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§ Introduction 

This paper is an outcome of our attempt to understand internal 
connections among several appearances of the subtraction-free birational 
transformations. 

There is a well-known procedure for passing from subtraction-free 
rational functions to piecewise linear functions. Roughly, this is the 
procedure of replacing the operations 

ab--+ a+ b, ajb--+ a- b, a+ b --+max:{ a, b} (or min{ a, b}). 

It can be applied consistently to an arbitrary rational function expressed 
as a ratio of two polynomials with positive real coefficients, in order 
to produce a combination of +, - and max (or min), representing a 
piecewise linear function. In combinatorics, this procedure has been 
employed for the algebmization of combinatorial algorithms. A large 
class of combinatorial algorithms can be described as piecewise linear 
transformations among discrete variables which take integer values. For 
such a piecewise linear transformation, it is meaningful in many cases to 
find a good subtraction-free rational counterpart; algebraic computation 
of subtraction-free rational functions may possibly bring out unexpected 
solutions to combinatorial problems. For this tropical approach to com­
binatorics, we refer the reader to [1], [14] and the references therein. 

In the context of discrete integrable systems, the same procedure is 
known as ultm-discretization [27]. A remarkable example is the ultra­
discretization of discrete Toda equation which provides with soliton cel­
lular automata, called the box-ball systems [28]. It is already recog­
nized that the theory of box-ball systems is precisely the dynamics of 
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crystal bases which arise as the q ---> 0 limit of representations of quan­
tum groups (see [6], for example). The ultra-discretization of certain 
q-Painleve systems can also be understood as a non-autonomous de­
formation of box-ball systems [10, 11, 12]; the time evolution of such 
(ultra-)discrete systems arises from the translation lattice of affine Weyl 
groups. 

Another important aspect is the connection with the theory of to­
tally positive matrices. Totally positive matrices have been studied ex­
tensively from the viewpoint of geometric approach to canonical bases 
[19], [1], [4], [2]; they provide a basic tool for producing nice subtraction­
free rational transformations. 

The purpose of this paper is to develop a new, elementary approach 
to the application of subtraction-free birational transformations to com­
binatorial problems. Our method is based on the decomposition and 
exchange of matrices, and the path representation of minor determi­
nants. We employ such techniques to construct both subtraction-free 
rational and piecewise linear transformations for typical combinatorial 
algorithms, such as the bumping procedure, the Schiitzenberger invo­
lution and the Robinson-Schensted-Knuth correspondence (RSK cor­
respondence, for short). Our matrix approach can be regarded as an 
integration of the idea of totally positive matrices and the technique 
of discrete Toda equations. We also investigate certain birational and 
piecewise linear actions of (affine) Weyl groups on matrices and tableaux. 

This work was motivated by the impressive paper [14] by A.N. Kir­
illov. It was a great surprise for the authors to find that many formulas 
in [14], arising from combinatorics, were essentially the same as what we 
had encountered with in the context of discrete Painleve systems. The 
matrix approach, as we will develop below, was a natural consequence 
of our attempt to clarify the theoretical background of this remarkable 
coincidence. 

In view of the elementary nature of our approach, we have tried 
to make this paper as self-contained as possible. Many of the explicit 
formulas discussed in this paper can already be found in the literature 
([3], [14], [15]). Also, many of the statements on decomposition of ma­
trices are essentially contained in a series of works [1], [4], [19] on totally 
positive matrices. We expect however that the results and techniques 
developed in this paper would be applicable to various problems both in 
combinatorics and in discrete integrable systems. 

The authors would like to express their thanks to Professors S. Fomin, 
A.N. Kirillov, and A. Zelevinsky for valuable discussions. 
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Notes: The use of the phrase "tropical" comes originally from computer 
science; as in "tropical semirings", this word has been used in a restric­
tive way to refer to the semiring structure on various set of numbers 
with respect to the pair of operations (min,+). We thank Prof. Fomin 
for directing our attention to this point. In the combinatorial literature, 
the same phrase seems to be used in a broader sense, mostly in such 
a situation that subtraction-free rational functions and piecewise linear 
functions appear more or less exchangeably; it also depends on the au­
thor on which side emphasis is put. In this paper, following [14] we use 
the word "tropical" tentatively to refer to objects concerning subtraction­
free rational functions (see Section 1.3). This may not be identical to 
the traditional usage, but we could not find a better alternative. 
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In this section, we give some preliminary remarks on the matrix ap­
proach to nonintersecting paths. In the last part of this section, we also 
give a summary on a canonical procedure for passing from subtraction­
free rational functions to piecewise linear functions. In what follows, we 
fix the ground field OC, and set ][{* = OC \ { 0}. For a matrix X = ( xD . . 

•,J 
given, we denote by 

(1.1) X~1 , ••• ,i_r = (xi·"")r detX~1 ·····~r = det (xi·"")r 
31.··· ,]r · ]b a,b=l ' Jl.··· ,]r 3b a,b=l 

the r x r submatrix and the r-minor determinant of X with row indices 
i1, ... , ir and column indices jb ... , jn respectively. 

1.1. Path representation of minor determinants 

For an n-vector a: = (x1 , ... , xn) E (IK*)n given, we introduce the. 
following two matrices E(a:) and H(a:): 

(1.2) E(a:) = diag(a:) +A, H(a:) = (diag(a:)- 1 - A)-1, 
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where A (8j,i+l)~j=l stands for the shift matrix. With the nota­

tion of matrix units Eij = ( 8a,i8b,j) :,b=l, these matrices can be written 
alternatively as 

(1.3) 
n n-1 

E(x)=LxiEii+LEi,i+l, H(x)= L xixi+1···XjEij· 
i=l i=l 

For a given sequence of n-vectors x 1 , ... , xm, xi = (xi, ... , x~) E 

(JK*)n, we define 

E(x1 , ... ,xm) = E(x1 )E(x2 )·· ·E(xm), 

(1.4) H(x1 , ... , xm) = H(x 1 )H(x2 ) · · · H(xm). 

Note that H(x) = DE(x)-1D-I, D = diag((-1)i- 1 )f=1 , where x = 
(x1, ... , Xn), Xj = ;. ; we use the notation x for x-1 in order to avoid 

J 

the conflict with that of upper indices. With this notation, the two 
matrices in (1.4) are related as 

(1.5) 

In the following, we propose graphical expressions for the minor determi­
nants of E(x1 , ... , xm) and H(x1 , ... , xm), in terms of nonintersecting 
paths. 

We first consider the case of E(x1 , ... , xm). We represent the ma­
trix E(x) by the diagram 

x: 
(1.6) i i + 1 j n 

with weight Xj attached to the j-th vertical edge for each j = 1, ... , n, 
and weight 1 to each slanted edge. The (i,j)-component of E(x) can 
then be read off by the weight of paths from i at the top to j at the 
bottom. Piling up the diagrams for E(x1 ), ... ,E(xm) all together, we 
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obtain the following diagram for E( xt, ... , xrn). 

2 

xrn 

(1.7) 
m ····--······-········-······ 

1 2 . . . j n 

Here we make all the edges oriented downward, to the south or to the 
southeast. The (i,j)-component of E(xl, ... , xrn) is then given as the 
sum of weights over all paths from i at the top to j at the bottom. It 
can also be expressed as 

(1.8) E( t rn)i 
X, ... ,X j = 

where ki-t = 0 and k1 = m + 1. Furthermore, we have 

Proposition 1.1. For any choice of row indices it < · · · < ir and 
column indices it < < ir, the minor determinant 
det E(xt, ... , xrn)~~:·.:: :~: is expressed as the sum of weights over all r-
tuples ( rl> ... 'rr) of non intersecting paths rk from ik at the top to j k 
at the bottom (k = 1, ... ,r). 

(1.9) 
n 

det E(xt' ... 'xrn)il,··· ,i_r = ~ 
Jl,··· ,Jr L-J 

This proposition is an immediate consequence of the theorem of 
Gessel-Viennot [5]. In our context, however, it is also meaningful to un­
derstand this passage to nonintersecting paths through the multiplica­
tive properties of minor determinants. Proposition 1.1 is essentially 
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reduced to the multiplicative formula 

(1.10) 

for minor determinants of the product of matrices. A key step is the 
following simple lemma. Note that the matrix E(z) is decomposed in 
the form 

Also, the minor determinant 

(1.12) 

vanishes unless either the two index sets I = { i1, ... , ir} and J = 
{j1, ... , ir} are identical, or J is obtained from I by replacing k E I 
by k + 1. From this remark, we have 

Lemma 1.2. For row indices i 1 < · · · < ir and column indices 
j1 < .. · < ir given, the minor determinant detE(z)~~:::::~: vanishes 
unless 

(1.13) ia = ia or ia+l for all a= 1, ... ,r. 

If this is the case, det E(z)~~:::: :ir is the product of xia over all a such 
that ia = ia. 

Proposition 1.1 is then obtained from Lemma 1.2 by applying the 
multiplicative formula (1.10) to the decomposition E(z1, ... , zm) = 
E(z1) · · · E(zm). Path representations as in (1.9) can also be translated 
into the language of tableaux; see for instance [21]. 

We now turn to the graphical representation of H(z) and 
H(z1, ... , zm). We represent the matrix H(z) by the diagram 

1 2 ... i n 

(1. 14) z : f J ~ .. f ~ f ~ f J f f i 
with weight Xj attached to the j-th vertex (j = 1, ... , m). Then piling 
up the diagrams for H(z1), ... , H(zm), we obtain them X n rectangle. 

n 

'Y r 
(1.15) J n 
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In this diagram for H(xb ... , Xm), for each a = 1, ... , m and b = 
1, ... , n, we attach the weight xb to the vertex with coordinates (a, b). 
This time, the weight of a path 'Y is defined to be the product of all xb's 
attached to the vertices on 'Y· 

Proposition 1.3. For any choice of row indices i 1 < · · · < ir and 
column indices j 1 < < jr, the minor determinant 
detH(xl, ... ,xm)~~:·.::·,;. is expressed as the sum of weights over all 
r-tuples (71 , ... ,"fr) of nonintersecting paths 'Yk : (1,ik) ~ (m,jk) 
(k=1, ... ,r). 

(1.16) 

n 

d t H( 1 m)il,··· ,ir _ e X, ... ,X jl,···dr-

'Y2 'Yr 

'Yl r 
The following corresponds to Lemma 1.2 for E(x). 

Lemma 1.4. For row indices i 1 < · · · < ir and column indices 
j 1 < · · · < ir given, the minor determinant detH(x)~~:·.:: :~: vanishes 
unless 

(1.17) 

If this is the case, one has 

(1.18) d t H( )il,··· ,ir e X · · =Xi ···X· Xi ···X· ···Xi ···X· . Jl, ... 1Jr 1 Jl 2 ]2 r ]r 

Note also 

In the following, we apply the same idea to nonintersecting paths in 
triangles and trapezoids. For this purpose, we define 

(1.20) 
n-1 

A?.k = L Ei,i+l 

i=k 

(k=1, ... ,n), 
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so that A;:::: 1 = A and A;::::n = 0. With these truncated shift matrices, we 
introduce the following variations of E(x) and H(x): 

(1.21) 

for k = 1, ... , n. When we use these notations, we will tacitly assume 
that x = (1, ... ,1,xk,··· ,xn), i.e., Xj = 1 (j < k), unless otherwise 
mentioned. Under this convention, Ek(x) and Hk(x) are expressed as 

(1.22) Ek(x) = [~ E(~')] , Hk(x) = [~ H~x')] ' 
respectively, where x' = (xk, Xk+l, ... , xn); we will often identify the 
(n- k- 1)-vector (xk, ... , Xn) with then-vector (1, ... , 1, xk, ... , Xn), 
by putting 1 's in front. Assuming that m ~ n, let us consider a sequence 
f t 1 'In i ( i i ) d i (. < ") . o n-vec ors u , ... , u , u = ui, ... , un , an arrange uj z _ J 1n 

the form 

[u' 
ul ul ul 

u~(uj),"'~' 
2 'In n 

u2 u2 u2 
2 'In n 

(1.23) 

u= u= 
'In n 

For such a table U given, we define an n x n matrix Eu by 

(1.24) 

The entries of this matrix can be represented by the diagram 

1 2 n 

1 

(1.25) m n 

with the weights u; attached to the vertical edges; for each ( i, j) with 
1 ~ i ~ j ~ n, (Eu ); is the sum of weights over all paths 1 from i at 
the top to j along the lower rim. The minor determinants of Eu are 
also represented by nonintersecting paths in diagram (1.25). We also 
introduce 

(1.26) 
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so that Hu =DE[/ D-1 . The diagram for Hu is given by 

m n urn 
i --

' r 
u2 

j 
ul 

n 

2_---

(1.27) 
1_---J 
1 2 

or alternatively by 

(1.28) 

1 2 
1 I 

2 

... 

' 
i 

m 

j n ul 

u2 

L 
urn 

n 

with edges oriented upward or rightward. The minor determinants of 
Hu are expressed in terms of nonintersecting paths in diagram (1.27) or 
(1.28). 

1.2. Minor determinants of triangular matrices 

The matrices Eu discussed above can be thought of as canonical 
forms of generic upper triangular matrices M of the form 

1 m n 

*:: .... * .. 1 ·. 0 

(1.29) M= 
•.. a;_· .. 1 

• •• J • * 

0 .. 
* 

Let M = (a;)~j=l be ann x n upper triangular matrix satisfying the 
condition 

(1.30) a; = 0 (j < i or j > i + m), a; = 1 (j = i + m); 

when m = n, this simply means that M is upper triangular. For each 
( i, j) with 1 ::;: i ::;: j ::;: n, introduce the notation of minor determinants 

(1.31) Q Q (M) d t M l,- .. ,j-i+l 
i,i = i,j = e i,i+l, ... ,j ; 
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when j- i + 1 = 0, we set Qi,j = 1. We remark that the condition (1.30) 
for an upper triangular matrix M is equivalent to the condition 

(1.32) Qm+1,j = 1, Qi,j=O (m+l<i:O::::n), 

for minor determinants. The following proposition is due to A. Beren­
stein, S. Fomin and A. Zelevinsky [1]. 

Proposition 1.5. Let M = (aD ~j=1 be an n x n upper triangular 

matrix satisfying the condition (1.30) for some m (1 :0:::: m :0:::: n). Suppose 
that Qi,j =/= 0 for any ( i, j) with i :0:::: j and i :0:::: m. Then M can be 
decomposed uniquely in the form 

(1.33) 

where vi = (1, ... , 1, vi, ... , v~), v} =/= 0, fori= 1, ... , m. Furthermore, 

v} are determined by 

(1.34) i- Q vi - i,i, 
i -'Q'-'-i"'-,j_Q.:....•:....:· +,.::1-"'-,j_-.=.1 

V· =--= 
J Qi+l,j Qi,j-1 

(i < j, i :0:::: m). 

Proof. Assume first that M is decomposed as in (1.33). Then the 
minor determinants of M are expressed in terms of nonintersecting paths 
in diagram (1.25) for V = (v})i:<S;j" In particular we have 

(1.35) Qi · = det M 1•··· ,j-i+l = 
,J t, ... ,J II 

(a,b): a"2i,b:<S;j 

since there is only one (j- i +I)-tuple of nonintersecting paths relevant 
to the path representation of this case. Expression (1.34) follows imme­
diately from (1.35), which also implies the uniqueness of decomposition 
(1.33). It remains to show that M has a decomposition of the form 
(1.33) under the condition on Qi,j· We express Min the form 

(1.36) 

so that B becomes a square matrix of size n- m + 1: B = M,;;;;.;,.~1,~;;. 
We can apply the Gauss decomposition to the matrix 

(1.37) 1 [* 1 ] 

. . . 0 : · .. · .. 
B= : · .. · .. 

m * ·. ·. . . . .. 1 

0 ... * .... ·::* 



'Jiropical Robinson-Schensted-Knuth Correspondence 381 

since 

(1.38) d tEl, ... ,r d tMl, ... ,r Q (M) ...J. 0 e 1, ... ,r = e m, ... ,m+r-1 = m,m+r-1 -r 

for r = 1, . . . , n - m + 1. It also turns out that the lower and the upper 
triangular components of the Gauss decomposition B = B<0B 20 are in 
the form 

(1.39) 1 [ 1 l '!' .... . . . 0 . ·. ·. 
m * ·. ·. 

~- ... *····· ~ :.·~· "1 

B2_o = 

Denoting the diagonal entries of B 20 by v;;;:, ... , v;::", we introduce the 
vector vm = (1, ... , 1, v;;;:, ... , v;::"). Then we have the following decom­
position of M: 

(1.40) M = [~ ~] = [~ Bvo] [~ B~o] = M'Em(vm), 

where D' =DB;~. The matrix M' thus obtained satisfies the condition 
(1.30) with m replaced by m -1, as can be seen from the decomposition 
above. Also, if i ::; m - 1 and i ::; j, from M = M' Em ( v) it follows that 

Qi ·(M) = det M 1···· ,J-i+l 
,J 1.., ••• ,J 

= det(M')1•··· ,j-i+l detEm(vm)i, ... ,j 
't, ••• ,J 1., ••. ,J 

(1.41) = Q· ·(M') vm · · · v'!' ...J. 0 >,J m J -r . 

Hence we can apply the descending induction on m to obtain the de­
composition (1.33). 0 

We now translate Proposition 1.5 into a statement concerning the 
decomposition of type H u. Let H be an n x n invertible upper triangular 
matrix. For the decomposition of type H = Hu, it is convenient to use 
the following notation 

(1.42) i i(H) d t Hl, ... ,i 
T· = T· = e · "+l · J J J-• , ... ,J (1 ::; i ::; j ::; n). 

We also define TJ = 1 for any j. Setting M = DH-1 n-1, D = 

diag((-1)i-1)i=1, we compare the minor determinants TJ = Tj(H) and 
Qi,j = Qi,j(M). We remark that 

(1.43) 
d t Ml, ... ,j-i,j+l, ... ,n 

det Hl, .. _. ,i . = e i+l, ... ,n 
J-•+l, ... •1 det M 

det M 1'"' ,J-_i •+l, ... ,J 

detM1'"' ,j ' 
1, ... ,J 
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for these particular minor determinants, we have no minus sign. This 
implies 

(1.44) 
i-1 

T· 

Qi,j = ~ 
3 

(i ~ j). 

Note also that rj = Ql,}· Hence we see that the condition (1.30) is 
equivalent to 

(1.45) (m < i ~ j ~ n). 

Proposition 1.6. Let H be an n X n upper triangular matrix, and 
suppose that the minor determinants rj = rj(H) (1 ~ i ~ j ~ n) satisfy 
the condition 

(1.46) rj =F 0 (1 ~ i ~ m), (m < i ~ n), 

for some m ( 1 ~ m ~ n). Then the matrix H can be decomposed 
uniquely in the form 

(1.47) 

where ui = (1, ... , 1, uL ... , u~), u; =F 0, fori= 1, ... , m. Furthermore 
u; are determined by 

(1.48) 
T~ T~- 1 

i - 3 3-1 (i < J·, i ~ m). 
uj- r~-1-r! 

3 3-1 

Under the condition (1.46), from Proposition 1.5 we have 

(1.49) 

where we have set ui = vi (i = 1, ... , m). Once we have the decom­
position (1.47), the minor determinants of H is expressed in terms of 
nonintersecting paths in diagram (1.28) for U = (u;) . .. In particular, 

•• 3 

each rj is expressed as 

(1.50) i d t H1, ... ,i II a 
rj = e j-i+1, ... ,j = ub' 

(a,b); a~i, b~j 

since there is only one i-tuple of nonintersecting paths relevant to this 
minor determinant. Expression (1.48) for u; follows immediately from 
(1.50). 

Proposition 1.6 implies the following theorem concerning the path 
representation of minor determinants of a triangular matrix. 
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Theorem 1. 7. Let H be an n x n upper triangular matrix, and 
suppose that the minor determinants rj = rj(H) (i ::::; j) satisfy the 
condition 

{1.51) rj ¥= 0 {1 ::::; i::::; m), rJ = 8i,jTj (m < i ::::; n) 

for some m {1 ::::; m::::; n). For each (i,j) with 1 ::::; i::::; j::::; n, i::::; m, 
define 

T~ T~- 1 
i 3 3-1 {i < J·, i <_ m). 

Uj = T~-17~ 
3 3-1 

{1.52) 

Then, for any choice of row indices i 1 < . . . < ir and column indices 
j 1 < ... < ir, the minor determinant det H~: :::: :~~ is expressed as a sum 

L 
{1.53) 

of weights associated with U = (u;)i,j' over all r-tuples of nonintersect­

ing paths "fk: {min{ik,m},ik)-+ (1,jk) from ik along the lower rim to 
ik at the top (k = 1, ... ,r), in diagram (1.28). 

Remark 1.8. Proposition 1.6 form= n can be reformulated as 
follows. Let us denote 

(1.54) 

the group of all n X n invertible upper triangular matrices. For each 
U = (u;):i=1 E B, we define H = (h)}:i=1 E B by setting 

(1.55) 
-y:(i,i)-+(1,j) 

We now define two open subsets of Bas follows: 

(1.56) 

Bo = {U = (u;):i=1 E B I u; ¥= 0 (i::::; j)}, 

B-r = {H = (h;) E B I rJ(H) ¥= 0 (i::::; j)}. 

Then the correspondence U ~--+ H induces the isomorphism of affine 
varieties h: B0 ~ B7 . The inverse mapping H 1--+ U is given by 

(1.57) 
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where rj = rj(H) fori :S j. Under this correspondence U +-+ H, for any 
choice of row indices i 1 < ... < ir and column indices JI < ... < Jn 
the minor determinant det HJ~:::: ;;~ of H is expressed as the sum of 
weights, associated with U, over all r-tuples of nonintersecting paths 
'"Yk: (ik, ik)---+ (1,jk) (k = 1, ... ,r). 

1.3. Passage from tropical to combinatorial variables 

We now assume that lK is a field of characteristic 0. Consider the 
ring of polynomials IK[x] = IK[xi (i E I)] in a set of variables x = (xi)iEI· 
Denoting by 

(1.58) N(I) ={a= (ai)iEI I ai = 0 except for a finite number of i's} 

the set of multi-indices, we use the notation of multi-indices x<> = 
rriEI xf' for the monomials in the X-variables. Note that any poly­
nomial a(x) E IK[x] is expressed uniquely in the form 

(1.59) (aa E IK*), 

as a sum of monomials over a finite subset A C N(I) of multi-indices, 
with nonzero coefficients. In this way, a polynomial a( x) is identified 
with a pair (A, a) of a finite subset A C N(I) and a mapping a: A---+ K 
Note that 0 E IK[x] and c E IK[x] (c E IK*) correspond to (¢, ¢) and 
( {0}, c), respectively. 

In the following, we fix a multiplicative subgroup IK>o of IK* such 
that c, c' E IK>o =} c + c' E IK>O· We say that a nonzero rational 
function f(x) E IK(x) = OC(xi (i E I)) in the x-variables is subtmction 
free (or tropical) with respect to the cone IK>o if it is expressed as a ratio 

(1.60) !( ) = a(x) 
x b(x) ( a(x), b(x) E IK>o[x]) 

of two polynomials with coefficients in IK>o· We denote by IK(x)>0 the 
set of all subtraction-free rational functions with respect to IK>o· It is 
clear that IK(xho forms again a multiplicative subgroup of IK(x)* closed 
under the addition. It is worthwhile to note that all the coefficients of a 
polynomial f(x) E IK(xho may not necessarily belong to IK>o: Observe 
the example 

(1.61) 
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For a subtraction-free rational function f = f(x) E OC(x)>0 given, 
choose an expression as (1.60). Expressing a(x) and b(x) as 

(1.62) a(x) = L aa x'", 
aEA 

b(x) = L b13 xf3 
{3EB 

with coefficients in ][{>0 , we define two piecewise linear functions M(f) 
and m(f) on R.I by 

(1.63) 
M(f) = max{(a,x} I a E A} -max{(.B,x} I f3 E B}, 
m(f) = min{(a, x} I a E A} -min{ (/3, x) I f3 E B}, 

where (a, x} = EiEI aiXi. In this definition, we have identified x = 
(xi)iEI with the canonical coordinates of R.I. It is easily shown that the 
definition of M(f) and m(f) does not depend on the choice of expression 
(1.60). Note also that M(c) = m(c) = 0 for any c E lK>o· 

Proposition 1.9. (1) For any subtmction-free mtional functions 
J, g E OC(x)>o, one has 

M(fg) = M(f) + M(g), M(t_) = M(f)- M(g), 
g 

(1.64) M(f +g)= max{M(f),M(g)}, 

and 

m(fg) = m(f) + m(g), m(£) = m(f)- m(g), 
g 

(1.65) m(f +g)= min{m(f),m(g)}. 

(2) Let L : OC(x) --+ OC(x) be the isomorphism defined by t(xi) = xi1 

(i E J). Then one has 

(1.66) M(f) = m(t(f)-1 ), m(f) = M(t(f)-1 ) 

for any f E lK(xho· 

This proposition means that the correspondence f f--+ M(f) is noth­
ing but the simple procedure of replacing the operations 

(1.67) ab--+ a+ b, 
a 
b--+ a- b, a+ b--+ max{ a, b}. 

Similarly, the correspondence f f--+ m(f) is the procedure 

(1.68) ab--+ a+ b, 
a 
b--+ a- b, a+ b--+ min{ a, b}. 
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The second part of the proposition implies that one can interchange 
"max" and "min" freely with each other, by using the operation f(x)--+ 
i(f)-1 = f(x-1)-1. 

Proposition 1.9 guarantees that these procedures can be applied 
consistently to arbitrary subtraction-free rational functions to obtain 
piecewise linear functions. This passage from the subtraction-free ra­
tional functions to piecewise linear functions, either by max or min, is 
called in several ways in the literature; it is called the ultra-discretization 
in the context of discrete integrable systems, and also the tropicalization 
in the context of totally positive matrices. In this paper, we will use the 
adjective "tropical" for objects and notions concerning subtraction-free 
rational functions, and "combinatorial" for those concerning piecewise 
linear functions. It should be noted that there is no canonical procedure 
in the opposite direction; when a combinatorial expression is given, it 
becomes an interesting problem in many occasions to find a good coun­
terpart in the tropical setting. 

The passage from the tropical side to the combinatorial side is func­
torial in the following sense. Consider two fields of rational functions 
K(x) in the variables x = (xi)iEI and lK(y) in the variables y = (yj)jEJ· 
We say that an isomorphism r.p form lK(y) into lK(x) is subtraction free 
if r.p(yj) E lK( x )>0 for all j E J. The set of subtraction-free rational 
functions fi (x) = r.p(yj) (j E J) then defines a subtraction-free rational 
mapping 

(1.69) F: Yi = fi(x) (j E J) 

from the affine space lK1 with coordinates x = (xi)iEI to lKJ with co­
ordinates y = (yj)jEJ· For such a rational mapping F given, we define 
two piecewise linear mappings M(F), m(F) : JR1 --+ JRJ by setting 

(1. 70) 
M(F) : Yi = M(fi(x)) (j E J), m(F): Yi = m(fi(x)) (j E J), 

respectively. Then Proposition 1.9 implies 

Proposition 1.10. Consider the two subtraction-free rational 
mappings 

(1.71) F:yi=fi(x) (jEJ), G: Zk = gk(Y) (k E K). 

Then the piecewise linear mappings corresponding to the composition 
G o F are given by 

(1. 72) M(G oF)= M(G) o M(F), m(G oF)= m(G) o m(F). 
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§2. Tropical row insertion and tropical tableaux 

In this section we introduce a tropical analogue of row insertion by 
clarifying the internal structure of bumping. Combining this with the 
matrix approach of Section 1, we give explicit tropical and combinato­
rial formulas for describing the tableau obtained from a word by row 
insertion, and for the Schiitzenberger involution on the set of column 
strict tableaux. 

2.1. Row insertion 

Taking the set of letters { 1, . . . , n}, we consider a column strict 
tableau T of shape >., where >. = (>.1, >.2, ... , Am) is a partition with 
l(>.) :=:; m. For each i = 1, ... , m, we define a weakly increasing word 

(2.1) (x~ + · · · + x~ = >.i) 

by reading the i-th row of T from left to right, where xj stands for 
the number of j's appearing in the i-th row of T for i :=:; j. For a 
weakly increasing word v = 1 a1 2a2 ••• nan given, consider the tableau 
T' = T +- v obtained by the row insertion of v into T; we denote by 
w~ = iY: ( i + 1 )Y:+l ... nY~ the weakly increasing word representing the 
i-th row ofT' fori= 1, ... , m'. Our question is: How can one describe 
YJ explicitly in terms of xj 's and aj 's ? 

The bumping procedure T +- v can be decomposed as follows. 

V = V1 

W1 -+ w' 1 
v 

V2 
(2.2) r-+ T' 

w2 -+ w' 
1> 

2 

VJ 

Here v1 = v, and for i = 2, 3, ... , vi = ia: (i + 1)a:+1 ••• na~ stands for 
the weakly increasing word consisting of the letters that have bumped 
out from wi_ 1 by the row insertion of vi-l· In what follows, we use the 
diagram 

(2.3) 
v 

w-+ w' 
v' 
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consisting of four weakly increasing words w, v, w', v', to indicate a 
procedure of inserting a word v into w; w' = w <-- v denotes the resulting 
word, and v' is the word of the letters bumped out from w. (We always 
have b1 = 0 in this setting.) Our question is thus reduced to the problem 
of describing Yj and bj in terms of Xj and aj in this diagram. We also use 
the diagram of row insertion for the corresponding vectors of integers: 

a 
(2.4) X+ y 

b 
( X: (x1, ... , Xn), 

Y- (y1, · · · , Yn) , 

We now consider the procedure of row insertion as in (2.3). It is 
convenient to use the variables 

(2.5) 
(j = X1 + X2 + · · · + Xj, 'Tlj = Y1 + Y2 + · · · + Yj (j = 1, ... , n). 

Assume first that v = ka (k = 1, ... , n); in this case, it is easy to see 

'T/j = (j (j < k), 'TJk = f.k +a, 

(2.6) 'T}j = max{(k + a,(j} = max{rJk,(j} (j > k). 

Applying this result repeatedly for k = 1, ... , n, we obtain following 
recurrence relations for the general case v = 1 a1 2a2 ••• nan: 

(2.7) 
'T/1 = 6 + a1, 'T/2 = max{'T/1,6} + a2, 

'T/3 =max{ 'T/1> 'T/2, 6} + a3, 

Since 'T/1 ~ 'T/2 ~ · · · ~ 'TJn, it is equivalent to 

'T/1 = f.1 +all 

(2.8) 'T/j = max{'T/j- 1,(j} + aj 

=max{'T/j-l+aj,(j+aj} (j=2, ... ,n). 

Hence we have 

(2.9) 
'T/j = max { 6 + a1 + · · · + aj, 6 + a2 + · · · + aj, . . . , (j + aj} 

= max { x1 + · · · + Xk + ak +···+a·} 
l~k~j J 

for j = 1, ... , n. Note that 

(2.10) 
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and that bi are determined as b1 = 0 and 

(2.11) 

bj = aj + Xj- Yi = aj + ~i- ~j-1- ''lj + 11i-1 (j = 2, ... , n), 

since the number of j's is conserved during the process. 

Example 2.1. Let us consider an example of row insertion 

(2.12) 
v = 1245 

w = ~2.3_4§._ + w' = 122445 . 
v' = 235 

In terms of the vectors of integers, this procedure is expressed as 

a= (1, 1,0, 1, 1) 
(2.13) :.r: = (0, 2, 1, 1, 1) + y = (1, 2, 0, 2, 1) . 

b = (0, 1, 1,0, 1) 

The numbers 

(2.14) 

can be read off from the table 
1 2 3 4 5 

(2·15) : ~ I ~ I ~ I ~ I ~ 1i I 
as 

(2.16) 171 = 1, 1J2 = 3, 173 = 3, 174 = 5, 175 = 6. 

By taking the first difference of this sequence, we have y = (1, 2, 0, 2, 1). 

The general procedure T' = T +- v of inserting a weakly increasing 
word v into a column strict tableau T should be described as a superpo­
sition of row insertions of type (2.3). We will make use of the tropical 
analogue of combinatorial (piecewise linear) formulas above in order to 
systematize the superposition of row insertions. 

2.2. Tropical row insertion 
We introduce a tropical analogue of combinatorial formulas for the 

row insertion (2.3). We use the same symbols Xj, ai, Yi• bi as in (2.4) 
for the tropical variables (indeterminates). Introducing the auxiliary 
variables 

(2.17) 
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we define the transformation (:z:, a) 1--+ (y, b) by 

(2.18) Y1 = "11. 

"li = (TJj-1 + ~j)aj 
"lj 

Yi=--
"li-1 

b . -a·Xj -a·~j"lj-1 
J- J - J 

Yi ~i-1"1i 

(j = 2, ... ,n), 

(j = 2, ... , n), 

(j = 2, ... , n). 

We have made these formulas from the combinatorial formulas {2.8), 
{2.10), {2.11) by the simple rule of replacement 

{2.19) max{ a, b}---+ a+ b, 
a 

a+b---+ab a-b---+-, 
b 

which is sometimes called the tropical variable change. From the recur­
rence relations for "li above, we easily obtain 

"li = 6a1 · · · aj + 6a2 · · · ai + · · · + ~iai 
{2.20) = x 1a1a2 · · · ai + x1x2a2 · · · ai + · · · + x1 · · · Xjaj. 

From this formula, we can recover the combinatorial formula (2.9) by 
the standard procedure as we discussed in Section 1.3. 

The tropical transformation {:z:, a) ~--+ (y, b) we have discussed above 
arises also from the system of algebraic equations of discrete Toda type 

a1x1 = y1, ajXj = yjbj (j = 2, ... , n), 
{2.21) 1 1 1 -+---

a1 x2 - b2' 

1 1 1 1 - + -- = - + -- (j = 2, ... , n), 
ai Xj+l Yi bi+l 

for {YI. ... , Yn) and {b2 , •.• , bn), where we regard Xj, ai as given vari­
ables, and Yi• b3 as unknown functions. (For the relationship between 
{2.21) and the discrete Toda equation, see Remark 2.3 below.) 

Lemma 2.2. The system of algebraic equations {2.21) is equiva­
lent to the recurrence formulas {2.18) together with {2.17). 

Proof. In fact, by eliminating b3 (j = 2, ... , n) from {2.21), and 
by rewriting the equations in terms of ~j and "li, we obtain 

{2.22) 
"'n- "ln-1an = "ln-1 - "ln-2an-1 = ... = "12- "11a2 = __!]]:____ = 1 

~nan ~n-1an-1 6a2 ~1a1 ' 

which is equivalent to {2.18). D 
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This fact is a key to our matrix approach to tropical combinatorics. Note 
that (2.21) is written as a matrix equation: 

a;1 1 x1 1 
a;2 1 x2 1 

O:n-1 1 Xn-1 1 
an Xn 

'ih 1 1 0 

'ih 1 b2 1 

(2.23) = 

Yn-1 1 bn-1 1 

Yn bn 

where we have used the notation x = ~. By using the notation of Section 
1, this equation can be expressed as 

(2.24) 

It is also equivalent to 

(2.25) 

Each of these two equations (2.24) and (2.25) can be thought of as a 
tropical expression of the row insertion 

(2.26) 

(
a;= (x1, ... ,xn), 
Y= (y1,··· ,Yn), 

where b1 = 1. 
We show how the matrix equation (2.24) is solved by using the path 

representations of Section 1. Setting H = H(x)H(a), we look at the 
minor determinants r}(H) (i ~ j). By the argument of Section 1, the 
minor determinants of H are read off from the following diagram. 

(2.27) :1 I I I I I I I I + 
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The result for Tj = Tj(H) is: 

{2.28) 

j 

Tj = L X1 · · · Xk ak · · · aj 
k=1 

TJ = Tj = X1 • • • Xja1 · · · aj 
T~ = 0 

J 

(j ~ 1), 

(j ~ 2), 

{3 ~ i < j ~ n). 

By Proposition 1.6, we already know that equation {2.25) has a unique 
solution such that 

{2.29) 

Tj = Y1·. ·Yj (j = 1, ... ,n), Tj = Y1·. ·Yjb1 ... bj (j = 2, ... ,n). 

Namely, Yi and bj are determined as 

T~ 
{2.30) Yi = + (j = 1, ... ,n), 

Tj-1 

b . _ Xjaj (. 2 ) 
J- J= , ... ,n, 

Yi 

consistently with what we have seen before. 

Remark 2.3. The system of algebraic equations {2.21) is closely 
related to the discrete Toda equation {[9], [26]): 

{2.31) 

where i E Z and t E Z stand for the discrete coordinates of space and 
time, respectively, and If, ~t are the dependent variables. If we set 

(2.32) 
ai = (Jf+l)-1, Xi= (V/)-1, Yi = (~t+l)-1, bi = (J:+1)-1, 

we have 

(2.33) 
1 1 1 1 -+-=-+- (iEZ). 
ai Xi+1 Yi bi+1 

Note also that the discrete Toda equation can be expressed as the matrix 
equation 

(2.34) L(t + l)R(t + 1) = R(t)L(t) 

for the Z x Z matrices 

(2.35) L(t) = L Eii + L Vit Ei+1,i, R(t) = LlfEii + LEi,i+l· 
iEZ jEZ iEZ iEZ 
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2.3. Tropical tableaux 
In the following we discuss the following question both in the tropical 

and the combinatorial setting. 

Question: For. a sequence of weakly increasing words w1 , . . . , Wm given, 
find an explicit formula for the column strict tableau 

(2.36) P = P(w) = (· · · (w1 +-- w2) · · · +-- wm) 

obtained from the word w = w1 ... Wm by the row insertion. 

We can employ (2.25) as building blocks for the tropical analogue 
of various combinatorial algorithms. Let us consider the procedure of 
successive row insertion 

(2.37) 

of weakly increasing word Wi = 1 xi · · · nx~ ( i = 1, ... , n) to obtain 
a column strict tableau P. This procedure can be described by the 
following diagram. 

::r:l = ::r:l,l ::r:2 = ::r:2,1 ::r:3 = ::r:3,1 

¢ + yl,l + y2,1 + 
(2.38) 

¢ ::r:2,2 ::r:3,2 

¢ + y2,2 + 
¢ ::r:3,3 

¢ + 
Passing the tropical variables ::r:i = (xi, ... , x~) (i = 1, ... , m), we can 
compute the row insertion above as 

(2.39) 

H(::r:l) = Hl(Yl,l) 

H(::r:l)H(::r:2) = Hl(Yl,l)H(::r:2,1) 

= H2(Y2,2)Hl (y2,1) 

H(::r:l )H(::r:2)H(::r:3) = H2(Y2,2)Hl (y2,1 )H(::r:3) 

= H2(Y2,2)H2(::r:3,2)Hl (y3,1) 

= Hg(y3,3)H2(Y3,2)Hl (y3,1) 

where yk,i = {1, ... , 1, Y7'i, ... , y~·i). When m ~ n, by setting ym,i = 
pi, pi= (1, ... ,1,pL ... ,p~) (i = 1, ... ,m), we finally obtain 

(2.40) 



394 M. Noumi and Y. Yamada 

In this formula, each PJ ( i :::; j) denotes the tropical variable correspond­
ing to the number of j's in the i-th row of the tableau P. Namely, we 
can regard the expression 

(2.41) 

as representing the tropical tableau P = (pj)i::;ji it provides the tropical 
analogue of a general column strict tableau whose shape is a partition 
of length m. 

The argument above shows that our question can be answered by 
considering the matrix equation 

H(x1 )H(x2) · · · H(xm) = Hm(Pm) · · · H2(p2)H1(p1) 

(2.42)H(x1)H(x2) · · · H(xm) = Hn(Pn) · · · H2(p2)H1(p1) 

(m:::; n), 

(m?: n) 

for the unknowns pi = (1, ... , 1,pL ... ,p~) (i = 1, ... , min{m, n} ). In 
the following we regard x] (i = 1, ... , j = 1, ... , n) as indeterminates, 
and look for solutions PJ of (2.42) in the filed of rational functions in 
the x-variables. 

Denoting the left-hand side by H, consider the minor determinants 
Tj(H) = det H]..:_i·+L .. ,j for 1 :::; i :-:; j :::; n. By Proposition 1.3, Tj(H) is 
expressed in terms of the nonintersecting paths in the m x n rectangle 
associated with the matrix X = ( x]) i,j: 

Tj(H) = E 

(2.43) 

When m < i :-:; j :-:; n, we have Tj(H) = 8i,jTj(H), Tj(H) = 
II(a,b);b::Oj xb'. Hence, by Theorem 1.7, we see that the matrix equa­
tion (2.42) has a unique rational solution in the x-variables; the solution 
is expressed by Tj(H) above. To summarize, we have 

Theorem 2.4. Form x n indeterminates x] (1 :::; i:::; m, 1:::; j :::; 
n) given, consider the following matrix equation for unknown variables 
PJ (1 :::; i :::; l, 1 :::; j :::; n, i :::; j), l =min{ m, n}: 

(2.44) 
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where xi = (xi, ... , x~) and pi = (1, ... , 1,p!, ... ,p~). This equation 
has a unique rational solution in the x-variables ; it is given explicitly as 

(2.45) 
i i-I 

i Tj Tj-I 
Pj = i-I i (i < j) 

Tj Tj-I 

for 1 ~ i ~ l, 1 ~ j ~ n, with Tj (i ~j) defined as the sum 

(2.46) TJ = L X-yl ... X-y, 
bt , ... ,-y,) 

of monomials over all i-tuples of nonintersecting paths 'Yk : (1, k) ----* 

( m, j- i + k) (k = 1, ... , i) in the m x n rectangle. Here, the weight X-y 
of a path 'Y is the product 

(2.47) - II a x-y- xb 
(a,b)E'Y 

of all xf: 's corresponding to the vertices on 'Y. 

The explicit formula for p} above is formulated by A.N. Kirillov [14], 
Theorem 4.23. 

By the standard passage from subtraction-free rational functions to 
piecewise-linear functions, we obtain the following combinatorial formula 
([14], Theorem 3.5) for the column strict tableaux P obtained from a 
word w = WI w2 ... Wm by the row insertion. 

Theorem 2.5. Takingthesetofletters{1, ... ,n}, letwi,··· ,wm 
be a sequence of weakly increasing words wi = 1 xl · · · n"'~ (i = 1, ... , m). 
Consider the column strict tableau 

(2.48) 

obtained from the word w = WI w2 · · · Wm by row insertion, and denote 
by iPl · · · nP~ the weakly increasing word representing the i-th row of P, 
fori= 1, ... , l, l = min{m, n}. Then, for each (i,j), the number p} of 
the letter j in the i-th row of P is determined explicitly as 

(2.49) i i i I i i i-I i i-I (. ") 
Pi = Ti - Ti- ' Pj = Tj - Tj - Tj-I + Tj-I ~ < J 

with Tj ( i ~ j) defined as the maximum 

(2.50) TJ = max (x-y1 + · · · + x-y,) 
bt , ... ,-y;) 
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of weights over all i-tuples of nonintersecting paths 'Yk: (1, k) ---+ (m,j­
i + k) ( k = 1, 0 o o , i) in the m x n rectangle; we set TJ = 0 for all j o 
Here, the weight x7 of a path 'Y is the sum 

(2o51) x7 = L xt: 
(a,b)E'"I 

of all xt: 's corresponding to the vertices on 'Yo 

Note also that each Tj represents the sum of pl:'s in the region a~ i, 
b ~j: 

(2o52) i_ 
Tj-

(a,b): a~i, b~j 

Pb (i ~ j)o 

Example 2.6. We give an example with m = 3, n = 4 by taking 
the word 

(2o53) w = 2234134411224 = 223411344111224, 

which corresponds to the column strict tableau 

(2o54) 
1112244 

P = P( w) = 2 2 3 3 4 
4 

From w, we first construct the 3 x 4 matrix X= (x;) . . by counting the •,J 
number of j's in the i-th block of w: 

(2055) [
0211] 

X= 1 0 1 2 0 

2 2 0 1 

The numbers Tj of (2050) are determined from X by statistics of nonin­
tersecting paths: 

(2056) [3 5 5 7] 
7" = (Tj)i . = 7 9 12 . 

J 9 13 

For instance, Ti is computed as the maximum of weights over three 
pairs ofnonintersecting paths (71,72) such that 'Yl: (1,1)---+ (3,2) and 
'Y2 : (1, 2) ---+ (3, 3): 

(2057) 

+ + 

[
q ~ 1 

X= ~ Ooo·-·1: 
iooo••:i! d 

~ ~ 
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(2.58) 

we get 

(2.59) 
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(0 + 1 + 2 + 2) + (2 + 0 + 1 + 0) = 8 
(0 + 1 + 2 + 2) + (2 + 1 + 1 + 0) = 9 
(0 + 1 + 0 + 2) + (2 + 1 + 1 + 0) = 7 

ri = max{8, 9, 7} = 9. 

According to (2.49), we compute p~ by taking the discrete Laplacian of 
..... ~. 
'3" 

(2.60) 

Then p; gives the number of j's in the i-th row of the tableau P above. 

2.4. 'Iropical Schiitzenberger involution 
We now recall the Schiitzenberger involution on the set of column 

strict tableaux. Taking the set {1, 2 ... , n} of letters as before, we define 
an involution k ~ k* on {1, 2 ... , n} by k* = n- k + 1 for k = 1, ... , n. 
For a word w = k1 k2 ••• k1 consisting of letters in {1, ... , n} given, we 
define the word w* by 

(2.61) 

by applying k ~ k* to each letter, and then by reversing the order. Let 
us denote by P = P( w) the column strict tableau obtained from a word 
w. Since the involution w ~ w* on the set of words preserve the Knuth 
equivalence, it induces an involution P ~ ps on the set of column strict 
tableaux such that 

(2.62) P(w*) = P(w) 5 

for any word w; we call this involution P ~ ps the Schiitzenberger 
involution. It is well known that P and ps has the same shape, and 
that the column strict tableau psis obtained from Pas the evacuation 
tableau by a successive application of jeu de taquin. We remark that, 
when the word w = k1 ... kn represents a permutation in Sn, w* is 
the conjugation of w by the longest element of Sn. (Schiitzenberger's 
algorithm for column strict tableaux can be obtained essentially from 
[25], Theorem 3.9.4, for instance. In [25], Schiitzenberger's algorithm is 
formulated for permutations, but it is not difficult to extend it to that 
for words.) 
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Example 2. 7. Consider the word w = 42213132 with n = 4. In 
this case, we have w* = 32424331. 

(2.63) 
1123 

P ::::: P( w) = 2 2 3 , 
4 

1233 
ps = P(w*) = 244 . 

. 3 

Let us decompose a given word w into a chain of weakly increasing 
words: 

W .- 1"'~2"'~ n"'~ (•- 1 m) .- .... -, ... ,. 
Then we have 

(2.65) w* = w~ ... w; wr' W.'!' = 1"'~2"'~-1 ... n"'i (•- 1 m) . - , ... ' . 

Setting P = P(w), ps = P(w*), we denote by p~ and by P} the number 
of j's in the i-th row of P and PS, respectively. Passing to the tropical 
variables, we have the matrix equation 

H(x1)H(x2) · · · H(xm) = Hp = Hz(pn) · · · H2(p2)H1(p1), 

(2.66) H(x":) · · ·H(x~)H(x!) = Hps = Hz(pn) · · · H2(p2)H1(P1), 

where l = min{m, n} and, for a vector x = (x1, x2, ... , Xn) given, x* = 
(xn, ... , x2 , x1 ) denotes the vector obtained by reversing the order. In 
the following, we denote by 

(2.67) 

the permutation matrix representing the longest element of Sn. Since 
JnAJn = At, from 

(2.68) 

we have 

(2.69) 

namely, JnH(x)t Jn = H(x*). Hence, (2.66) implies JnH}>Jn = Hps, 
namely, 

Supposing that m ~ n, we take two general tropical tableaux 

(2.71) 
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where ui = (uL ... , u~) and vi = (vf, ... , v~) for i = 1, ... , m. In 
view of (2. 70), we define the tropical Schiitzenberger involution to be the 
birational transformation U 1--+ V defined through the matrix equation 
JnH&Jn=Hv: 

(2.72) 

We now propose to solve this matrix equation for v} (i ~ j), regarding 
u; (i ~ j) as indeterminates. Note that 

(2.73) 
k-1 

JnAkkJn = A::;;n-k+l• A::;;k = L:Ei,i+l, 
i=1 

for k = 1, ... , n. Hence, (2. 72) can be written as 

(2.74) 
(diag(uz)- A:::;n)- 1 (diag(u~)- A:::;n-1)-1 · · · (diag(u:")- A:::;n-m+l)-1 

= (diag(V"')- A:::::m)-1 · · · (diag(v2)- A:::::2)-1(diag(v1)- A:::::1)-1. 

This equality is expressed graphically as follows. For each 1 ~ i ~ j ~ n, 

(2.75) 

or equivalently, 

(2.76) 

where i* = n - i + 1 and j* = n - j + 1. Hence we have 

Theorem 2.8. For the indeterminates u; (1 ~ i ~ j ~ n) given, 
consider the matrix equation 

(2.77) 
JnH1(u1)t H2(u2)t · · · Hm(u'"')t Jn = Hm(v'"') · · · H2(v2)H1(v1) 
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for vJ (1:::; i:::; j:::; n), where m:::; n, and ui = (uL··· ,u~), vi= 
( vt, . .. , v~) fori = 1, ... , m. This equation has a unique rational solu­
tion; it is given by 

(2.78) (i < j), 

with a} (i :::; j) defined as the sum 

(2.79) 

of weights over all i-tuples of nonintersecting paths 

(2.80) "fk: (1,n-i+k)--+ (min{m,n-j+k},n-j+k) 

(k = 1, ... , i), where the weight u7 of a path"( is the product of all ub 's 
corresponding to the vertices of"(. 

Graphically, aj ( i :::; j) in the explicit formula above is expressed as 
follows. .. z . . . n 

a}= L 
bl,···,'"Yi) u 

(2.81) 
m 

The explicit formula above for the tropical Schiitzenberger involution is 
proposed by A.N. Kirillov [14], Theorem 4.18. 

By returning to the combinatorial variables, we obtain the following 
explicit formula for the Schiitzenberger involution (with m = n), due to 
H. Knight and A. Zelevinsky [16] (see also [1], [30]). 

Theorem 2.9. Let P be a column strict tableau and denote by p} 
the number of j 's in the i-th row of P for 1 :::; i :::; j :::; n. Let ps be the 
column strict tableau obtained from P by applying the Schutzenberger 
involution, and denote by P} the number of j 's in the i-th row of ps for 
1 :::; i :::; j :::; n. Then P} are determined from p) by the following explicit 
formula: 

(2.82) ::oi i i-1 i i-1 (. ") 
Pj = aj - aj - aj-1 + aj-1 z < J , 
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with a} {1 ~ i ~ j ~ n) defined as the maximum 

{2.83) a~ = max (p + · · · + p ) 
J ('Ylo··· ,·r.) "Yl "Yi 

of weights over all i-tuples of nonintersecting paths 'Yk : {1, n- i + k) ~ 
(n- j + k, n- j + k) (k = 1, ... , i), where the weight P-y of a path 'Y is 
the sum of all Pb 's corresponding to the vertices of 'Y. 

Example 2.10. In the case of P and ps of Example 2.7, p = 

(PDi~i and p = (~\~i are given by 

The table p can be determined through u = (a})i~i: 

{2.85) 

Remark 2.11. With the notation of Remark 1.8, the tropical 
Schiitzenberger involution can be formulated as follows. We define the 
involution () : B ~ B by setting 

{2.86) (HE B). 

Then the isomorphism h : B0 ~ B-r induces a birational involution 
U f--+ us on B0 such that 

{2.87) 

for generic U E B0 • We already gave the explicit formula for V =us in 
Theorem 2.8. Note also that the inverse correspondence V f--+ U is given 
by the same formula. 
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§3. Tropical RSK correspondence 

3.1. Variations of RSK correspondence 

Let A= (a;)i,j E Matm,n(N) be an m x n matrix of nonnegative 
integers. 

[ al 
a~ 

~] a2 a2 a2 
(3.1) A= .~ 2 n 

am am am 
1 2 n 

Setting Wi = 1 al ... na~ for i = 1, ... , m, we denote by P = P( w) the 
column strict tableau obtained from the word w = w1 ... Wm by row 

1 "" insertion. Similarly, setting wj = 1 ai ... mai for j = 1, .... , n, we de-
note by Q = P( w') the column strict tableau obtained from the word 
w' = wi ... w~ by row insertion. The two tableaux P and Q have the 
same shape, and the correspondence A f-+ (P, Q) induces a bijection 
between the set of all m x n matrices of nonnegative integers and the 
set of pairs (P, Q) of column strict tableaux of a same shape, P with 
contents in { 1, ... , n} and Q with contents in { 1, ... , m}. This bijec­
tion A f-+ (P, Q) is called the Robinson-Schensted-Knuth correspondence 
(RSK correspondence, for short). In this context, the matrix A is some­
times called the transportation matrix. By combining this standard RSK 
correspondence with the Schiitzenberger involution, we have the follow­
ing four variations of RSK correspondences: 

(3.2) 
A f-+ (P,Q), 
A f-+ (PS, Q), 

A f-+ (P, Q5 ), 

A f-+ (P5, Q5). 

Let us denote by p~, q~, P) and q} the number of j's in the i-th 
row of the tableaux P, Q, P 5 and Q 5 , respectively. The common shape 
.>. = (>.I. .>.2 , ••. , >.1), l = min{ m, n }, of these four tableaux is given by 

(3.3) 
>.i = p~ + · · · + P~ = qt + · · · + q~ = iJ1 + · · · + P:. = qf + · · · + q;,. 

for i = 1, ... , l. 

Example 3.1. Consider the transportation matrix 

(3.4) [
0 2 

A= 1 0 
2 2 

1 1] 1 2 . 
0 1 
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The tableaux P, Q for A, and their counterparts under the Schiitzenberger 
involution are determined as follows: 

(3.5) 

1112244 
P = P(2234l1344l11224) = 2 2 3 3 4 

4 

1111223 
Q = P(233l1133l12l1223) = 2 2 3 3 3 

3 

1111233 
p• = P(13344l1124l1233) = 2 3 4 4 4 

3 

1111123 
Q5 = P(1223l23l1133l112) = 2 2 2 3 3 

3 

[
3202] 

p = 26~ 

[
4 21] 

q= 2f 

[
4120] 

p = 1 ~~ 

[511] q = 3i 
In the arguments of this section, the correspondence A ~ (P, Q•) 

will play the essential role, rather than the ordinary RSK correspon­
dence. For this reason, we use the following convention. Let X = ( x1i.) . . •,J 
be an m x n matrix of nonnegative integers. We denote the i-th row of 
X by xi, and the j-th column of X by x3 : 

(3.6) ... Xn ]. 

From X, we construct the column strict tableau 

(3.7) u = P(wmWm-1 ... wl), 

by reading the rows xm, ... , x 1 of X from bottom to top, and 

(3.8) w'- = 1 x} 2"'; · · · m"''I' J , 

by reading the columns Xn, ... , x1 from right to left. If we set X= JmA, 
these U and V correspond to P and Q s, determined from A, so that 

(3.9) U = P, V = Q s, Us = P ", V s = Q. 

In what follows, we refer to this particular correspondence X ~ (U, V) 
as the RS.K.* correspondence. 

Before the discussion of tropical RSK correspondences, we formulate 
an isomorphism theorem concerning the path representation of generic 
matrices. 
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3.2. A fundamental isomorphism 

We first fix a notation of special minor determinants. For an m x n 
matrix <I> = ( cp1i.) . . given, we introduce the notation 

•,J 

(3.10) { 
det cpi-j+1, ... ,i 

Ti(<l>) = 1, ... ,J 
1 det <1> 1···: ,• . J-•+1, ... ,] 

(i ::::-: j), 

(iSoj), 

of the minor determinant of <I> corresponding to the largest square in the 
rectangle {1, ... , m} x {1, ... , n} whose right-bottom corner is located 
at (i,j). 

1 j 
1 .-------T----, 

n 1 j n 1 ,....----,...,..,...,..,..,..,,..,_---., 

....... 

i :-:-:·:·:·:·: <I> <I> 
mL__ _____ ...J m'--------' 

(3.11) i2":j iSoj 

For convenience, we define Tf (<I>) = T~ (<I>) = 0 for any k. We define the 
subset Matm,n(IK)r of Matm,n(IK) by 

(3.12) Matm,n(IK)r ={<I> E Matm,n(IK) I Tj(<P) =/= 0 for all (i,j)}. 

For an m x n matrix X = ( x;) . . given, we now construct an m x •,J 
n rna trix <I> = ( cp1i.) . . by using the paths on the lattice { 1, ... m} x •,J 
{ 1, ... , n}. When we refer to a path in the rectangular lattice, we mean 
a shortest path joining two vertices, without specifying the orientation 
of edges. As before, for each path"': (a, b)~ (c, d), we define the weight 
x., of "f, associated with X, to be the product of all x;'s corresponding 
the vertices on 'Y· 

1 n 
1 

X (c, d) 

~ 
(3.13) m 

(a, b) 
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With this definition of weight, we define the matrix «<> = ( r.p1i.) . . by 
•,J 

setting 
j 

r.pj = r.pj(X) = L x'Y = L. 
'Y:(i,l)--+(l,j) 'Y z X 

(3.14) 

for each (i,j) E {1, ... ,m} x {1, ... ,n}, where the summation is taken 
over all paths from (i, 1) to (1,j). The mapping X~«<> thus obtained 
will be denoted by 

(3.15) r.p : Matm,n(IK) ---> Matm,n(IK), 

This mapping r.p provides us with a device for generating nonintersecting 
paths on the lattice { 1, . . . , m} x { 1, . . . , n}. In fact, from the theorem 
of Gessel-Viennot [5], it follows that, for any choice of column indices 
i1 < · · · < ir and row indices Jl < · · · < Jr, the corresponding minor 
determinant of «<> is expressed as a sum 

(3.16) 

of the product of weights over all r-tuples (1'1> ... , 1'r) of nonintersecting 
paths 1'k: (ik,1)---> (1,jk) (k = 1, ... ,r). Graphically, this summation 
can be expressed as follows. 

. . i2 
det «<>'-1 ' ... •': = "' 

]1,··· ,Jr LJ : 

(3.17) 

Let us look at the special minor determinantsTj(«<>) introduced above. 
Notice that, for each (i,j), there is only one r-tuple (r = min{i,j}) 
of nonintersecting paths relevant to the summation, so that the minor 
determinant rj(«<>) reduces to the product 

(3.18) II x/:. 
(a,b); a~i, b~j 
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This implies that, if x~ "f. 0 for all i,j, then one has rj(<P) "f. 0 for all i,j. 
From formula (3.18), it is also clear that the entries x~ of the matrix X 
are recovered as the ratios of minor determinants of <P 

(3.19) 

provided that x~ "f. 0 for all i, j. The correspondence X 1---+ <P defined by 
(3.14) induces a mapping 

(3.20) 

As we have seen above, if <P = <p(X), then the matrix X is recovered by 
the formula (3.19). 

Theorem 3.2. The correspondence X~---+ <P defined by (3.14) in­
duces an isomorphism of affine varieties 

(3.21) 

Proof. Since <p has a left inverse defined by (3.19), we have only to 
show that <p is surjective. For each <P E Matm,n(OC)n we construct an 
X E Matm,n(OC*) such that <p(X) = <P, by the induction on m. For this 
purpose, we first investigate the inductive structure of the mapping <p. 
Assuming that <p(X) = <P, set 

(3.22) 1/J; = L X-y {2 ~ i ~ m, 1 ~ j ~ n). 
-y: ( i, l)--+(2,j) 

Then <p~ are determined as 

(3.23) 
j 

i_""ill 1 'Pj - ~ 1/Jk xk xk+l ... xi (i = 2, ... ,m), 
k=1 

for all j. In view of this, we consider the n x n upper triangular matrix 
H(x 1 ), x 1 = (xi, ... , x~), associated with the first row of X. Then the 
condition (3.23) is equivalent to the matrix equation 

(3.24) 
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Let us show that any ~ E Matm,n (JK).,. can be decomposed in this form 
by choosing x} and '1/J} appropriately. The condition to be satisfied by 
the first row (xL ... , x~) of X is: 

(3.25) (j = 1, ... ,n). 

Since H(x1 )-1 = diag(x1)- A, it is easily seen that (3.25) is equivalent 
to 

(3.26) 
1 

1 'Pj 
xi = - 1 - (j = 2, ... , n). 

'Pj-1 

Since r.p} = Tj(~) i= 0, we can define x} (j = 1, ... , n) as above. Then 
the matrix IJ1 = ~H(x1 )-1 has the first row (1, 0, ... , 0); hence, H(x1) 
and IJ1 satisfy the condition (3.24). Define ~' to be the (m- 1) x n 
matrix obtained from IJ1 by removing the first row. We will verify that 
~' E Matm-l,n(IK).,. so that ~' can be expressed as ~' = r.p(X') by the 
induction hypothesis. Then, setting 

(3.27) 

we must have r.p(X) = ~' which will complete the proof of Theorem 
3.2. We now examine the minor determinants of~= IJIH(x1). Let 
(i,j) E {1, ... ,m} x {1, ... ,n} and assume i > j. Then it is clear 

(3.28) i(~) _ d t ~i-jH, ... ,i _ d t wi-Hl, ... ,i 1 1 
Tj - e l, ... ,j - e l, ... ,j x 1 ... xi, 

since His upper triangular. Hence we have 

(3.29) Ti-l(~')= det IJ!i-j+l, ... ,i = 1 Ti(~) i= 0 (i > j). 
J 1, ... ,J xl x~ J 

1 . . . J 

Next assume i::; j. In this case, we have 

(3.30) 

Ti(~) = det ~l, .. :+,il . = 
J J -· , ... ,J 

Since the first row of IJ1 is (1, 0, ... , 0), we have det w!~·;:.:\; = 0 unless 

k1 = 1. When k1 = 1, from Lemma 1.4 it follows that det H(x1 )}~f+i·,:~;,j 
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0 unl (k k ) ( · ·+2 ·) s· d t H( 1) 1'j-i+2•··· ,j = ess 2, ... , i = J-z , ... .J. 1nce e :z: j-i+1, ... ,j = 
x~ x~ · · · x}, we finally obtain 

(3.31) i(.;r;.) d t ,y,1, ... ,i 1 1 Tj ':1!' = e ..... 1,j-i+2, ... ,j x1 ... xi. 

Hence we have 

(3.32) i-1 (:m.') d ,y,1, ... ,i 1 i(.;r;.) ..J. 
Tj ':1!' = et ..... 1,j-i+2, ... ,j = X~ ... x} Tj ':1!' ;- 0 (i s j). 

This argument implies Tj(<I>') =f: 0 for all (i,j) with 1 SiS m- 1 and 
1 S j S n as desired. This completes the proof of Theorem 3.2. D 

It is convenient for our purpose to restate Theorem 3.2 as follows. 

Theorem 3.3. Let <I> = (cp~)i,j be an m x n matrix with coeffi­

cients in][{ such that Tj(<I>) =f: 0 for all (i,j). For such a matrix <I> given, 
define the m x n matrix X = ( xD i,j by setting 

(3.33) 

Then, for any choice of column indices i 1 < · · · < ir and row indices 
j 1 < · · · < Jr, the corresponding minor determinant of <I> is expressed as 
a sum 

(3.34) det q;i.~o ... ,i; = "" X • • ·X 
Jt,·•• ,Jr L..J "Yl "Yr 

(·n, ... ol'r) 

of the product of weights over all r-tuples { '/'1, ... , 'Yr) of non intersecting 
paths 'Yk: (ik, 1) -t (1,jk) (k = 1, ... , r) in them x n rectangle. 

Remark 3.4. An m x n real matrix <I> (OC = IR) is said to be 

totally positive if det <!>~~:::: ·.~: > 0 for any choice of row indices i1 < 
· · · < ir and column indices j 1 < · · · < Jr· Theorem 3.2 implies that, 
if Tj (<I>) > 0 for all ( i, j), then <I> is already totally positive. In fact, 
if this condition is satisfied, all the x~ 's are positive; hence, any minor 

determinant det <!>~~:::: :~: is positive since it is expressed as a sum of 
weights associated with X over r-tuples of nonintersecting paths as in 
(3.34). Let us denote by Matm,n(IR)tot.pos. the open subset ofMatm,n(IR) 
consisting of all totally positive matrices. Then Theorem 3.2 also implies 
that <p induces the isomorphism 

(3.35) 
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In particular, Matm,n(IR)tot.pos is isomorphic to IR;'Q' as a real analytic 
manifold. For the theory of totally positive matrices, we refer the reader 
to [1]. 

We apply the fundamental isomorphism of Theorem 3.2 to formu­
lating a prototype of subtraction-free birational involution on the space 
Matm,n(:OC*) of matrices. 

For each cp E Matm,n(:OC), we define the matrix q,v by setting 

(3.36) 

where Jm = (8i+j,m+l)~=l and Jn = (8i+j,n+l)~j=l are the permuta­
tion matrices representing to the longest element of Sm and Sn, respec­
tively. This correspondence cp 1-t cp v defines an involution on the space 
Matm,n(:OC) of m x n matrices. Then, via the isomorphism 

(3.37) cp: Matm,n(:OC*) .::+ Matm,n(:OC)n 

we obtain a birational involution X 1-t L(X) on Matm,n(:OC*) such that 

(3.38) 

for generic X E Matm,n(:OC*). 
To be more explicit, let us consider two matrices X, Y E Matm,n(:OC*), 

and set cp = cp(X) and \{1 = cp(Y). If we impose the relation \{1 = q,v 
between «P and \{1, it induces a birational correspondence between X 
andY= L(X). As we will see below, this correspondence X~ Y pro­
vides the essential ingredient of the RSK* correspondence. Recall that 
X= (x;) . . is recovered from cp = (cp;) .. by the formula 

IJ . tJ 

(3.39) 

(3.40) u} = Tj(w). 

We now look at the determinant u;. Since \{1 = cp v, we have 

(3.41) i - i(w) - d t wi-r+l, ... ,i - d t q,m-i+l, ... ,m-i+r 
O"j - Tj - e j-r+l, ... ,j - e n-j+l, ... ,n-j+r ' 
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where r = min{i,j}. Hence, each oJ is expressed as the sum 

(3.42) X ···X 1'1 '"Yr 

of weights associated with X, over all r-tuples of nonintersecting paths 

(3.43) /k : (m- i + k, 1) ~ (1, n- j + k) (l = 1, ... , r). 

Graphically, a; can be expressed as follows. 

(3.44) 
n-j+l ... n n-j+l ... n-j+i 

(i?_j) 

, orE 
m,-i+l 

X 

(i:5,j) 

From symmetry of the construction, x; are recovered from y; by the 
same procedure. 

Theorem 3.5. Let X= (x;)i,j' Y = (y;)i,j be twomxn matrices 

such that x; =/= 0, y; =/= 0 for all i,j. Setting <P = cp(X), "Ill = cp(Y), 
suppose that <P and "Ill are related as "Ill = <P v : 

(3.45) 

Then, for each ( i, j), y; is expressed as follows in terms of X : 

(3.46) 

where r = min{i,j}, and the summation is taken over all r-tuples of 
nonintersecting paths /k : (m- i + k, 1) ~ (1, n- j + k) (k = 1, ... , r). 
Conversely, each x; is expressed as follows in terms of Y : 

(3.47) 

summed over the same set of r-tuples of nonintersecting paths as above. 
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Note that the transformation from X = (x3i.) . . to Y = (y3~) . . in 
t,J tJ 

Theorem 3.5 is realized as a subtraction-free birational mapping from 
Matrn,n(OC*) to itself; this birational mapping is in fact an involution on 
Matrn,n(OC*). Passing to the piecewise linear functions, we obtain 

Theorem 3.6. For each m x n matrix X= (xJL,j E Matrn,n(IR), 

define an m x n matrix Y = (y3i) .. by 
•,J 

(3.48) 
i i i-1 i + i-1 

Yj = I:Ti- I:Ti - I:Tj-1 I:Ti-1' I:T; = max (x,.n + · · · + x.,J, 
(1'1,··· ,""Yr) 

where r = min{i,j}, and the maximum is taken over all r-tuples of 
nonintersecting paths 'Yk : (m- i + k, 1) --) (1, n- j + k) (k = 1, ... , r); 
the weight of a path 'Y is the sum of all xb" 's corresponding to the vertices 
of 'Y. Then the piecewise linear mapping X 1--t Y is an involution on 
Matrn,n(IR). 

3.3. Tropical RSK* correspondence 

Theorem 3.5 is an essential ingredient of the tropical RSK correspon­
dences. Regarding x; as indeterminates, we now work within the field 
of rational functions OC(x) in mn variables XJ (1 :::; i :::; m, 1 :::; j :::; n). 
In what follows, we assume that m :::; n to fix the idea. 

Consider the m x n matrix X = ( x;) i,j regarding x; as indetermi­

nates. We denote the i-th row of X by xi, and the j-th column of X by 
Xj: 

(3.49) 

From the matrix X = ( x 3i.) . . , we construct four tropical tableaux •,J 

as follows: 

H(xrn) · · · H(x2)H(x1) = Hrn(urn) · · · H2(u2)H1(u1) = Hu, 

H(xn) · · · H(x2)H(x1) = Hrn(vrn) · · · H2(v2)H1(v1) = Hv, 

H(x!)H(x~) · · · H(x':) = Hrn(urn) · · · H2(u2)H1(u1) = Hus, 

(3.51)H(xi)H(x;) · · · H(x~) = HrnCiJ1"n) · · · H2(v2)H1(v1) = Hvs, 
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where :z:~ = (x~, ... ,x~,x1) and :z:j = (xj, ... ,x~,x}); Hu, Hus are 
n x n matrices, and Hv, Hvs are m x m matrices. Note that U and 
us (resp. v and V 5 ) are transformed into each other by the tropi­
cal Schiitzenberger involution. We also introduce the tropical Gelfand­
Tsetlin pattern p. associated with the tropical tableau U as 

{3.52) p.= [

JLin) (n!K) (n-1) . . . (n-~~n)l 
IL1 IL2 · · · ILn-1 

(1) 
IL1 

' 

where, fori :5 j, we define JL~i) = u! · · · u~ (i :5 m) and JL~i) = 1 {i > m). 

Applying Theorem 2.4 to A = J'"'X, we already know that the 
variables u~ (i :5 j) are determined by 

{3.53) 
· r.~(Hu) 

u. - -.,..=''""=------'"-
i- rf-1(Hu)' {i < j), 

with 

{3.54) 

rj(Hu) = E =E 

Notice that rj(Hu) fori :5 j coincides with 

det cp'?"--:i+1, ... !'"' = "" . 
J-•+1, ... ,J LJ m- ~ + 1 · .. 

{3.55) 

Hence we have 

(3 56) i(H ) _ d t .iii.Tn-i+1, ... •'"' _ d t ,T,1, ... ,i _ i (•T•) 
· Tj U - e 'J!'j-i+1, ... ,j - e '>l!n-j+l, ... ,n-j+i- 7n-j+i '>!! • 

This implies 

{3.57) u} = rj(\11) = T~-i+i(Hu) = II 
(a,b); a$i, b$n-j+i 



Tropical Robinson-Schensted-Knuth Correspondence 413 

Similarly, for i S j, we have 

(3.58) 
ri(Hv) = det <Pj-i:f-1, ... ,3. = det \[Jm-j-:f-1, ... ,m-J+i = Tm-J+i(w) 

J n-oz.+l, ... ,t 1, ... ,1. 1. ' 

hence, for i 2: j, 

(3.59) a} = rJ (w) = r!r,_i+j (Hv) = II (i2:j). 
(a,b); a~j, b~m-i+j 

Summarizing the argument above, we have 

(3.60) { 
II ub 

i _ i('T') _ (a,b);a~i,b~n-j+i 
a·-T·'I'-

J J II a vb 
(a,b); a~j, b~m-i+j 

(is j), 

(i2:j), 

for all ( i, j) with 1 S i S m and 1 S j S n. Conversely, uj and v; are 
determined as 

(3.61) 

and 

(3.62) 
i af' 

vi= m-1' 
ai-1 

(i < j) 

(i < j). 

Remark 3.7. It should be noted that the upper (resp. lower) 
triangular components of the m x n matrix S = (a;) i,j are determined 

from U = (u;)i~j (resp. V = (vj)i~), and vice versa. Formula (3.60) 
is also equivalent to 

(3.63) 
(is j), 

(i2:j), 

where f.L~j) and v;j) are the tropical variables representing the Gelfand­
Tsetlin pattern of U and V, respectively. Namely, them x n matrix 

[ 

).1 f.L~n-1) ........ 
(m-1) \ · ·. 

v_1 . -"2 . . . .. 
. . . . . . 
·(1) (m-1) ~ · 

v1 vm-1 -"m (3.64) 

(n-m) (1) l f.L1 ... f.L1 . . . . . . . . . . ' . . . . 
· (n-1) · (m) 
/.lm ··· /.lm 



414 M. Noumi and Y. Yamada 

defined by the ratios of o"j, is obtained by glueing the two Gelfand-Tsetlin 
patterns p and v at the main diagonal, where the diagonal entries 

(3.65) Ai = JL~n) = vf'"') (i = 1, ... , m) 

are the tropical variables representing the common shape of U and V. 

From (3.60), we obtain the following expression for y;: 
1 i-1 

un-j+i · · · un-j+i (i<j), 

(3.66) (i = j), 

(i > j). 

Hence we have 

Theorem 3.8. Under the assumption of Theorem 3. 5, let U = 
(uDi::;i' V = (v;)i::;; be the tropical tableaux defined by the tropical row 
insertions 

(3.67) 

Hu = H(x'"') · · · H(x2)H(x1 ), Hv = H(xn) · · · H(x2)H(x1), 

respectively. Then u; and v; are expressed as (3.61) and (3.62), respec­
tively, in terms of a; defined in Theorem 3. 5. Conversely, the matrix 
X = ( x3i.) . . is recovered from the tropical tableaux U and V by the for-•,J 
mula (3.47) withy} defined by (3.66). 

Passing to the combinatorial variables, we obtain the explicit inver­
sion formula for the RSK* correspondence. 

Theorem 3.9. Let X= (x;)i,j be anmxn matrix ofnonnegative 
integers. Consider the two column strict tableaux U and V obtained by 
the row insertion 

U = (· · · (wm +-- Wm-1) +-- · · · +-- w1), 

(3.68) V = (· · · (w~ +-- w~_1 ) +-- · • • +-- wD, 
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Denote by u; ( resp. v;) be the number of j' s in the i-th row of U 
( resp. V). Then u; and v; are expressed as 

(3.69) 

(3.70) 

in terms of a; defined in Theorem 3.6. Let >. = (>.1, ... , >.z), = 
min { m, n}, be the common shape of U and V, and set 

(3.71) { 

"i-1 k "i k 
L,.,. k=1 Un-j+i - L,.,k=1 un-j+i+1 

i - \ "i-1 k "i-1 k 
Yj - "i - L,.,k=1 Un - L,.,k=1 v,.,. 

"j-1 k "j k 
L,.,k=1 v,.,._i+i - L,.,k=l v,.,._i+i+l 

(i < j), 

(i = j), 

(i > j), 

for each i = 1, ... , m and j = 1, ... , n. Then the matrix X is recovered 
from U and V by the formulas 

(3.72) 
i i i-1 i i-1 

Xj = Tj- Tj - r 3_ 1 + Tj_ 1 , 

where r = min{i,j}, and the maximum is taken over all r-tuples of 
nonintersecting paths 'Yk: (m- i + k, 1)---+ (1, n- j + k) (k = 1, ... , r) 
in the m x n rectangle; the weight of a path 'Y is the sum of all yg 's 
corresponding to the vertices of 'Y. 

An explicit inversion formula for the usual RSK correspondence is 
obtained by combining Theorem 3.9 and the Schiitzenberger involution. 
The inversion formula discussed above has an obvious theoretical mean­
ing, but is somewhat indirect. We will discuss in the following subsection 
a different type of inversion formulas for the four variations of RSK cor­
respondences which recovers the transportation matrix directly from the 
corresponding tableaux. 

3.4. Inverse tropical RSK via the Gauss decomposition 

Keeping the notations X, if', W as before, we now consider the 
"Gauss decomposition" of the m x n matrix W ( m :$ n): 

(3.73) 



416 M. Noumi and Y. Yamada 

where W+, '1!0 and\]!_ are am x n upper unitriangular matrix, am x m 
diagonal matrix, and am x m lower unitriangular matrix, respectively: 

(3.74) 

(w+)J=8i,j (i~j), (wo)J=O (i=/=J), (w_)j=8i,j (i~j). 

Nontrivial entries of these matrices are given explicitly as follows: 

. det '1!1···· ,i . 
(w+)'·= 1, ... ,.-1,] 

J det w1···· ,. 
1, ... ,'l. 

(3. 75) 
det '1!1···· ,i 1, ... ,'1.. 

det \]!1, ... ,i-1 
1, ... ,'l.-1 

. det \]!1, ... ,j-1,i 
(w_)'.= 1, ... ,J. 

3 det w1···· '3 
1, ... ,J 

det <Pm-i+1•··· •!" n-J+1,n-•+2, ... ,n 
det <Pm-_i+1, ... ,m 

n-1.+1, ... ,n 

det <Pm-_i+1, ... ,m 
n-t+l, ... ,n 

det <Pm-_i+2, ... ,m 
n-t+2, ... ,n 

det <Pm-i+1,m-j+2, ... ,m 
n-J+1, ... ,n 

det <Pm-j+1, ... ,m 
n-J+1, ... ,n 

(i ~ j), 

(i = j), 

(i~j). 

Comparing the path representations of <P and Hu, Hus, Hv, Hvs, we 
have 

(3.76) det <Pm-r+1···· ,m = det(Hu) 1•··· ,r = det(Hus) 1 ~ , ... ,!; , h, ... ,lr h, ... ,lr n-r+l, ... ,n 

where 1 ~ h < ... < lr ~ n and z; = n - li + 1, and 

(3.77) det <Pk 1 , ... ,kr = det(Hv) 1•··· ,r = det(Hvs)k~ , ... .k; , 
n-r+l, ... ,n k1, ... ,kr m-r+l, ... ,m 

for 1 ~ k1 < ... < kr ~ m with ki = m - ki + 1. From these formulas, 
we see for instance, 

(3.78) ( •T• )i i i 7i --i i i ~ -:1 
'I'Q · =U··"'U =U··"'U =V· ... V =V·"''V 1. 1.. n 1. n 1. m z m 

fori= 1, ... , m. We set Ai = ('1!0 )~, so that the vector A= (A1, ... , Am) 
represents the common shape of U, u•, V and v•. By using formulas 
(3.76), (3.77), we can represent w+, '1! 0 , w_ in terms of the tropical 
tableaux. 

Proposition 3.10. (0) Fori = 1, ... , m, 

(3.79) ( ,T, )i \ i i --i -i i i --i --i 
'I'Q · = A. = U · "' 'U = U · ' "'U = V · · "'V = V · "' · V '1.. t t n 1.. n t m 1.. m· 

(1) Fori~ j, (w+); is expressed in terms of U as the sum 

1°,~ .~· ... ~1 
2; ; ; ~ ; ; ; ~ 

:; ! ! ; ;i ~ 
• 0 •• . . . . 

m''' 'm 
-y: ( i, n )-+(1 ,n-J + 1) 

(3.80) u 
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of weights over all path 'Y : (i, n) --+ (1, n- j + 1), with weight u& = -!.. 
ub 

assigned to the horizontal edge connecting (a, b - 1) and (a, b), for each 
a~ b. In terms of u•, (w+); is expressed as 

~~m·· nm~ + 
(w+); = .x;l fJS8j 

-y:(i,n}->(min{j,m},j) 

(3.81) 

(2) Fori ~ j, (w _ ); is expressed in terms of V as the sum 
0 1 i* 

1 --.'""""""c-*-.,.-....,......,......., 

(w-); = L 
-y:(l,m-i+l}->(j,m) 

(3.82) m 

of weights over all path 'Y : ( m - i + 1, 1) --+ (j, m), with weight v& = 1a 
vb 

assigned to the horizontal edge connecting (a, b - 1) and (a, b), for each 
a~ b. In terms ofV", (w-); is expressed as 

(w_); = x;l L 
-y:(i,i}->(j,m) 

(3.83) 

1 m 
17"·.'.1-.... 1-,--...,..--, 1 

···.1 j L 
i'"':--+--"H 

"·-:-. '- v· •• '=:""" 
riim 

This proposition implies that the matrix W = W_WoW+, as well as 
<P = q,v, is completely recovered from each of the four pairs of tropical 
tableaux 

(3.84) 

By combining the graphical representations in Proposition 3.10, we can 
construct a path representation of W, associated with each pair in (3.84). 
According to 

(3.85) 
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we glue the diagrams of {3.80) or {3.81) for w+ and {3.82) or (3.83) for 
W _. We show in Figure 1 the diagrams 

(3.86) r = ru,v, ru,vs, rus,v, rus,vs 

obtained in this way. In diagram r, the orientation of the edges are 
indicated by arrows. We assign the weights, associated with the pair of 
tropical tableaux, to the thick edges and the vertices marked by •. For 
each path"( in r, we define the weight wt("f) to be the product of weights 
attached to all the edges and the vertices. In Figure 1, a1, ... , am and 
b1 , . . . , bn indicate the entrances and the exits for the path representa­
tion of w, respectively. Namely, for each (i,j), 1/J} is expressed as the 
sum 

{3.87) 1/J} = L wt("f) 
-y:a,-+b; 

of weights defined as above, over all paths "f : ai -t bi in r. Recall 
that the matrix X = (x}) is determined from ci> through the minor 
determinants Tj = Tj(ci>) of cp = wV. Hence each x; is determined as 

(3.88) wt("ft) · · ·wt("fr), 

where the summation is taken over all r-tuples ( r = min { i, j}) of non­
intersecting paths 

(3.89) (k=1, ... ,r) 

in r. For each pair in {3.84), we have thus obtained an explicit inversion 
formula of the corresponding tropical RSK correspondence in terms ·of 
nonintersecting paths. The corresponding combinatorial formula for the 
inverse RSK correspondence is obtained simply by the standard proce­
dure: 

where the weight of a path is defined as the sum of weights attached to 
the edges and the vertices; read the weights u; and v} in r as -u; and 
-v} in the combinatorial setting. 

In the case of the pair {U, V), we can give a rectangular diagram as 
well, by deforming the diagram ru,V· Note first that the diagram ru,v 
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ru,v: 

a2 
ru,vs: 

Fig. 1. Path representations of 'Ill 
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is equivalent to the following. 

(3.91) 

We deform this diagram to 

(3.92) 

and finally to the m x n rectangle: 

1 
m 

1 
3 

1 

(3.93) 2 

.>.2 
-2 

1 Vm 

-2 v3 

-1 
Un-1 

-2 
Un 

~ 
1 

v::: 1~~ ~ 

By this rectangle, '1/J} is expressed as the sum 

(3.94) '1/J} = L wt('Y) 
-y: ( i, 1 )--+-y(l,j) 

-1 
U3 

-2 u3 

u: 

of weights defined as above, over all paths 'Y : (i, 1) -t (1,j). (This 
representation is similar to that by Y = (y1~) . . , although the weights 

•,J 
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are defined in a different way.) Hence we have 

(3.95) wt('Y1) · · · wt('Yr ), 

where r = min{ i, j} and the summation is taken over all r-tuples of 
nonintersecting paths 'Yk : (m- i + k, 1)--+ (1, n- j + k) (k = 1, ... , r) 
in the m X n rectangle. This inversion formula is essentially equivalent to 
the inverse RSK* correspondence discussed in the previous subsection. 

Remark 3.11. As we have seen above, the RSK correspondence 
can be thought of as the Gauss (or LR) decomposition of ultra-discretized 
matrices with respect to the product defined by 

(3.96) i i k (XY)i =max (Xk + Yj ). 
k 

§4. Birational Weyl group actions 

In this section, we introduce a subtraction-free birational affine Weyl 
group action on the space of tropical transportation matrices. It in­
duces an action of the symmetric group on the space of tropical tableaux 
through the tropical RSK correspondence. In this section, we work with 
the generic m x n matrix X = ( x~) i,j, regarding x~ as indeterminates. 

4.1. Affine Weyl group action on the matrix space 

In what follows, we consider the following two (extended) affine Weyl 

groups wm and Wn of type A~~1 and A~12 1 , respectively. We denote 
by 

(4.1) 

the group generated by the simple reflections r0 , rt, ... , Tm-l and the 
diagram rotation w subject to the fundamental relations 

(4.2) 

r~ = 1, 

TiTj = TjTi 

TiTjTi = TjTiTj 

wri = ri+lw, 

(j ¢ i,i ± 1 

(j=:i±1 

mod m), 

mod m), 

where we understand the indices for ri as elements of Z/mZ. Notice 
that we have not imposed the relation wm = 1. This version of extended 
affine Weyl group is isomorphic to the semidirect product of the lattice 
zm of rank m (not of rank m -1) and the symmetric group Sm acting on 
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it; the subgroup (rt, ... , Tm-1) of wm is identified with Sm by mapping 
each Ti to the adjacent transposition ai = (i, i + 1) (i = 1, ... , m- 1). 

We define Wn = (s0 , St, ... , Sn-l, 1r) similarly to be the group generated 
by simple reflections so, s1, ... , Sn-1 and the diagram rotation 7f: 

(4.3) 
s~ = 1, SiSj = SjSi (j :1= i, i ± 1 mod n), 

SiSjSi = SjSiSj (j := i ± 1 mod n), 1fSi = Si+17f· 

The subgroup (s1 , ... , Sn- 1 ) of Wn is identified with the symmetric 
group Sn-

We now propose to realize these two affine Weyl groups as a group 
of automorphisms of the field of rational functions JK( x) in mn variables 
x = (x~)i,j· With two extra parameters p, q, we take the field of rational 
functions lK ~ Q(p, q) in (p, q) as the ground field. In our realization, 

the groups wm and Wn concern the nontrivial permutation of rows 
and columns of the matrix X = ( x1i.) . . , respectively. We first extend 

t,] 

the indexing set {1, ... , m} x {1, ... , n} for the matrix X = (x~ )i,j to 
Z x Z by imposing the periodicity condition 

(4.4) (i,j E Z). 

We define the automorphism rk (k E Z/mZ) and w of JK(x) by 

i i+1 Pj ·+1 1 · Pj_l 
rk(x1·) = px1· -P" , Tk(x'. ) = p- x'.--. (i = k mod m), 

• J J p• 
j-1 J 

(4.5) rk(x~) = x~ (i :1= k, k + 1 mod m), w(x;) = xj+1 

for i, j E Z, where PJ is the sum 

over all paths 1 : (i + 1, j + 1) ----> (i,j +n) in the lattice Z x Z. We define 
sz (l E Z/nZ) and 7f by interchanging the roles of rows and columns, 
and of p and q: 

. . (J~ 
sz(xj) = qxj+1(Ji.-l, 

J 

ni-l 
. 1 . "'t:j 

sz(xj+l) = q- xj (Ji. (j = l mod n), 
J 

(4.7) sz(x;) = x; (j :1= l, l + 1 mod n), 1r(x~) = x~+l 
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for i, j E Z, where 

rn 
(4.8) Qi _ "'xi+1 xi+2 ... xi+kxi+kxi+k+1 ... xi+rn 

j - LJ j+1 j+1 j+l j j j 
k=1 

summed over all paths 1: (i + 1,j + 1) ~ (i + m,j). It is directly seen 
that these definitions are consistent with the periodicity conditions on 
x;. Also, it is clear that rk and s1 have rotational symmetry 

(4.9) 
wrk = rk+1w, 

WS! = S!W, 

respectively. 

1r rk = rk1f 

1f S! = S!+11f 

(k E Z/mZ), 
(l E Z/nZ), 

Remark 4.1. The polynomials Pj and Q; above are characterized 
by the recurrence relations 

and the periodicity conditions P~ = p-n-1 pi Qi.+rn = q-rn-1Qi. 
J+n J' J J' 

Theorem 4.2. The automorphisms rk (k E Z/mZ), w, s1 (l E 
ZjnZ) ~ of IK(x) defined as above give a realization of the direct product 

wrn X Wn of two extended affine Weyl groups. In particular, the actions 

of wrn = (ro, ... 'rrn-1, w) and Wn = (so, ... 'Sn-1, 7r) commute with 
each other. 

In the next two subsections, we give a proof of this theorem by using 
two characterizations of birational actions of rk and s1. 

Remark 4.3. The realization of wrn X Wn mentioned above is 
the same as the one we gave in [11] (p = q = 1), and [12]; the variables 
x; above correspond to xi/ in [12]. When p = q = 1, it coincides with 

the birational realization ofWrn x Wn constructed in [14], Theorem 4.12. 

4.2. First characterization 

By introducing the spectral parameter z, for an n-vector :v = 
(x1 , ... ,xn) with Xi =f. 0 given, we introduce the following two matrices: 

(4.11) E(x; z) = diag(:v) + A(z), H(x; z) = (diag(x)- A(z))- 1 , 
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where 

n-1 

(4.12) A(z) = LEk,k+l +zEn,!· 
k=l 

Note that the definition of H(z; z) makes sense since 

(4.13) det(diag(z)- A(z)) = x1 · · · Xn- z. 

When z = 0, these matrices reduce to E(z) and H(z) used in previous 
sections. Note also that H(z; z) = DE(z; z)-1 n-1 , D 
diag((-1)i--,l)i=I· We remark that the entries of the matrix H(z;z) 
are expressed explicitly as 

(4.14) 
(i ~ j), 

(i > j). 

For two n-vectors z = (xl,··· ,xn), y = (yl,··· ,yn) of indeter­
minates given, we consider the following matrix equation for unknown 
vectors u = (u1, ... , un), v = (v1 , ... , vn) such that Uj f= 0, Vj =/= 0: 

(4.15) H(y; z)H(z;pz) = H(v; z)H(u;pz), 

or equivalently, 

(4.16) E(z; pz )E(y; z) = E(u; pz )E(v; z). 

As before we extend the indexing set for Xj, Yj, ... to Z by setting Xj+n = 
p-1xj, Yi+n = p-1yj, .... Then the matrix equation (4.16) is equivalent 
to the system of algebraic equations of discrete Toda type 

(4.17) 
1 1 1 1 -+-=-+- (jEZ). 

Xj Yj+l Uj Vj+l 

(For the discrete Toda equation, see Remark 2.3.) The next lemma is 
fundamental in the following argument. 

Lemma 4.4. The matrix equation (4.15) has the following two 
solutions: 

(4.18) 
(1) 

(2) 

(j = 1, ... ,n), 

(j = 1, ... ,n), 
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where 

(4.19) 
n 

Pj = LYJ+1 · · · YJ+kXj+k · · · Xj+n (j = 0, 1, ... , n). 
k=1 

Proof. If VJ+1 = YJ+1 for some j E Z, form (4.17) it follows that 
Uj = Xj, and Vj = Yj· Hence we have u3 = x3 , Vj = YJ for all j E Z. 
Assuming that Vj i- Yj for any j E Z, we introduce the variable h 3 
(j E Z) such that 

(4.20) 
1 1 1 -=-+­

Vj+l YJ+1 hj 
(j E Z), 

so that hJ+n = p-1h 1. Then by eliminating u1 in (4.17), we obtain the 
recurrence relations 

hj hj-1 
- = 1+ --, 
Xj Yj 

(4.21) i.e., (j E Z) 

for h3. Hence we have 

(4.22) 
_ + Xj+n-1Xj+n + + Xj+1 · · · Xj+n + Xj+1 · · · Xj+n h 
- Xj+n · · · j 

YJ+n YJ+2 · · · Yi+n Yj+1 · · · Yi+n 

_ Pj + Xj+1 · · · Xj+nhj 

YJ+l · · · YJ+n 

Since hj+n = p- 1hj, this equation determines h 1 as 

(4.23) 

In fact, these h1 satisfy the recurrence relations above, since 

Hence we have 

(4.25) 

and 

1 1 1 hj-1 pj-1 
---=--=--, 

Uj Xj hj Yjhj YjPPj 
(4.26) 

which gives the solution (2). 0 



426 M. Noumi and Y. Yamada 

We remark that the two solutions above are characterized by the condi­
tions 

(4.27) 
(1) U1·' ·Un = X1·' ·Xn, 
(2) U1 · · · Un = P-1Y1 '' 'Yn, 

V1 · · · Vn = Y1 '' 'Yn, 
V1···Vn=PX1···Xn, 

respectively. Note here that Pn = p-n-1 Po. 

Returning to the setting of the previous subsection, we consider the 
matrix X = ( x~) i,j. We denote the row vectors and the column vectors 

of X= (x~)i,j by :z;i =(xi, ... , x~) and :z:; = (xj, ... , xj), respectively. 
Then Lemma 4.4 implies 

(4.28) 

where we have used the notation rk(:z:) = (rk(x1), ... , rk(xn)) for :z: = 
(xt. ... , xn)· Since rk(:z:i) = :z;i for i ¢. k mod m, we have 

H(:z:m; z)H(:z:m-1;pz) ... H(:z:1;pm-1 z) 

(4.29) = H(rk(:z:m); z)H(rk(:z:m-1);pz) · · · H(rk(:z:1);pm-1z) 

fork= 1, ... , m- 1. Namely, the product of matrices in the left-hand 
side is invariant under the action of rk (k = 1, ... , m -1). Hence we see 
that 

H(:z:m; z)H(:z:m-1;pz) · · · H(:z:\pm-1z) 

(4.30) = H(w(:z:m); z)H(w(:z:m-1);pz) · · · H(w(:z:1);pm-1z) 

for any composition w = Tk1 Tk2 • • • rk1 with k1, ... , k1 E {1, ... , m- 1 }. 
In the following, we set 

(4.31) 

and 

(4.32) 

so that H(X; z) = DM(X; z)-1 n-1. Then we have 

(4.33) H(X;z) = H(w(X);z), M(X; z) = M(w(X); z) 

for any w = Tk 1 Tk2 ···rk1 (kt.··· ,kl E {1, ... ,m-1}), where w(X) = 
(w(x3i·)) . . denotes the matrix obtained from X by applying w to its 

•,J 
entries. 
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Proposition 4.5. All the entries of the matrices H(X; z) and 
M(X; z) are invariant under the action of r1, 0 0 o , rm-lo 

Considering X = ( x;) i,j as given, we now investigate in general 

the matrix equation H(X; z) = H(Y; z) for an m x n unknown matrix 
y = (y;)i,j, yJ i= 0: 

H(xm; z)H(xm-\pz) o o o H(x\pm-lz) 

(4o34) = H(ym; z)H(ym-l;pz) 0 0 0 H(yl;pm-lz)o 

Note that this equation is equivalent to M(X; z) = M(Y; z): 

E(x1 ;pm-1z)E(3P;pm-2 z) 0 0 0 E(xm; z) 

(4035) = E('fl;pm- 1 z)E(1i;pm-2 z) 0 0 o E("fr; z)o 

Since det H(x; z) = (x1 ° 0 0 Xn- z)-1 , by comparing the determinants of 
the both sides of (4034), we see that, for any solution of (4034), there 
exists a unique permutation a E Sm such that 

(4036) (i = 1, 0 0 0 , m)o 

Theorem 4.6. For each permutation a E Sm, the matrix equa­
tion ( 4034) has a unique solution satisfying the condition ( 4036) 0 For any 
choice of expression a = ak1 ° 0 0 ak1 of a as a product of adjacent trans­
positions ak = (k, k + 1) (k = 1, 0 0 0 , m- 1), the solution corresponding 
to a is given by 

(4037) (i = 1, 0 0 0 , m; j = 1, 0 0 0 , n), 

where w = rk1 ° o 0 rk1 0 

Proof. Since P~ = p-n- 1 Pj for any i, we have 

(4o38) 
( k k) - -1 k+1 k+1 ( k+l k+1) - k k rk x 1 o o o xn - p x 1 0 o o xn , rk x1 o 0 0 xn - px1 o o o xn 

rk(xi 0 0 0 x~) =xi 0 0 0 x~ (i = 1, 0 0 0 , k- 1, k + 2, 0 0 0 , n) 

for k = 1, 0 0 0 , m - 1. Hence, 

(4039) r (x i xi) = Pi-uk(i)xuk(i) x""k(i) k 1 o o o n 0 0 0 m (i = 1,000 ,m)o 

This implies furthermore that, for any composition w = rk1 0 0 0 rk1 of rk 
(k = 1, 0 0 0 , m- 1), we have 

(4.40) W(xi xi ) = Pi-u(i)xu(i) xu(i) 
1 o o o n o o 0 n (i=1,ooo,m)o 
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where a = ak1 .. • ak,· Namely, w(:z:1), ... , w(:z:m) give a solution, of 
(4.34) satisfying the condition (4.36). In order to complete the proof 
of the theorem, we show that any solution y 1 , ... , ym satisfying ( 4.36) 
must coincide with this solution. In the following we denote by ei = 
p-m+i Xi··· X:. the pole of H(:z:i;pm-iz). Consider the equality 

H(w(:z:m); z)H(w(:z;m-1);pz) · · · H(w(:z:1);pm-1z) 

(4.41) = H(ym; z)H(ym-1;pz) · · · H(y\pm- 1z), 

and multiply the both sides by H(ym; z)-1 from the left to get 

H(ym; z)-1 H(w(:z:m); z)H(w(:z:m-1);pz) · · · H(w(:z:1 );pm-1 z) 

(4.42) = H(ym-1;pz) · · · H(y1;pm-1z). 

Since the right-hand side is regular at z = ea(m) = 1fi · · · 'ff::, the residue 
of the left-hand side at z = ea(m) must vanish. It implies 

since the matrices H(w(:z:i); ea(m)) (i = 1, ... , m- 1) are all invertible. 

If we set H(:z:; z) = (x1 · · · Xn- z)H(:z:; z), it is equivalent to 

This equation determines ym uniquely since H(w(:z:m); ea(m)); =/:- 0 for 

any i,j. Since (diag(w(:z:m))- A(ea(m)))ii(w(:z:m);ea(m)) = 0, we have 
ym = w(:z:m), and also 

( 4.45) 
H(w(:z:m-1);pz) ... H(w(:z:1);pm-1z) = H(ym-1;pz) ... H(y1;pm-1z). 

By repeating the same procedure, we finally obtain yi = w( :z:i) for all 
i = 1, ... , m, as desired. D 

Corollary 4. 7. Let i1, ... , ik and i1, ... , jz be two sequences of 
elements of {1, ... , m- 1} such that 

( 4.46) 

Then the automorphisms r17 ... , rm- 1 satisfies the relation 

(4.47) 
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By this corollary and the rotational symmetry of rk, we see that the 
automorphisms ro_z!t, ... , rm-b w satisfy the fundamental relations for 

the gen..::ators of wm. The same statement is valid for so, S!, ... 'Sn-1, 

1r and Wn by the symmetry under the transposition of the matrix X. 

Remark 4.8. Lemma 4.4 implies that the action of rk (k = 1, ... , 
m- I) is characterized by the system of algebraic equations of discrete 
Toda type 

(4.48) 
1 1 1 1 
-+--=-+-xi. xi+l yi yi+l 

J j+l J j+l 

for yj rk(xj) (i,j E Z) with periodicity condition yj+m 

YJ+n = p- 1yj, and an extra constraint 

( 4.49) Yi ... yi = pi-<tk(i)x"k(i) ... x"k(i) (" 1 ) 
1 n 1 n Z = , · · · ,m · 

4.3. Second characterization 

We give another characterization of rk and sz, and use it for proving 
the commutativity of the actions of ( ro, r1, ... , r m-1, w) and 
(so, sl, ... 'Sn-1, 7r). 

We define then x n matrices G1(u; z), depending on a parameter u, 
by setting 

(4.50) 
1 -1 

Go(u; z) = 1 + -El nZ , u , 
1 

Gz(u; z) = 1 + -Ez+Il (l = 1, ... , n- 1). u , 

For l = 1, ... , n- 1, we also use the notation Gz(u) = Gz(u; z) since 
they do not depend on z. Fix an index l = 0, 1, ... , n- 1, and consider 
the system of matrix equations 

(4.51) Gz(9i-l;pz)E(xi; z) = E('fi; z)Gz(gi; z) (i = 1, ... , m) 

for unknown variables yi (i = 1, ... , m) and 9i (i = 0, 1, ... , m). 

Theorem 4.9. Under the periodicity condition 9m = q-1g0 , the 
system of algebraic equations ( 4.51) has a unique solution. It is given 
explicitly as 

(4.52) 
Qt 

9i= q-lxi+l ... xi+m_xi+l ... xi+m (i=O,l, ... ,m), 
1+1 l+l l l 

YJ = sz(xj) (i = 1, ... ,m; j = 1, ... ,n). 
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Proof. It is easily seen that the matrix equation (4.51) is equivalent 
to the recurrence relations 

(4.53) 

together with 

(4.54) 

i 
i Xz 

gi = xz + -,-. -gi-l 
xl+l 

(i = 1, ... , m), 

These are the same recurrence relations as we have discussed in Lemma 
4.4. As we already know, (4.53) determines 9i, and (4.54) gives rise to 
the expressions we have used in defining s1• 0 

Note that the matrix equation (4.51) implies 

(4.55) Gz(go;prnz)M(X; z) = M(Y; z)Gz(q- 1go; z). 

Hence, by Theorem 4.9, we see that the action of sz on M(X; z) is 
described by 

(4.56) 

In terms of the matrix H(X; z), this formula can be written as 

(4.57) H(sz(X); z) = Gz(q- 1go; ( -1)nz)-1 H(X; z)Gz(g0 ; ( -1tz). 

We remark that the rational function go can be determined only 
from M (X; z). It is an easy exercise to show 

Lemma 4.10. Let b be the space of all n x n matrix M(z) with 
coefficients in IK(x)[z] such that M(O) is upper triangular. For a matrix 

(4.58) 

given, set 

(4.59) 
Ei = (Mo)L 

'Po= (M1)]', 'Pi= (Mo)~+l 

(i = 1, ... , n), 
(i = 1, ... , n- 1). 

Then we have 

(4.60) 

Go(u; az)M(z)Go(q- 1u; z)-1 E b {::::::::} (q-1cn- ac1) u = <p0 , 
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and 

( 4.61) 

for l = 1, ... , n - 1. In particular, the pammeter u is determined 
uniquely from M(z) if ci and 'Pi are generic. 

This lemma implies that g0 is expressed as a rational function of 
entries of M(X; z). Hence, by Proposition 4.5, we see that g0 in invariant 
under the action of r1. ... , Trn-1· 

We now prove the commutativity of the actions of ( ro, r1, . . . , r rn-1) 
and (s0, s1, ... , sn_1). By the rotational symmetry of rk, it suffices to 
prove szw = wsz (l = 0, 1, ... , n-1), assuming that wE (r1, ... , rrn_1). 
Applying w to (4.56), we have 

(4.62) M(wsz(X); z) = Gz(w(go);prnz)M(w(X); z)Gz(q-1w(g0 ); z)-1 . 

By Proposition 4.5, we have M(w(X); z) = M(X; z), and also, w(g0 ) = 
g0 as we remarked above. This implies that M(wsz(X); z) = M(sz(X); z). 
By applying s1 again, we obtain 

(4.63) M(szwsz(X); z) = M(s[(X); z) = M(X; z). 

Note that sz(xi ... x~) = xi ... x~ for any i = 1, ... , m. Hence, for 
Y = szwsz(X), we have 

(4.64) Yi ... Yi = Pi-a(i)xa(i) xa(i) (" 1 m) 
1 n 1 ... n •= , ... ' ' 

where a E Srn is the permutation corresponding to w. Then, by The­
orem 4.6, we obtain Y = w(X). This means that s1ws1(X) = w(X), 
namely, szws1 = w. This completes the proof of Theorem 4.2. 

Recall that the roles of rk, s1 are interchanged with each other by 
the transposition of the matrix X = ( x;) i,j' Accordingly, the two char­
acterization we have discussed so far can be applied to both Tk and sz. 

4.4. Passage to the tropical tableaux 

In what follows we set srn = (r1, ... 'Trn-1) and Sn = (s1, ... 'Sn-1)· 
Let us consider the tropical RSK* correspondence X f--t (U, V) with 

the notation as in the previous section: 

H(xrn) .. · H(x2)H(x1) = Hrn(urn) .. · H2(u2)H1(u1) = Hu, 

(4.65)H(xn) .. · H(x2)H(x1) = Hrn(vrn) .. · H2(v2)H1(v1) = Hv. 
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As before we assmne that m $ n. We regard now the variables u; and 
v; (i $ j) as elements of OC(x). Note that by specializing the spectral 
parameter z to zero, we have 

(4.66) H(X;O) = H(zm) ·· ·H(z1) = Hu. 

By Proposition 4.5, we already know that H(X; z), hence H(X; 0) is 
invariant under the action of the symmetric group sm = ( r1' ... ' r m-1). 
Since the variables u; are determined uniquely from the matrix Hu = 
H(X; 0), we conclude that all u; are invariant under the action of sm = 

(rl>··· ,rm-1)· 
We now consider the action of Sn = (sb ... , sn-1). For l = 1, ... , 

n- 1, from (4.57), we have 

(4.67) 

hence 

(4.68) 

where 

(4.69) 90 = -1 1 m 1 m· 
q xl+1 · · · xl+1 - xl · · · xl 

This formula is equivalent to 

(4.70) 

where 

(4.71) 

By applying Lemma 4.10 to (4.70), we see that g0 is expressed as follows 
in terms of the u-variables: 

(4.72) go= 

l 
~ 1 k k l 
L.Jul+1 · · ·ul+1ul · · ·ul 
k=1 (l = 1, ... ,m-1), 

(l = m, ... , n- 1). 
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Hence, formula (4.70) as well as (4.68) determines completely the action 
of sz on the u-variables. 

In order to describe the action of sz on the u-variables, for each 
0 :::; i :::; min { l, m}, we define 

(4.73) 
l 

A i 1 i ~ i+l k k l 
1 = uz · · ·uz ~ ul+1 · · ·ul+1ul · · ·Uz 

k=i+l 
i 

+ -1 i+1 1+1 ~ 1 k k i 
q ul+l · · · ul+l~ul+1 · · · ul+1ul · · · Uz 

k=1 
m 

Ai _ 1 i ~ i+l k k m l- uz .. ·Uz ~ ul+l .. ·ul+1ul .. ·Uz 
k=i+l 

(1:::; l:::; m- 1), 

(m:::; l:::; n- 1). 

Theorem 4.11. Under the tropical RSK" correspondence X f-+ 

(U, V), the variables u~ (1 :::; i :::; m; i :::; j :::; n) are invariant with respect 
to the action of sm = (r1, ... , rm-1)· The action of Sz (l = 1, ... , n-1) 
on u} is described as follows: 

(4.74) 

. . Ai 
sz(ui) = uj+l Ai-1, 

l 

sz(u}) = u} 

Ai-l 
S (ui ) _ ui l 
l l+l- ~~· 

l 

(j # l, l + 1) 

for 1:::; i:::; min{l,m} and sz(u}) = u~ for min{l,m} + 1:::; i:::; m. 

Proof. Fixing the index l = 1, ... , n -1, we consider the system of 
matrix equations 

(4.75) 

for unknown variables ti = (1, ... , 1, t~, ... , t~) (i = 1, ... , m) and ai 
(i = 0, 1, ... , m). We will construct below a solution of this system such 
that am = q-1ao, so that 

(4.76) 
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this equation must imply a0 = g0 and T = s1(U)o The system of matrix 
equations ( 40 75) gives the recurrence relations 

(4077) 

for ai, and also 

1 1 1 
(4078) i = i- -, 

t 1 u1 ai 

for 1 ::::; i ::::; l and t; = u; for l + 1 ::::; i ::::; mo Under the condition 
arn = q-1ao, the recurrence relations (4077) for ai are solved by 

Ai 
(4o79) ai = 0 / } (0::::; i::::; min{l,m})o -1 1 mm 1+1,rn 1 1 q ul+1 0 0 oul+1 - ul 0 0 oul 

Hence we obtain the expression fort; = s1(u;) as (4074)0 

By eliminating ai in (4077), (4078), we obtain 

0 

Proposition 4.12. The action of s1 (l = 1, 0 0 0 , n - 1) on the 
tropical tableau U = ( u;) i5_j is characterized by the following system of 

algebraic equations of discrete Toda type for t; = s1 ( u;) : 

(4080) 

( 4081) 

tttt+1 = utut+l 
1 1 1 1 
-..,.+-.-=----,+-.-
t• t'+1 u• u'+1 
I 1+1 I 1+1 
1 q 1 q 

r;;:+-1-=rr;:+-1-
tl tl+1 ul ul+1 

t l+1 - 1+1 
1+1- ul+1' 

(i=1,ooo,l-1), 

(i=1,ooo,m), 

(i=1,ooo,m-1), 

for l = m, 0 0 0 , n- 1, together with the constraint 

t1 tmin{l,rn} _ 1 min{l+1,rn} 
1 0 0 0 1 _ u1+1 0 o o ul+1 , 

(4082) t1 tmin{l+1,rn} _ 1 min{l,rn} 
1+1 0 0 0 1+1 - Ul 0 0 oUI 
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The action of the tropical Schiitzenberger involution on the tropi­
cal tableau U = ( u~) iS,j plays the role of reversing the indices of the 

transformations s1, ... , Sn-l and interchanging q and q-1 . Denoting by 
IK(u) the field of rational functions in the variables u = (u;)i,j, we de­
fine the involutive automorphism 5: IK(u) ---->IK(u) by using the tropical 
Schiitzenberger involution of Theorem 2.8: 

(4.83) (i < j), 

where 

(4.84) 

is the sum of weights associated with U, over all i-tuples of nonintersect­
ing paths rk : (1, n-i+k) ----> (min{m, n- j+k}, n- j+k) (k = 1, ... , i). 

Theorem 4.13. For each l = 1, ... , n- 1, let sj : IK(u) ----> IK(u) 
the automorphisms defined as in Theorem 4.11. Then we have 5 sj = 

-1 s!_1 5 for (l = 1, ... , n- 1). 

Proof. The tropical tableau s(U) = ( s( u~)) iS,j is characterized by 
the condition 

(4.85) 

or equivalently, by 

(4.86) 

Hence, by applying sj to this equality, we have 

(4.87) 

Recall that the action of s1 (l = 1, ... , n- 1) is characterized by 

(4.88) 

Since O(Gl(a)) = Gn-l( -a)= Gn-l(a)-I, we obtain 

O(Msr(U)) = Gn-l(q- 1ao) O(Mu) Gn-l(ao)- 1 

(4.89) = Gn-l(q- 1ao) Ms(U) Gn-l(ao)- 1 
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By combining this with (4.87), we obtain 

(4.90) 

By applying 5 again, we have 

Mss7s(U) = Gm-z(q-15(ao)) Ms2(U) Gn-z(5(ao))-1 

= Gm-z(q-15(ao)) Mu Gn-z(5(ao))-1 

(4.91) = Msr-l(u)· 

The last equality is a consequence of Lemma 4.10. This implies 5 s£5( u~) 
-1 . 

= s[ ( uj) for all i :::; j, as desired. D 

4.5. Combinatorial formulas for the Weyl group action 

By the standard procedure of Section ll:_ we can derive the piece­
wise linear action of the direct product wm X Wn of affine Weyl groups on 
the space of transportation matrices X. Also, via the RSK* 
correspondence, we obtain the piecewise linear action of Sn = 
(s1, ... , Bn-1) (resp. Sm = (r1, ... , Tm-1) ) on the space of tableaux 
U = (u~)i:S:j (resp. V = (v})i:::;j). 

Consider the space Matm,n(R) of realm x n matrices X= (x;)i,j' 
regarding x = (x~)i,j as the canonical coordinates. For each multi-index 
a= (a~)i,j E Nmn and a, bE N, we define the linear function la,a,b(x) 
on Matm,n(R) by 

(4.92) la,a,b(x) = L a~x~ + ap + bq, 
i,j 

where p, q are parameters. Note that la,a,b(x) = M(xapaqb) in the 
notation of Section 1.3. We denote by Fx the set of all piecewise linear 
functions f = f ( x) in the form 

(4.93) 
f(x) = max{ia,a,b(x) I (a, a, b) E A}- max{i,a,c,d(x) I ((3, c, d) E B}, 

where A, B are nonempty finite sets of triples (a, a, b) of a E Nmn 
and a, b E N. Since Fx = M(Q(x, p, q)>0 ), Fx is closed under the 
addition, the subtraction and "max"; it is also closed under "min" since 
min{!, g} = f + g - max{!, g}. We say that an isomorphism w : F x ---+ 

Fx of Z-modules is combinatorial if w(max{f,g}) = max{w(f),w(g)} 
for any f,g E Fx. 
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We first extend the indexing set for x~ by setting 

(4.94) Xi.+m __ Xi· _ q i i 
3 3 , xj+n = xj - p (i,j E Z). 

We define the action of rk (k = 0, 1, ... , m), w and s1 (l = 0, 1, ... , n), 
1r on the variables x~ as follows: 

(4.95) 

rk(xJi.) = xJi+l + PJ~- pJi-1 + p 
(i = k mod m), 

rk(x~+ 1 ) = x~ + PJ_1 - PJ- p 

rk(x)) = x) (it k, k + 1 mod m), w(x)) = x~+l, 

s1(x)) = x)H + Q)- Q~-1 + q 
( i ) - i + Qi-1 Qi s1 xJ+1 - xj J - J - q 

mod n), 

s1(x)) = x) (j t l, l + 1 mod n), 1r(x;) = x)+l, 

for i, j E Z, where 

k n 

. ( L i+1 L i ) P' = max x 3+a + X3· +a , 
J 1~k~n 

a=1 a=k 
k m 

(4.96) Qi. = max ( '""'xi+a + '""'xi+ a ) . 
J 1<k<m L.....t J+ 1 L.....t J 

- - a=1 a=k 

These formulas can also be written in terms of "min"; for instance, 

(4.97) (i = k mod m), 

where 

k-1 n 

(4.98) . ( L i L i+1) R'· = min XJ· +a + XJ·+a . 3 1~k~n 
a=1 a=k+1 

Theorem 4.14. Define the mappings rk (k E Z/mZ), w and S! 

(l E Z/nZ), 1r from the set of variables x; to Fx as above. Then each 
of them extends uniquely to a combinatorial isomorphism J x --;.__? x. 
Furthermore, they give a realization of the direct product wm X Wn of 
affine Weyl groups as a group of combinatorial isomorphisms of Fx. 

Proposition 4.15. By using the action of rk (k = 1, ... , m -1), 
set yj = rk (x)) for all i, j E Z. Then we obtain a solution to the ultm­
discrete equation of Toda type 

(4.99) . { i i+1} . { i i+1} mm x1, x1+1 = mm Yj, Yj+l 
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with periodicity condition y;+m = yj - q, yj+n = yj- p, satisfying the 
constraint 

(4.100) 

Yi + ·' · +y~ = x~k(i) + · ·· +x~k(i) + (i- ak(i))p (i = 1, ... ,m). 

Remark 4.16. Let B = U;:o Bz the crystal basis of the symmet­
ric tensor representation S(V) = EB::o Sz(V) of gl(n) associated with 
the vector representation V =en. Then B is identified with the set of 
n-vectors x = (x1 , ... , xn) of nonnegative integers. The crystal basis 
B®m = B ® · · · ® B (m times) for the m-th tensor product S(V)®m 
is parametrized by Nmn. We identify the matrix X = (x~)i,j with 

the coordinates of B®m = Nmn, regarding xi = (xL ... , x~) as corre­
sponding to the i-th component. When p = q = 0, the actions of rk 

(k = 1, ... , m -1) and Sz (l = 1, ... , n -1) on the variables x~ coincide 
with the combinatorial R-matrix acting on the k-th and (k + 1)-st com­
ponents of B®m, and Kashiwara's Weyl group actions, respectively (see 
[6], [29]). 

Assuming that m ~ n, we consider the variables u~ (1 ~ i ~ m; i ~ 
j ~ n) and vj (1 ~ i ~ j ~ m), associated with the column strict 
tableaux U and V, through the RSK* correspondence X~ (U, V). Re­
call that each u~ (resp. vj) denotes the number of j's in the i-th row of 
U (resp. V). Then, by the explicit piecewise linear formulas described 
in Theorem 3.9, u~ and vj are regarded as elements in :F x. We thus 

obtain a combinatorial action of wm X Wn on the variables u~ and vj. 
We describe below the action of the subgroups sm = (rb ... 'Tm-1) 

and Sn = (s1, ... , sn-1) on u~; their action on vj is given by an obvious 
modification. 

In view of (4.73), we define At (0 ~ i ~ min{l,m}) for the combi­
natorial version by 

(4.101) 
. { 1 . "+1 k k l Ai=max max (u1 +···+ui+ui+l +···+u1+1 +u1 ···+u1), 

i+l:<:;k:<:;l 

( i+1 1+1 1 k k i )} max u1+1 + · · · + u1+1 + u1+1 + · · · + ul+1 + u1 + · · · + u1 - q 
1:<:;k:<:;i 

for 1 ~ l ~ m- 1, and by 

(4.102) 
A i _ { ( 1 + + i + i+1 + + k + k + m) 1 - max . max u1 • • • u1 ul+1 • • • u1+1 u1 • • • u1 , 

•+1:<:;k:<:;m 

max (u;t~ + · · · + ui+1 + ut+l + · · · + u~+l + u~ + · · · + u}- q)} 
1:<:;k:<:;i 
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for m ~ l ~ n - 1. Then, from Theorem 4.11 we obtain 

Theorem 4.17. The variables u~ are invariant under the action 
of the symmetric group S"' = (rt, ... , rrn-l} induced via the RSK* 
correspondence. The action of s1 (l = 1, ... , n -1) is given explicitly as 
follows: 

{4.103) 
( i) i + Ai Ai-l s1 ul = ul+l 1 - 1 • 

s1(u~) = u~ 

( i ) i +Ai-l Ai 
Sz Ul+l =U1 I - I• 

(j # l, l + 1) 

for 1 ~ i ~ min{l,m} and s1(u~) = u~ for min{l, m} + 1 ~ i ~ m. 

Note that v; are invariant under the action of Sn = { s1, ... , Sn-1}, 
and that rk (k = 1, ... , m- 1) act on v; by explicit piecewise linear 
formulas similar to those described above. 

Proposition 4.18. By using the action of s1 (l = 1, ... , n- 1), 
set t~ = s1 { u~) for 1 ~ i ~ m, i ~ j ~ n. Then we obtain a solution to 
the ultra-discrete equation of Toda type 

t i + ti - i + i (. - 1 l) tl+l - l+l 1 1+1 - Uz ul+l ~ - • · · · • • 1+1 - ul+l • 
(4.104) min{tt, tfta = min{u1, utta {i = 1, ... 'l- 1), 

min{ t!, tlti + t}+l - q} =min{ ul, ulti + u}+l - q} 

for l = 1, ... , m- 1, and 

tf +tf+l = uf +uf+l (i = 1, ... ,m), 

(4.105) min{tL tf!i} = min{u1, utta (i = 1, ... , m- 1), 
min{tj, t}+l- q} = min{uj, u}+l- q} 

for l = m, ... , n- 1, satisfying the constraint 

t l + + tmin{l,rn} _ 1 + + min{l+l,rn} 
1 · · · l - ul+l · · · ul+l ' 

(4.106) t l + + tmin{l+l,rn} _ 1 + + min{l,rn} 
1+1 · · · 1+1 - ul · · · u, 

Remark 4.19. The variables u~ are identified with the coordi­
nates of crystal bases for general finite dimensional irreducible represen­
tations of gl(n) as in [13]. Then, by using an argument as in [6], it can be 
shown that the combinatorial action of Sn = (st, ... , Sn-1} on u~ with 
q = 0 provides with the description of Kashiwara's Weyl group actions 
on the crystal bases. This symmetric group action on the set of column 
strict tableaux thus coincides with the one introduced earlier by A. Las­
coux and M.P. Schiitzenberger [18]{see also [17]). The corresponding 
piecewise linear action is discussed in [15]. 
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