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Crystal Bases and Diagram Automorphisms 

Satoshi Naito and Daisuke Sagaki 

Abstract. 

We prove that the action of an w-root operator on the set of all 
paths fixed by a diagram automorphism w of a Kac-Moody algebra 
g can be identified with the action of a root operator for the orbit Lie 
algebra g. Moreover, we prove that there exists a canonical bijection 
between the elements of the crystal base B( oo) for g fixed by w and 
the elements of the crystal base B{oo) for g. Using this result, we 
give twining character formulas for the "negative part" of the quan­
tized universal enveloping algebra Uq(g) and for certain modules of 
Demazure type. 

§0. Introduction. 

Let g := g(A) be the Kac-Moody algebra over Q associated to a 
symmetrizable generalized Cartan matrix A = (ai;)i,jEI with Cartan 
subalgebra ~and Weyl group W = (ri I i E J). A path is, by definition, 
a piecewise linear, continuous map 71' : (0, 1] ---+ ~· such that 11'(0) = 0, 
where (0, 1] := { t E Q I 0 ~ t ~ 1 }. We denote by P the set of all paths 
(modulo reparametrization). In [13], Littelmann defined root operators 
ei, fi : P U {8} ---+ P U {8}, where 8 is an extra element, and introduced 
the notion of Lakshmibai-Seshadri paths of shape >., where >. E ~· is 
a dominant integral weight. By using root operators, we can make the 
set JBI(>.) of Lakshmibai-Seshadri paths of shape >. into a crystal which 
is isomorphic to the crystal base B(>.) of an integrable highest weight 
Uq(g)-module of highest weight >. (see [3] and [10]), where Uq(g) is the 
quantized universal enveloping algebra of g over Q(q). 

Let w E Aut(g) be a diagram automorphism of g, and w* : ~· ---+ ~· 
the contragredient map of the restriction wl~ of w to ~· For a path 
71' E P, we define a path w(7r) E P by (w(7r))(t) := w*(7r(t)) fortE (0, 1]. 
In [20] and [21], we introduced w-root operators ei and h (see (2.2.2)), 
and then proved that the Lakshmibai-Seshadri paths fixed by w can be 
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identified with the Lakshmibai-Seshadri paths for the orbit Lie algebra 
g, which is a certain Kac-Moody algebra corresponding to w. 

In this paper, we first prove that the action of an w-root operator 
on the set of all paths fixed by w can be identified with the action of a 
root operator for the orbit Lie algebra g, generalizing results in [20] and 
[22]. Then, using results in [20] and [21], we show that there exists a 
canonical bijection between the elements of the crystal base B( oo) of the 
negative part uq-(g) of Uq(g) fixed by wand the elements of the crystal 

base B(oo) of the negative part U~(g) of Uq(g). In addition, we give 
twining character formulas for U~(g) and for certain modules (U~)q(g) 
of Demazure type. 

Let us explain our results more precisely. We set (~*) 0 := { >. E ~* I 
w*(>.) = >.}, W := {w E W I w*w = ww*}. Note that there exist a 

natural Q-linear isomorphism P; : ~--+ (~*)0 and a group isomorphism 

e : W--+ W, where~ is the Cartan subalgebra of the orbit Lie algebra 
g and W is the Weyl group of g. Denote by iP the set of all paths 
(modulo reparametrization) for the orbit Lie algebra g, and by e.;, h : 
PU{ B} --+ PU{ B} root operators for g. For a path 1i' E i?, we define a path 
P;(n) E IP' by (P;(n))(t) := P;(n(t)) fortE [0, 1], and set P;(B) =B. 

In [20] and [22], we proved that the equalities ei o P; = P; o ei and 
hoP; = P; o h hold on a certain subset of i?. In this paper, we extend 
this result to the whole of i?. 

Theorem 1. The set IP'0 U { B} is stable under thew-root operators, 
where IP'0 := { 7r E IP' I w( 7r) = 7r}. Furthermore, we have ei 0 p; = p; 0 ei 

and h o P; = P; o h on iP. 
Denote by ei, fi: B(oo)U{O}--+ B(oo)U{O} the Kashiwara operators 

for the crystal base B(oo). Let wE W, and w = ri 1 ri2 • • ·rik its reduced 
expression. We define a subset Bw ( oo) of B( oo) by 

Bw(oo) := {!;:1 /:2 ••• Jt;:kvoo I ffij E Z~o}, 

where V00 is the (unique) highest weight element of B(oo). We know from 
[8] that Bw(oo) is the crystal base of the following module (U~)q(g) of 
Demazure type: 

(u,-;;-)q(g) = L Q(q)y;';ly:2 ... Y'!:k c u;; (g), 
rnjEZ:;::o 

where Yi, i E I, are the Chevalley generators corresponding to negative 
roots. We also know that Bw(oo) (and hence (U~)q(g)) does not depend 
on the choice of the reduced expression of w. 
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There exists a canonical Q(q)-algebra automorphismw E Aut(Uq(g)) 
of Uq(g) induced from the diagram automorphism w. Since the crystal 
lattice .C(oo) of U;;(g) is stable under w, we obtain a Q-linear auto­
morphism w: .C(oo)/q.C(oo)--+ .C(oo)/q.C(oo) induced from w: .C(oo)--+ 
.C( oo). Note that the crystal base B( oo) and its subset Bw ( oo) for w E W 
are stable under w. We set 

B0 (oo) :={bE B(oo) I w(b) = b}, B~(oo) :={bE Bw(oo) I w(b) = b}. 

We denote by ei, h : B(oo) u {0} --+ B(oo) u {0} the Kashiwara 
operators for the crystal base B(oo), and by Bw(oo) the crystal base of 
the module (U-6J)q(g) of Demazure type corresponding tow E W. 

By using results in [20] and [21], we prove the following theorem. 

Theorem 2. The set B0 (oo)U{O} is stable under the w-Kashiwara 
operators, defined in the same way as (2.2.2). Moreover, there exists a 
canonical bijection P oo : B0 ( oo) ..::::'; B ( oo) such that 

(P;)-1 (wt(b)) = wt(P00 (b)) for bE B0 (oo), 

P oo o ei = ei o P oo and P oo o h = h o P oo. 

In addition, we have Poo(B~(.X)) = Bw(oo) for each w E W, where 
w := e-1 (w). 

The twining character chw(U;;(g)) of uq-(g) is defined to be the 
following formal sum: 

chw(U;;(g)) = L tr(wlcu;(g))Je(x). 
XE(~*)0 

For each w E W, we define the twining character chw((U,;;;-)q(g)) of 
(U,;;-)q(g) by 

chw((u,;)q(g)) := L tr(wl((u,;;).(g))Je(x). 
xE(~*)0 

As a corollary of Theorem 2, we obtain the following. 

Corollary 3. Let wE W, and set w := e-1 (w). Then we have 
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This paper is organized as follows. In §1, we fix our notation for 
Kac-Moody algebras, and then recall some basic facts about diagram 
automorphisms and orbit Lie algebras. In §2, we recall the definition 
of an w-root operator, and prove Theorem 1. In §3, we study the ele­
ments of some crystal bases fixed by a diagram automorphism, and show 
Theorem 2. In §4, we obtain Corollary 3 as an application of Theorem 2. 

§1. Preliminaries. 

1.1. Kac-Moody algebras and diagram automorphisms. 

Let g := g(A) be the Kac-Moody algebra over Q associated to a 
symmetrizable generalized Cartan matrix A = (aij)i,jEl• with Cartan 
subalgebra ~. simple roots II = { aiher C ~·, simple coroots rrv = 
{a~her C ~. Chevalley generators {xi, Yi I i E I}, where 9a; =Qxi 
and 9-a; = Qyi, and Weyl group W = (ri I i E I). 

Let w : I --t I be a bijection of order N such that aw(i), w(j) = aij 
for all i, j E I, which we call a (Dynkin) diagram automorphism. Then 
w naturally induces a Lie algebra automorphism w E Aut(g) of order N 
such that w(~) = ~. and w(xi) = Xw(i)• w(yi) = Yw(i)• w(an = a~(i) for 
i E I (see [23, §1.1]). We define a Q-linear automorphism w* : ~· --t ~· 
by (w*(.X))(h) := .X(w-t(h)) for .X E ~·,hE~. and set 

(1.1.1) ~0 :={hE~ I w(h) = h}, (~*)0 :={.X E ~*I w*(.X) =.X}. 

We also set 

(1.1.2) W :={wE WI w*w = ww*}. 

Note that w*ri(w*)-t = Tw(i) for every i E I. 

1.2. Orbit Lie algebras. 

We set Cij := E:~~t ai,wk(j) fori, j E I, where Ni := #{wk(i) 
k ~ 0}. We choose a complete set f of representatives of the w-orbits in 

I, and set 1 := {i E fl Cii > 0}. 

Remark 1.2.1 (cf. [2, §2.2]). Assume that cii > 0. Then Cii = 1 
or 2. If Cii = 1, then ai, wN;/2(i) = -1 and ai, wk(i) = 0 for any other 
1 ~ k ~ Ni- 1, k =I Ni/2, with Ni even. Hence the Dynkin diagram 
corresponding to thew-orbit of the i is of type A 2 x · · · xA2 (Ni/2 times). 
If Cii = 2, then ai, wk(i) = 0 for all 1 ~ k ~ Ni - 1. Hence the Dynkin 
diagram corresponding to the w-orbit of the i is of type At x · · · x At 
(Ni times). 
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We set aij := 2e;,jjCj fori, j E f, where Ci := Cii if i E 1, and Ci := 2 
otherwise. We know from [1, Lemma 2.1) that a matrix A= (ai3)i,jEI 

is a symmetrizable Borcherds-Cartan matrix, and its submatrix A = 
(aij)i,jEI is a symmetrizable generalized Cartan matrix. Let g := g(A) 
be the generalized Kac-Moody algebra over Q associated to A, with 
Cartan subalgebra (), simple roots fi = {iiihEf• simple coroots fiv = 

{ii{}iEf• Chevalley generators {xi,Yi I i E i}, and Weyl group W = 

(Ti I i E 1). The orbit Lie algebra g is defined to be the subalgebra 
of g generated by () U {xi, Yi I i E 1}, which is a Kac-Moody algebra 

associated to A. 
As in [1, §2), we obtain Q-linear isomorphisms Pw : ~0 --+ () and 

P; : i)* --+ (~0 )* ~ (~*)0 such that 

(1.2.1) 
for each i E f, 
for>: E i)* and hE ~0 , 

where 

N;-1 

( ) -v 1 ~ v r.O 
1.2.2 ai := N· L..J awk(i) E 'J , 

1 k=O 

We also know from [1, §3) that there exists a group isomorphism 8 : 
W--+ W such that 6(w) = P; o wo (P;)-1 for each wE W. 

§2. Properties of w-root Operators. 

2.1. Root operators. 

In this subsection, we recall the definition of a root operator from 
[13). A path is, by definition, a piecewise linear, continuous map 7r : 

[0, 1) --+ ~* such that 1r(O) = 0, where [0, 1) := { t E Q I 0 ~ t ~ 1 }. 
We regard two paths 7r and 7r1 as equivalent if there exist piecewise lin­
ear, nondecreasing, surjective, continuous maps 1/J, 1/J' : [0, 1) --+ [0, 1) 
(reparametrization) such that 7r o 1/J = 1r1 o 1/J'. Denote. by lP the set of 
(representatives of) equivalence classes of all paths under this equiva­
lence relation. For 1r E lP and i E I, we set 

(2.1.1) mf := min{hf(t) It E [0, 11}~ 

For convenience, we introduce an extra element (} (corresponding to "0" 
of a crystal). 
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For each i E J, the raising root operator ei : lP U {0} -t lP U {0} 
is defined as follows. We set eiO := 0, and ei'rr := 0 for 1r E lP with 
mi > -1. If mi::;; 1, then we can take the following points: 

(2.1.2) 
t1 =min{ t E [0, 1]1 hi(t) = mi}, 

to= max{ t' E [0, t1JI hi(t) 2:: mi + 1 for all t E [0, t'l}. 

Choose a partition to = so < s1 < · · · < Sr = t1 of [to, t1] such that 
either of the following holds: 

(2.1.3) 

(1) hi(sk-1) = hi(sk) and hi(t) 2:: hi(sk-1) 
fortE [sk-I. sk]· 

(2) hi(t) is strictly decreasing on [sk-1. sk] and 
hi(t) 2:: hi(sk-1) fortE [so, Sk-1]· 

Remark 2.1.1. We deduce from the definition of t 0 (resp. t1) that 
hi(t) is strictly decreasing on [so, s1] (resp. [sr-1. srD· Namely, [so, s1] 
and [sr-I. sr] are of type (2). 

We set 

(2.1.4) 

7r(t) if 0 ::;; t ::;; to = so, 

The lowering root operator fi : lP U { 0} -t lP U { 0} is defined in a 
similar way: We set fiO := 0, and fi'Tr := 0 for 1r E lP with hi(1)-mi < 1. 
If hi(1) - mi 2:: 1, then we can take the following points: 

(2.1.5) 
to =max{ t E [0, 1]1 hi(t) = mi}, 

t1 = min{t' E [to, 1]1 hi(t) 2:: mi + 1 for all t E [t', 1]}. 

Choose a partition to = so < s1 < · · · < Sr = t1 of [t0 , t1] such that 
either of the following holds: 

(2.1.6) 

(1) hi(sk-1) = hi(sk) and hi(t) 2:: hi(sk-1) 
for t E [sk-1. Sk]· 

(2) hi(t) is strictly increasing on [sk-I. sk] and 
hi(t) 2:: hi(sk) fortE [sk, s1]. 
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We set 

(2.1.7) 

7r(t) if 0 ::;; t ::;; to = so, 

1r(t) - (hf(sk-1) - mi)ai if t E [sk-1, sk] of type (1), 
(fi7r)(t) := 

1r(t) - (hi(t) - mi)ai if t E [sk-I> sk] of type (2), 

For 1r E lP' and r E Q, we define a path r1r E lP' by (r1r)(t) := r1r(t) 
fortE [0, 1]. Also, we define the "dual path" 1rv E lP' of a path 1r E lP' by 
1rv(t) := 1r(1- t) -?r(1) fortE [0, 1]. Let us recall the following lemma 
from [13, Lemmas 2.1 and 2.4]. 

Lemma 2.1.2. (1) We have (/i7r)v = ei?rv and (ei?r)v = fi7rv 
for all 7r E lP'. 

(2) We have n(ei?r) = ef(n7r) and n(/i1r) = ft(n1r) for all 1r E lP' and 
n E Z~o-

2.2. w-root operators. 

For a path 1r E lP', we define a path w(1r) E lP' by (w(1r))(t) := w*(1r(t)) 
for 0::;; t::;; 1, and set w(O) := 0. We set 

(2.2.1) pO := { 1r E lP' I w(1r) = 1r }. 

Let us recall the following definition of thew-root operators ei and 
h for i E 1 from [20, §3.1] (cf. Remark 1.2.1): 

(2.2.2) 

N;/2 

II (Xw"(i)X~k+N,/2(i)Xw"(i)) if Cii = 1, 
k=1 

N; 

II Xw"(i) if Cii = 2, 
k=1 

where X is either e or f. 
Denote by iP the set of all paths (modulo reparametrization) for the 

orbit Lie algebra g. For i E J, we denote by ei : P U { 0} ---+ P U { 0} 
and h : P U {0} ---+ P U {0} the raising root operator and the lowering 
root operator for g, respectively. For a path 1T E P, we define a path 
P;(1T) E p0 by {P;(7r))(t) := P;(7r(t)) for t E [0, 1], and set P;(O) = 0. 

In [20] and [22], we showed that the equalities ei o P; = P; o ei and 
hoP; = P; o h hold on a certain subset of P. Here we extend this 
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result to the whole of P. The proof below essentially follows the same 
line as those of [20, Theorem 3.1.2] and [22, Theorem 2.1.2]; however, it 
is a little simplified by virtue of Lemma 2.1.2. 

Theorem 2.2.1. The set IP'0 U {0} is stable under thew-root op­
erators. In addition, we have ei 0 p~ = p~ 0 ei and h 0 P:, = p~ 0 K for 
each i E 1. 

Proof. Let us show the following claim, which generalizes [20, The­
orem 3.1.2]. 

Claim. Let 1r E IP'0 . If mf > -1, then ei1f = 0. If mf ~ -1, then we 
have 

(2.2.3) 

7r(t) if 0 ~ t ~ to = so, 

1r(t)- (hf(sk-d- mf- 1)ai if t E [sk_1, sk] of type (1), 

1r(t)- (hf(t)- mf- 1)ai if t E [sk-1, sk] of type (2), 

where t0 , t 1 are the points given by (2.1.2) for 1f E IP'0 and i E J, and 
t 0 = s0 < s 1 < · · · < Sr = t1 is a partition of [t0 , h] satisfying Condition 
(2.1.3) for 1f E IP'0 and i E J. 
(Proof of Claim.) It is obvious that ei1f = 0 if mf > -1. We will show 
Equality (2.2.3). If Cii = 2, then Equality (2.2.3) immediately follows 
from the definition of root operators and Remark 1.2.1. Assume that 
Cii = 1. For simplicity, we assume that the Dynkin diagram correspond­
ing to thew-orbit of the i is of type A2 (cf. Remark 1.2.1). For 1f E IP'0 , 

we set h(t) := hf(t) = hj(t) and m := mf = mj with j := w(i). Since 
m ~ -1, it follows from the definition of the raising root operator ei 
that 

7J1(t) := (ei1r)(t) = 

7r(t) if 0 ~ t ~to =so, 

1r(t)- (h(sk-1)- m- 1)ai if t E [sk-I, sk] of type (1), 

1r(t)- (h(t)- m -1)ai if t E [sk-1, sk] of type (2), 

By definition, we have 



Crystal Bases and Diagmm Automorphisms 329 

(2.2.4) 

h(t) if 0 ~ t ~ to = so, 

h(t) + h(sk-1) - m- 1 if t E [sk-b sk] of type (1), 

2h(t)- m- 1 if t E [sk-1, sk] of type (2), 

h(t) - 1 if Sr = t1 ~ t ~ 1. 

Subclaim 1. We have mj1 = m -1 and tt = min{t E [0, 1)1 hj1 (t) = 
mjl }. 

It is obvious that hj1 (t) = h(t)- 1 ~ m- 1 fort E (tb 1), and 
that hj1 (t1) = m -1. So it suffices to show that hj1 (h) > m -1 for all 
t E [0, t1). By the definition oft0 , we have hj1 (t) = h(t) ~ m+l > m-1 
fortE (O,t0 ). Suppose that hj1 (t) ~ m-1 for some t E (t0 ,t1). Ift is 
in [sk_1, sk] of type (1), then we have h(t) + h(sk-1)- m- 1 ~ m- 1, 
and hence h(sk-1) ~ m, since h(t) ~ h(sk-1) for all t E (sk-I. sk] (see 
(2.1.3)). This contradicts the definition of t1 (notice that Sk- 1 < Sr = 
t1). Similarly, if t is in [sk-I. sk] of type (2), then we have h(t) ~ m, 
which is a contradiction. Thus we conclude that hj1 (t) > m- 1 for all 
t E (0, t1). 

Subclaim 2. We have to = max{ t' E (0, tt)l hj1 (t) ~ mj1 +2 for all t E 
(0, t'J}. 

It is obvious from the definition of t0 and Subclaim 1 that hj1 (t) = 
h(t) ~ m + 1 = mj1 + 2 for all t E (0, t0 ). We deduce from Remark 2.1.1 
and (2.2.4) that hj1 (t0 +c) < hj1 (to) = mj1 + 2 for sufficiently small 
c > 0. Now, Subclaim 2 immediately follows from these facts. 

Set "7i := ~771 . It follows from Subclaims 1 and 2 that t0 , t 1 are the 
points given by (2.1.2) for "7i E lP' and j E J. In addition, we deduce 
from (2.2.4) that t0 = s0 < s1 < · · · < sr = t1 is a partition of [t0 , t1] 
satisfying Condition (2.1.3) with 1r = "7i and i = j. Therefore, we have 

(ei'TlD(t) = 

"7i (t) if 0 ~ t ~ to = so, 

'Tli(t)- (hJ~(sk-d -mJ~ -1)aj ift E (sk-1,sk) of type (1), 
I I 

"7i (t)- (hJ1 (t)- mJ1 - l)aj if t E [sk-1, sk] of type (2), 
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if 0 ~ t ~to =so, 

~1r(t)- ~(h(sk-1)- m- 1)(o:i + 2o:j) if t E [sk-1> sk] of type (1), 

~1r(t)- ~(h(t)- m -1)(o:i + 2o:1) if t E [sk-1> sk] of type (2), 

ifsr=h~t~l. 

Because e]ry1 = 2(e1 ry~) by Lemma 2.1.2 (2), we get 

T12(t) := (e]ry1)(t) = 

7r(t) if 0 ~ t ~ to = so, 

1r(t)- (h(sk-1)- m- 1)(o:i + 2o:j) if t E [sk-1, sk] of type (1), 

1r(t)- (h(t)- m- 1)(o:i + 2o:1) if t E [sk-1> sk] of type (2), 

Since hrr (t) = h(t), we obtain 

(ei1r)(t) := (ei'TI2)(t) = 

7r(t) if 0 ~ t ~ to = so, 

1r(t)- 2(h(sk-d- m -1)(o:i + o:j) if t E [sk-1, sk] of type (1), 

1r(t)- 2(h(t)- m- 1)(o:i + o:j) if t E [sk-1, sk] of type (2), 

This completes the proof of Claim. 

It immediately follows from the claim above that JPD U {0} is stable 
under ei. Also, we deduce from Lemma 2.1.2 (1) that IP'0 U {0} is stable 
under h, since h1r = (ei7rv)v for all1r E IP'0 (remark that if1r E IP'0 , then 
so is 1rv). Moreover, because ((P~(1i'))(t))(o:£) = (7i'(t))(ii£) for 7i' E fi'D 

and i E 1 (cf. (1.2.1)), we can easily check that ei oP; = P; oei by using 
(2.2.3). Since P;(7i'v) = (P;(n))v for all7i' E fi'D, we get by Lemma 2.1.2 
(1) that for each 7i' E fi'D, 

h(P~(1i')) = (ei(P~(7i'))v)v = (ei(P~(7i'v)))v 

= (P~(ei7i'v))v = P~((ei7i'v)v) = P:,(J;n). 

Therefore we get h o P~ = P; o J:. This completes the proof of the 
theorem. 0 
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Remark 2.2.2. We can easily check that 

(2.2.5) w o ei = ew(i) ow and w o /i = fw(i) ow on IP. 

Therefore we deduce from Theorem 2.2.1 that thew-root operators on 
IP0 do not depend on the choice of a representative of the w-orbit of i E I 
with Cii > 0. 

We define e(n)i and f{n)i fori E f and n E Z~o by 

Ni/2 

II (X~k(i)x;~+N;/2(i)x~k(i)) if Cii = 1, 
k=l 

(2.2.6) X(n)i := 
N; 

II x~k(i) if Cii = 2, 
k=l 

where X is either e or f. As an application of Theorem 2.2.1, we can 
give a shorter proof of (a generalization of) [22, Proposition 2.1.3). 

Corollary 2.2.3. On JP0, we have (ei)n = e(n)i and (h)n = i{n)i 
for each n E Z~o and i E I. 

Proof. Let 1r E IP0 , and set 1r1 = ~7r E IP0 . We deduce that 

e(n)i1r = n(ei1r') by Lemma 2.1.2 (2) 

= n(P~ o ei o (P~)- 1 (1r')) 

= P~(nei((P~)- 1 (1r'))) 

= P~((ei)n(n(P~)- 1 (7r1 ))) 

= P~ o (ei)n o (P~)- 1 (1r) 

= (P~ o ei o (P~)- 1 )n(7r) 

by Theorem 2.2.1 

by Lemma 2.1.2 (2) 

by Theorem 2.2.1. 

Therefore we get e(n)i = (ei)n. The equality i{n)i = (h)n can be shown 
similarly. 0 

Let P C ~* be an w* -stable integral weight lattice such that ai E P 
for all i E I, and set P+ := { >. E P I >.(a¥) E Z~0 for all i E I}. For>. E 
P +, we denote by 18( >.) the set of Lakshmibai-Seshadri paths of shape >.. 
Recall from [13, §4) that 18(>.) U {0} is stable under the root operators, 
and that every element 1r of 18(>.) is of the form 1r = fiJi2 · · · fik 1f>. for 
some i1 , i 2 , •.. , ikE I, where 7r.>.(t) := t>. fortE [0, 1). Let wE W, and 
w = ri1 ri2 • • • rik its reduced expression. We put 

(2.2.7) 18w(>.) := u:l fi";2 ••• f:':k1f>. I ml, m2, ... 'mk E Z~o} \ {0}. 
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We know that Iffiw(A) does not depend on the choice of the reduced 
expression of w (cf. [12, §5] and [11, §6.1]). 

If A E P+ n (~*) 0 , then lffi(A) is stable under w (cf. (2.2.5)). Further­
more, we deduce from (2.2.5) that w(Iffiw(A)) = Iffiw•w(w•)-l(A). Hence, if 

w E W, then Iffiw(A) is stable under w. We set 

(2.2.8) 
Jffi0 (A) := { 1r E lffi(A) I w(rr) = 1r }, 

lffi~(A) := {rr E Iffiw(A) I w(rr) = 7r }. 

We have the following theorem (see [20, Theorem 3.2.4] and [21, Theorem 
4.2]). 

Theorem 2.2.4. Let A E P+ n (~*) 0 and w E W. Set X := 

(P.,:;)-1 (A) and w := e-1 (w). 

(1) The set Iffi0 (A) U {0} is stable under thew-root opemtors. 

(2) Each element 1r E lffi0 (A) is of the form 1r = h1 h2 • • • hk 1r >. for some 
i1, i2, ... ,ikE f. 
(3) We have Iffi0 (A) = PU::(i(X)) and Iffi~(A) = PU::(iu;(X)), where i(X) is 
the set of Lakshmibai-Seshadri paths of shape X for the orbit Lie algebm 
g, and lffiu;(X) is the subset ofi(X) corresponding tow (cf. (2.2.7)). 

§3. Crystal Bases and Diagram Automorphisms. 

3.1. Crystal bases B(A) and Bw(A). 
Set pv := Homz(P, Z) C ~- Let Uq(g) = (xi, Yi, qh I i E I, h E Pv) 

be the quantized universal enveloping algebra of g over the field Q(q) of 
rational functions in q, and u:(g) (resp. u;;(g)) the Q(q)-subalgebra of 
Uq(g) generated by {xi I i E I} (resp. {Yi I i E I}). 

For A E P+, let V(A) = ffixEP V(A)x be the integrable highest 
weight Uq(g)-module of highest weight A. Denote by ei and fi the 
raising Kashiwara operator and the lowering Kashiwara operator for 
V(A), respectively, by (.C(A), B(A)) the crystal base of V(A), and by 
{ G>.(b) I bE B(A)} the global base of V(A) (see [6]). 

For w E W, let Vw(A) = u:(g)V(A)w(>.) be the quantum De­
mazure module of lowest weight w(A). We know from [8, Proposi­
tion 3.2.3] that there exists a subset Bw(A) of B(A) such that Vw(A) = 
ffibEBw(>.) Q(q)G>.(b). We see from [8, Proposition 3.2.3] that if w = 
Ti1 ri2 • • • Tik is a reduced expression of w, then 
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where V>. is the image of a (nonzero) highest weight vector V>. of V(A) 
in .C(>.)fq.C(A). 

Let Uq(g) = (xi, fh, ql• I i E J, h E f3v) be the quantized universal 
enveloping algebra of the orbit Lie algebra g, where pv := Homz(P, Z) 
with P := (P;)-1 (P n (~*)0 ). Denote by B(~) the crystal base of the 
integrable highest weight Uq(g)-module V(X) of dominant integral high­
est weight A, and by ei (resp. h) the raising (resp. lowering) Kashiwara 
operator for B(A). For wE W, we denote by B.v(A) the crystal base of 
the quantum Demazure module V,v(A) c V(A) of lowest weight w(A). 

3.2. Fixed point subsets of B(A) and Bw(A). 

Since pv is w-stable, we obtain a Q(q)-algebra automorphism w E 

Aut(Uq(g)) such that w(xi) = Xw(i)> w(yi) = Yw(i)> and w(qh) =~(h) for 
i E I and h E pv (cf. [23, Lemma 1.2]). Remark that uq-(g) is stable 
under w. If A E P+ n (~*)0 , then we have a Q(q)-linear automorphism 
w: V(A)--+ V(A) induced from w: Ui(g)--+ Ui(g). Because 

(3.2.1) w o ei = ew(i) ow and w o fi = fw(i) ow 

on V(A) (see [22, Lemma 2.3.2]), the crystal lattice .C(A) is stable under 
w. Therefore, we have a Q-linear automorphism w : .C(A)/q.C(A) --+ 
.C(A)jq.C(A) induced from w : .C(A) --+ .C(A). We deduce from (3.2.1) 
that the crystal base B(A) is stable under w. Moreover, we obtain by 
(3.1.1) and (3.2.1) that w(Bw(A)) = Bw*w(w•)-•(A). Hence, if wE W, 
then Bw(A) is stable under w. We set 

(3.2.2) 
B0 (A) := {bE B(A) I w(b) = b }, 

B~(A) := {bE Bw(A) I w(b) = b }. 

We see from [13] that !S(A) has a natural (normal) crystal structure 
for each A E P+. We know from [3, Corollary 6.4.27] or [10, Theorem 
4.1] that there exists an isomorphism q,>. : !S(A) ~ B(A) of crystals, and 
from [11, §5.6] that q,(JSw(A)) = Bw(A) for every w E W. If A E P+ n 
(~*)0 , then we obtain the following commutative diagram ( cf. (2.2.5) 
and (3.2.1)): 

!S(A) ~ !S(A) 

(3.2.3) q?~ 1 1 ~~ 
B(A) ~ B(A). 
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Therefore, we obtain <l>>.(lR0 (>.)) = B0 (>,) and <l>>.(lR~(>.)) = B~(>.) for 
each >. E P+ n (()*) 0 and w E W. Combining this fact with Theo­
rems 2.2.1 and 2.2.4, we get the following proposition. 

Proposition 3.2.1. Let >. E P+ n (()*)0 and w E W. Set X := 
(P;)- 1 (>.) and w := e-1 (w). 

( 1) The set B 0 ( >.) U { 0} is stable under the w-K ashiwam opemtors ei and 

];, defined in the same way as (2.2.2). 

(2) Each element bE B0 (>.) is of the form b = h1 h2 • • • hk'il>, for some 

i1. i2, ... , ik E f. 
(3) There exists a canonical bijection P>. : B 0 (>.) -.:::+ B(~) such that 

(3.2.4) 
(P;)- 1 (wt(b)) = wt(P>.(b)) for each bE B0 (>.), 

P>. o ei = ei o P>. and P>. o h = h o P>. for all i E f. 

In addition, we have P>.(B~(>.)) = B-w(X). 

3.3. Crystal bases B(oo) and Bw(oo). 
We denote by ei and fi the raising Kashiwara operator and the low­

ering Kashiwara operator for u;(g), respectively, and by (.C(oo), B(oo)) 
the crystal base of uq- (g). Denote by { G(b) I b E B( 00)} the global base 
of uq- (g) (see [6]). 

Let Q+ := LiEIZ2oai, and set Q+(n) :={a E Q+ I ht(a):::; n} 
for each n E Z2o, where ht(a) :=LiE! ki for a= LiE! kiai E Q+. Let 
us recall the following theorem from [6, Theorem 5 and Corollary 4.4.5]. 

Theorem 3.3.1. Let 'P>.: Ui(g)---> V(>.) be the canonical uq-(g)­
module homomorphism sending 1 to v>,. 

(1) We have <p>,(.C(oo)) = .C(>.). Hence we have a Q-linear homomor­
phism 

(3.3.1) VJ>.: .C(oo)/q.C(oo)---> .C(>.)fq.C(>.) 

induced from i.p>. : .C(oo) ---> .C(>.). The restriction of VJ>. to B(oo) \ 
VJ:\ 1 ( {0}) is a bijection from B( oo) \ VJ:\ 1 ( {0}) to B(>.). 

(2) We have fi o VJ>. = VJ>. o fi for each i E I. In addition, if bE B(oo) 
satisfies VJ>.(b) =f. 0, then eiVJ>.(b) = VJ>.(eib) for each i E I. 

(3) Fix n E Z2o· If >.(a{)~ 0 for all i E I, then, for every~ E Q+(n), 
the restriction ofVJ>. to B(oo)-e is a bijection from B(oo)-e to B(>.h-e· 
Here, for a crystal B, we denote by BI-t the set of elements of weight p, 
in B. 
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Let wE W, and w = ri1 ri2 • • • rik its reduced expression. We define 
a module (U~)q(g) of Demazure type by 

(3.3.2) (U~)q(g) := L Q(q)yf:ly:-2 ... Y';:k. 
m;EZ~o 

We know from [8, Proposition 3.2.5] that (U~)q(g) 

Ef)bEBw(oo) Q(q)G(b), where 

with V00 the image of 1 E uq-(g) in £(oo)jq£(oo). Furthermore, we 
can easily show the following theorem, by using [8, Proposition 3.2.5], 
Theorem 3.3.1, (3.1.1), and (3.3.3). 

Theorem 3.3.2. (1) The restriction of'P>. to Bw(oo) \ cp)." 1 ({0}) 
is a bijection from Bw( oo) \ '15)." 1 ( {0}) to Bw (.A). 
(2) Fix n E Ze::o· If .A(a£) :» 0 for all i E J, then, for every ( E 
Q + ( n), the restriction of (j5 >.. to Bw ( oo) -e is a bijection from Bw ( oo) -e 
to Bw(A)>.-e· 

Remark 3.3.3. It follows from Theorem 3.3.2 that Bw(oo) (and 
hence (U~)q(g)) does not depend on the choice of the reduced expression 
ofw. 

Denote by B(oo) the crystal base of u;-(g) := (fii I i E 1), and by ei 

(resp. h) the raising (resp. lowering) Kashiwara operator forB( oo). For 
wE W, we denote by Bw(oo) the crystal base of the module (U,@)q(g) 
of Demazure type corresponding tow. 

3.4. Fixed point subsets of B(oo) and Bw(oo). 

In a way similar to the case of V (A), we can show that woei = ew( i) ow 
and wofi = fw(i)OW on u;-(g). Thus, £(oo) is stable under w, and hence 
we have a Q-linear automorphism w : £(oo)jq£(oo) -+ £(oo)fq£(oo) 
induced from w : £(oo) -+ £(oo). It is obvious that B(oo) is stable 
under w. Moreover we deduce that w(Bw(oo)) = Bw•w(w•)-l(oo) for 

w E W. Therefore, if wE W, then Bw(oo) is stable under w. We now 
set 

(3.4.1) 
B0 (oo) :={bE B(oo) I w(b) = b }, 

B~(oo) :={bE Bw(oo) I w(b) = b }. 

Theorem 3.4.1. (1) The set B0 (oo) U {0} is stable under thew­

Kashiwara operators ei and h, defined in the same way as (2.2.2). 
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{2) Each element bE B0 {oo) is of the form b = hJ.i2 • • • hk V00 for some 
i1, i2, ... ,ikE J. 
{3) There exists a canonical bijection P00 : B0 (oo) ~ B{oo) such that 

{3.4.2) 
{P;)-1 {wt{b)) = wt(P00 {b)) for each bE B0 {oo), 

Poo o ei = ei o Poo and Poo o h = h o Poo for all i E J. 

In addition, we have P00 (B~(>.)) = B;n(oo) for each w E W, where 
w := e-1{w). 

Proof. Because w o cp>,. = cp>.. ow for>. E P+ n (~*)0 , we have the 
following commutative diagram {cf. Theorem 3.3.1): 

B(oo) ~ B(>.) u {0} 

{3.4.3) 

B{oo) ~ B(>.) u {0}. 

Thus we obtain 'P>..(B0 (oo)) = B0 (>.)u{O} and 'P>..(B~(oo)) = B~(>.)u{O} 
for each>. E P+ n (~*)0 and w E W. 

(1) Let b E ~(oo). Assume that eib :/; 0. Take >. E P+ n {~*)0 
such that >.(a£) » 0 for all i E J. Then we deduce from Theorem 3.3.1 
{2) and {3) that ei'P>.. (b) = 'P>.. (eib) # 0. Since ei'P>.. (b) E 8°(>.) by 
Proposition 3.2.1 (1), we conclude that eib E ~(oo). Similarly, we can 
show that hb E ~(oo) U {0}. 

(2) Let b E B0 (oo). Since 'P>..(b) E 8°(>.) if>. E P+ n (~*)0 and 
>.(a£)» 0 for all i E J, we see from Proposition 3.2.1 (2) that 'P>..(b) = 

h,h2 • • • hk v). for some i1, i2, ... , ik E J. By Theorem 3.3.1 (1) and 

(2), we get b = h,h2 • • • hkv00 • Thus we have proved part (2). 
(3) Let~ E Q+ n (~*)0 , and set f := {P;)-1 (e). Take>. E P+ n (~*)0 

such that >.(a£) » 0 for all i E J, and set :X := {P;)-1 (>.). We define 
a bijection Poo,t; : B(oo)-t; -t B(oo)_e as in the following commutative 
diagram: 

B0 (oo)-t; ~ B0 {.Xh-e 

{3.4.4) Poo,E 1 1 PJ. 

We can easily check that P oo,t; does not depend on the choice of >.. Now 
we define P00 : B0 (oo) -t B{oo) by P00 (b) := Poo,t;(b) forb E ~(oo)-t;· 
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We can easily show by Proposition 3.2.1 (3) and Theorem 3.3.1 that 
P00 has the desired properties (3.4.2). The equality P00 (B~(A)) = 

Bu;(oo) immediately follows from the definition of P00 and the equal­
ity "<P.>.(B~(oo)) = B~(A) u {0}. 0 

Remark 3.4.2. It immediately follows from Theorem 3.4.1 that 
there exists an injection from the global base of u; (g) to the global 
base of U,;-(g). Therefore we have an embedding u,;-(9) <-t U,;-(g) of 
vector spaces. 

§4. Twining Character Formulas. 

4.1. Definitions. 

The twining character chw(uq-(g)) of U,;-(g) is defined to be the 
following formal sum: 

(4.1.1) chw(U,;-(g)) = L tr(wi(Uq-(g))Je(x). 
XE(~*)0 

For each w E W, we define the twining character chw((U;)q(g)) of 
(U;)q(g) by 

(4.1.2) chw((U;)q(g)) := L tr(wl((u.;).(g))Je(x). 
XE(~*)0 

4.2. Twining character formulas. 

Corollary 4.2.1. Let w E W, and set w := e-1 (w). Then we 
have 

( 4.2.1) 
chw(Uq-(g)) = P~(chuq-(g)), 

chw((U;)q(g)) = P;(ch(U$)q(g)). 

In order to prove this corollary, we need the following lemma, which 
can be shown in exactly the same way as [23, Lemma 3.4]. 

Lemma 4.2.2. We have w(G(b)) = G(w(b)) for all b E B(oo). 
Therefore, we see that the global base { G(b) I b E B(oo)} of uq-(g) is 
stable under w, and that w(G(b)) = G(b) if and only if bE B0 (oo). 

Proof of Corollary 4.2.1. We give a proof only for the first equality 
of (4.2.1), since the proof for the second one is similar. Remark that for 
each x E (£)*) 0 , { G(b) I bE B(oo)x} is a basis of uq-(g)x, which is stable 
under w. Therefore we have 

tr(wl(u;(o))J = #{G(b) I w(G(b)) = G(b), bE B(oo)x} 
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for each x E (~*)0 (note that if an endomorphism f on a finite­
dimensional vector space V stabilizes a basis of V, then the trace of 
f on V is equal to the number of the basis elements fixed by f). By 
Lemma 4.2.2, we get 

and hence 

(4.2.2) chw(U;(g)) = L e(wt(b)) 
bEB0 (oo) 

Therefore we obtain 

chw(U;(g)) = L e(wt(b)) by (4.2.2) 
bEB0 (oo) 

= P~ C ?= e(wt(b))) 
bEB(oo) 

by Theorem 3.4.1 (3) 

= P~(chuq-(iJ)), 

as desired. 0 

Remark 4.2.3. Let Ui (g)z be the Z[q, q- 1]-subalgebra of Ui (g) 

generated by the divided powers {y~n) I i E J, n E Z~o} (see [6, §6.1]), 
and set 

(4.2.3) (U~)q(g)z := L Z[q, q-1Jytnt)Y~:"2 ) .. • Yi:"") C (U~)q(g) 
m;~O 

for w E W with w = ri1 ri2 • • • ri~o its reduced expression. Now, for 
>. E P+ and wE W, we set V(>.)z := uq-(g)z V>. C V(>.) and Vw(>.)z := 

(U~)q(g)z V>. c Vw(>.) (cf. [8, Corollary 3.2.2]). Assume that >. E p+ n 
(~*)0 and wE W. We can easily check that the Z[q,q-1]-forms Ui(g)z, 
(U~)q(g)z, V(>.)z, and Vw(>.)z are stable under the action of w. Hence 
we can define the twining characters of them in a way similar to ( 4.1.1) 
and (4.1.2). Using the fact that the global bases are Z[q,q-1]-bases of 
these Z[q, q- 1]-forms, we can prove twining character formulas for these 
Z[q, q- 1]-forms in exactly the same way as Corollary 4.2.1 (see also [23]). 

Let M(>.) be the Verma module of highest weight>. E ~*over g with 
(nonzero) highest weight vector V>.. For wE W with w = ri1 ri2 ••• ri, 
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its reduced expression, we define a module Mw(>.) C M(>.) of Demazure 
type by 

(4.2.4) 

We see that Mw(>.) does not depend on the choice of the reduced ex­
pression of w. 

Assume that >. E (~*)0 . Then we have a Q-linear automorphism 
w : M(>.) ~ M(>.) induced from the Q-algebra automorphism w E 
Aut(U(g)) of the universal enveloping algebra of g (cf. §1.1). We can 
easily check that Mw(>.) is stable under w if w E W. The twining 
characters chw(M(>.)) and chw(Mw(>.)) are defined in the same way as 
(4.1.1) and (4.1.2), respectively (see also [1, Definition 2.3]). 

Corollary 4.2.4. Let>. E (~*)0 , andw E W. Set'S. := (P;)-1 (>.), 
and w := e-1 (w). Then we have 

(4.2.5) 
chw(M(>.)) = P;(chM(A)), 

chw(Mw(>.)) = P;(chM.n(A)), 

where M(A) is the Verma module of highest weight>. over the orbit Lie 
algebra g, and M.n(A) C M(A) is the module of Demazure type for g 
corresponding to w. 

Proof. We give a proof only for the first equality chw(M(>.)) = 
P;(chM(A)) of (4.2.5), since the proof of the second one is similar. We 
see easily that chw(M(>.)) = e(>.) chw(M(O)) and ch M(A) = e(A) ch M(O). 
Hence we need only show that chw(M(O)) = P;(chM(O)). 

As in [23, §2.2], we deduce that the specialization "q = 1" of 
chw(U;-(g)) is equal to chw(M(O)). On the other hand, the special-

ization "q = 1" of chU;-(g) is equal to chM(O). By combining these 

facts with Corollary 4.2.1, we obtain chw(M(O)) = P;(chM(O)). Thus 
we have proved the corollary. 0 
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