---+ E, 
X0 is the horizontal lift of a vector field X 0 on M, while A : P x JR.1 ---+ T P 
and the vector field V are vertical and determine Bv. Here B. and (3. are 
independent Brownian motions on JR.P and JR.q respectively, some q, and we are 
using the semi-connection on P induced by Bas in Theorem 1.3. 

Let { Xt : l :::; t :::; r} satisfy 

(6) 
dxt = X(xt) 0 dBt + X 0 (xt)dt 

so x. is the horizontal lift of { 1r ( bt) : l :::; t :::; r}. Then there is a unique 
continuous process {gt : l :::; t :::; r} in G with gl = id such that 

We have to analyse {gt : l :::; t :::; r }. Using local trivialisations of 
1r : P---+ M we see it is a semi-martingale. As in [9], Proposition 3.1 on page 
69, 
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giving 

w( odbt) = w ( A9;- 1 odg, (bt)) = gf: 1 o dgt 

for any smooth connection form w : P -+ g on P which vanishes on HET P. 
Thus 

(7) 
91 = id, l :::; t :::; r. 

For y E C(l, r : P) let {gf : l :::; t :::; r} be the solution of 

dgf = TL9rw(A(ytgf) o df3t + V(ytgf)dt) 
(8) gr = id 

(where the Stratonovich equation is interpreted with 'dytdf3t = 0'). Since (3. 
and B. and hence (3. and x. are independent we see g = g'i'" almost surely. For 
a discussion of some technicalities concerning skew products, see [16]. 

For y. inC(*, *i P)let {h(y)t : ly :::; t :::; ry} be the horizontal lift of 
1r(y)., starting at Yl .. · This exists for almost ally as can be seen either by the 
extension of Ito's result to general principal bundles, e.g. using (6), or by the 
existence of measurable sections using the fact that AH is basic. Define JP>:f•1•r 

to be the law of x. above and Q~r to be that of gh(y). Clearly conditions (i) is 
satisfied. 

To check (ii) take y andy' with ry = ly'· Then 

h(y + y') = h(y) + h(y') (g~:y)) -l' 

writing y = h(y)gh(y) andy' = h(y')gh(y'). Forry :::; t :::; ry' this shows 

(y + y')t = h(y')t (g~:y)) -l g~(y+y'). 

But (y + y')t = y~ = h(y')tg~(y') and so we have g~(y+y') = g~:y) g~(y') for 

t ~ ry. giving gh(y+y') = gh(y) x gh(y') almost surely. This proves (ii). 
For uniqueness suppose we have another set of probability measures de­

noted Q~r and P!_l•1•r which satisfy (i), (ii), (iii). Since {JP:/•1•r}a is equivari­
ant and induces A on M we can apply the preceding argument to it in place of 
{JP>~r}a. However since it is basic the term involving (3 in the stochastic differ­
ential equation (6) must vanish. Since it is also strongly cohesive the vertical 
part V must vanish also and we have JP:/•1•r = JP>:f•1•r. On the other hand in the 
decomposition bt = Xt9Z' the law of g~ is determined by those of b. and x. but 
Q~r is the conditional law of g~· given x = y. and so is uniquely determined 

as described. • 
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In fact Q~r is associated to the time dependent generator which at g E G 
and t E [l, r] is L: o:ij (h(y)tg).CA;.CAi + L: (3k(h(y)tg).CAk for o:ij and (3k 
as defined in Theorem 2.4 while lP'H,l,r is associated to AH. 

§3. Stochastic flows and derivative flows 

A. Derivative flows. Let A on M be given in Hormander form 

for some vector fields X 1 ' ... xm, A. As before let Ex = span{ X 1 (X)' ... ' 
xm(x)} and assume dim Ex is constant, p, say, giving a sub-bundle E c T M. 
The X 1 (x), ... , xm(x) determine a vector bundle map of the trivial bundle 
~m 

X:~m---+TM 

with aA = X (x )X (x )*.We can, and will, consider X as a map X : ~m ---+ E. 
As such it determines (a) a Riemannian metric { (, )x : x E M} onE (the 

same as that determined by aA) and (b) a metric connection V on E uniquely 
defined by the requirement that for each x in M, 

for all v E TxM whenever e is orthogonal to the kernel of TxM. Then for any 
differentiable section U of E, 

(9) VvU = Y(x)d(Y(U(·))) (v), 

where Y is the !Rm valued 1-form on M given by 

(Yx(v), e)JR= = (X(x)(e), v)x, 

e.g. [7] where it is referred to as the LeJan-Watanabe connection in this con­
text. By a theorem of Narasimhan and Ramanan [14] all metric connections 
on E arise this way, see [ 15], [7]. 

For { Bt : 0 ~ t < oo} a Brownian motion on !Rm, the stochastic differen­
tial equation 

(10) dxt = X(xt) o dBt + A(xt)dt 

determines a Markov process with differential generator A. Over each solution 
{ Xt : 0 ~ t < p }, where p is the explosion time, there is a 'derivative' pro­
cess {vt: 0 ~ t < p} in TM which we can write as {T~t(vo): 0 ~ t < p} 
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with Tf;t : Tx0 M--+ Tx.M linear. This would be the derivative of the flow 
{ /;t : 0 ~ t < p} of the stochastic differential equation when the stochastic dif­
ferential equation is strongly complete. In general it is given by a stochastic 
differential equation on the tangent bundle T M, or equivalently by a covariant 
equation along {xt : 0 ~ t < p}: 

with respect to any torsion free connection. Take P to be the linear frame bun­
dleGL(M) of M, treating u E GL(M) as an isomorphism u: JR.n--+ T1r(u)M. 
Foru0 E GLM we obtain a process {ut: 0 ~ t < p} on GLM by 

Ut = Tf;t 0 uo. 

Let B be its differential generator. Clearly it is equivariant and a lift of A. 

A proof of the following in the context of stochastic flows, is given later. 
For w E Ex. set 

(11) zw(y) = X(y)Y(x)(w). 

Theorem 3.1. The semi-connection '\7 induced by B is the adjoint con­
nection of the Lelan-Watanabe connection '\7 determined by X, as defined by 
(9), [7]. Consequently '\7 w V = Lzw V for any vector field V and w E E also 
'Vv(x)zw vanishes ifw E Ex. 

In the case of the derivative flow the a, /3 of Theorem 2.4 have an explicit 
expression: for u E GLM, 

(12) 

Here R is the curvature tensor for '\7 and Ric# : T M --+ E the Ricci curvature 
defined by Ric#(v) = E~=l R(v,ei)ei, v E TxM. 

Equivariant operators on GLM determine operators on associated bun­
dles, such as 1\ qT M. If the original operator was vertical this turns out to be 
a zero order operator (as is shown in [5] for general principal bundles) and in 
the case of 1\ qT M these operators are the generalized Weitzenbock curvature 
operators described in [7]. In particular for differential 1-forms the operator 
is¢ f-+ ¢(Ric#-). To see this, as an illustrative example, given a 1-form ¢ 
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1 -
- -¢>(u)( u-1 Ric#(u- )) 
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k 
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as required, by using the map gl(n) 0 gl(n) -+ gl(n), S 0 T f-> SoT, and 
equation (12). 

B. Stochastic flows. In fact Theorem 3 .1 can be understood in the more 
general context of stochastic flows as diffusions on the diffeomorphism groups. 
For this assume that M is compact and for r E {1, 2, ... } and s > r + 
dim(M)/2let vs = V 8 M be the coo manifold of diffeomorphisms of M of 
Sobolev class H 8 , (for example see Ebin-Marsden [2] or Elworthy [3].) Alter­
natively we could take the space V 00 of coo diffeomorphisms with differen­
tiable structure as in [11]. Fix a base point x0 in M and let 1r : vs -+ M be 
evaluation at x 0 . This makes V 8 into a principal bundle over M with group the 
manifold v~o of H 8 - diffeomorphisms e with B(xo) = Xo, acting on the right 
by composition (although the action of vs+r is only cr, for r = 0, 1, 2, ... ). 

Let{~% : 0 ~ s ~ t < oo} be the flow of (10) starting at times. Write 
~t for ~~. The more general case allowing for infinite dimensional noise is 
given in [5]. We define probability measures {IP'~,t : e E V 8 } on C([s.t]; M) 
be letting IP'~,t be the law of{~: o e : s ~ r ~ t} (These correspond to the 
diffusion process on V 8 associated to the right-invariant stochastic differential 
equation on V 8 satisfied by { ~t : 0 ~ t < oo} as in [3].) These are equivariant 
and project by 1r to the laws given by the stochastic differential equation on M. 
Assuming that these give a strongly cohesive diffusion on M we are essentially 
in the situation of Theorem 2.5. 

Let K ( x) : !Rrn -+ !Rrn be the orthogonal projection onto the kernel of 
X(x), each x E M. set KJ.(x) = id- K(x). Consider the V 00 -valued 
process { Bt : 0 ~ t < oo} given by (or as the flow of) 

(13) dOt (x) = X ( Bt(x) )K J. ( Bt (xo)) o dBt +X ( Bt (x) )Y(Bt(xo) )A(Bt(xo)) 
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for given Oo in voo and, define a V~ -valued process {gt : 0 ~ t < oo} by 

(14) dgt = T0t" 1 {X(Otgt- )K(Otxo) o dBt 

+A(Otgt- )dt- X(Otgt- )Y(Otxo)A(Otxo)dt} 

Yo = id. 

Set xf = ~t(Oo(xo)). Note that n(Ot) = Ot(xo) = xf since 

X(Ot(xo) )Kj_ (Ot(xo)) = X (Ot(xo)) 

and 
X(Ot(xo))Y(Ot(xo))A(Ot(xo)) = A(Ot(xo)). 

Thus { Ot : 0 ~ t < oo} is a lift of { xf, 0 ~ t < oo}. It can be considered to 
be driven by the 'relevant noise', (from the point of view off (Oo(xo)), i.e. by 
the Brownian motion B. given by 

Bt =lot l/(x~)-; 1 Kj_(x:)dBs 

where { l/ ( x~), 0 ~ s < oo} is parallel translation along x~ with respect to the 
connection on the trivial bundle M x Rm --+ M determined by K and K j_, so 
that 

l/(x~)s : Rm --+ Rm 

is orthogonal and maps the kernel of X ( (}. ( xo)) onto the kernel of X ( x:) for 
0 ~ s < oo, see [?](chapter 3). 

Correspondingly there is the 'redundant noise', the Brownian motion {.Bt : 
0 ~ t < oo} given by 

.Bt = lot l/(x~)-; 1 K(x:)dBs. 

Then, as shown in [?](chapter 3), 

(i) B. has the same filtration as { x: : 0 ~ s < oo} 
(ii) ,8. and B. are independent 

(iii) dBt = iitd.Bt + iitdBt. 
We wish to see how g. is driven by ,8 .. For this observe 

lot K(x:) o dBs =lot K(x:)dBs +lot A(x:)ds 

for A : M --+ R given by the Stratonovich correction term. By (iii) 

lot K(x:)dBs = lot iisd.Bs = lot //so d,Bs 
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since !J. is independent of (3 by (i) and (ii). Thus equation (14) for g. can be 
written as 

dgt = T0t" 1 { X(Otgt- )ii(O. {xo))t o df3t + X(Otgt- )A(Ot(xo))dt 

+A(Otgt- )dt- X(Otgt- )Y(Otxo)A(Otxo)dt} 

and if we define 

dgf = Tyt" 1 { X(YtYt- )il(y. (xo))t o df3t + X(YtYt- )A(yt(xo))dt 

+A(YtYt- )dt- X(YtYt- )Y(ytxo)A(ytxo)dt} 

Yo = id 

for any continuous y : [0, oo) --+ V 00 , we see, by the independence of (3 and (} 
that g.= g~. 

By It6's formula on V 8 , for x EM, 

d(Otgt(xo)) = (odOt)(Yt(x)) + TOt(odgf(x)). 

Now 

TOt( odgf (x)) {X(Ot9t(x))K(Otxo) o dBt 

+A(Otgt(x))dt- X(Otgt(x))Y(Otxo)A(Otxo)dt} 

and so by (13) we see that Ot9t = et o Oo, a.s. 
Taking Oo = id we have 

Proposition 3.2. The flow e. has the decomposition 

O~t<oo 

for(} and g~ = g. given by ( 13) and ( 14) above. For almost all a : [0, oo) --+ M 
with a(O) = xo and bounded measurable F : C(O, oo; V00 ) --+ R 

IE {F(f) lf(xo) =a}= IE { F(ag~)} 

where a : [0, oo) --+ V 00 is the horizontal lift of a with a(O) = id. 

To define the 'horizontal lift' above we can use the fact, from (i) above, 
that 0. has the same filtration as f ( xo) and so furnishes a lifting map. 

In terms of the semi-connection induced on 1r : vs --+ M over E, from 
above, by uniqueness or directly, we see the horizontal lift 

h9 E9(xo) ---.. T9V8 

h9(v) M---.. TM 
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is given by h9 (v) = X(O(x))Y(O(x0 ))v and the horizontal lift&. from &o of 
a C 1 curve a on M with &o(x0 ) = ao and &(t) E Eu(t)• all t, is given by 

for &0 = id. The lift is the solution flow of the differential equation 

onM. 

For each frame u : !Rn ---+ Tx 0 M there is a homomorphism of principal 
bundles 

(15) 
vs ---. GL(M) 
0 f--+ Tx 0 0 o U. 

This sends { ~t : t 2: 0} to the derivative process Tx~t o u. (If the latter satisfies 
the strongly cohesive condition we could apply our analysis to this submersion 
vs ---+ GLM and get another decomposition of f.) 

Results in Kobayashi-Nomizu [9] (Proposition 6.1 on page 79) apply to 
the homomorphism 1)8 ---+ GL(M) of (15). This gives a relationship between 
the curvature and holonomy groups of the semi-connection Von GLM de­
termined by the derivative flow and those of the connection induced by the 
diffusion on vs ~ M. It also shows that the horizontal lift {it : t 2: 0} 
throughuof{xt: t 2: O}toGL(M) isjustTx0 0toufor{Ot: t 2: 0} the flow 
given by (13) with 00 = id, i.e. the solution flow of the stochastic differential 
equation 

dyt = zodx'(Yt)· 

From this and Lemma 1.3.4 of [7] we see that V is the adjoint of the Lei an­
Watanabe connection determined by the flow, so proving Theorem 3.1 above. 
However the present construction applies with GLM replaced by any natural 
bundle over M (e.g. jet bundles, see Kolar-Michor-Slovak [10]), to give semi­
connections on these bundles. 
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