Advanced Studies in Pure Mathematics 40, 2004
Representation Theory of Algebraic Groups and Quantum Groups pp. 253-259

An induction theorem for Springer's representations

G. Lusztig

§1. Statement of the result

1.1. Let \mathbf{k} be an algebraically closed field of characteristic p. We fix a prime number l different from p. Let G be a connected reductive algebraic group over \mathbf{k}. Let W be the Weyl group of G. Let \mathcal{B} be the variety of Borel subgroups of G. For any $g \in G$ let $\mathcal{B}_{g}=\{B \in \mathcal{B} ; g \in B\}$. According to Springer $[\mathrm{S}], W$ acts naturally on the l-adic cohomology $H^{n}\left(\mathcal{B}_{g}\right)$. (Springer's original definition of the W action is valid only when g is unipotent and p is 0 or is large. Here we adopt the definition given in [L1] which is valid without restrictions on g and p.)
1.2. Let L be a Levi subgroup of a parabolic subgroup P of G. Let W^{\prime} be the Weyl group of L (naturally a subgroup of W). Let \mathcal{B}^{\prime} be the variety of Borel subgroups of L (naturally a subvariety of \mathcal{B}). Let $u \in L$ be unipotent. Let $\mathcal{B}_{u}^{\prime}=\left\{B^{\prime} \in \mathcal{B}^{\prime} ; u \in B^{\prime}\right\}$. Then the W-module $H^{n}\left(\mathcal{B}_{u}\right)$ and the W^{\prime}-module $H^{n}\left(\mathcal{B}_{u}^{\prime}\right)$ are well defined.

Theorem 1.3. We have

$$
\sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{u}\right)=\operatorname{ind}_{W^{\prime}}^{W}\left(\sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{u}^{\prime}\right)\right)
$$

(equality of virtual W-modules).
This result was stated without proof in [AL] in the case where $p=0$. Here we provide a proof valid for any p (answering a question that J. C. Jantzen asked me).

In the remainder of this paper we assume that $p>1$ and that \mathbf{k} is an algebraic closure of the finite field F_{p} with p elements. (By standard results, if the theorem holds for such \mathbf{k} then it holds for any \mathbf{k}.)

Let \mathcal{Z} be the identity component of the centre of L. Clearly, the theorem is a consequence of Propositions 1.4, 1.5 below (these will be proved in Sections 2 and 3 respectively).

[^0]Proposition 1.4. There exists $t \in \mathcal{Z}$ such that for any $n \in \mathbf{Z}$, the W-modules $H^{n}\left(\mathcal{B}_{t u}\right), \operatorname{ind}_{W^{\prime}}^{W}\left(H^{n}\left(\mathcal{B}_{u}^{\prime}\right)\right)$ are isomorphic.

Proposition 1.5. For any $t \in \mathcal{Z}$, the virtual W-modules $\sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{u}\right), \sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{t u}\right)$ are equal.

§2. Proof of Proposition 1.4

2.1. For $g \in G$, let g_{s} be the semisimple part of g and let $Z_{G}^{0}\left(g_{s}\right)$ be the identity component of the centralizer of g_{s} in G. For any torus T in G we denote by $Z_{G}(T)$ the centralizer of T in G. Let

$$
\mathcal{U}=\left\{g \in G ; Z_{G}^{0}\left(g_{s}\right) \subset L\right\}
$$

Since $g \in Z_{G}^{0}\left(g_{s}\right)$, we see that $\mathcal{U} \subset L$.
Lemma 2.2. (a) \mathcal{U} is an open dense subset of L.
(b) Let $\mathcal{Z}_{r}=\mathcal{U} \cap \mathcal{Z}$. There exist non-trivial characters $h_{a}: \mathcal{Z} \rightarrow \mathbf{k}^{*}$, $(a=1, \ldots, N)$ such that $\mathcal{Z}_{r}=\mathcal{Z}-\bigcup_{a=1}^{N} \operatorname{ker}\left(h_{a}\right)$.
(c) If $B \in \mathcal{B}, g \in \mathcal{U} \cap B$, then $\mathcal{Z} \subset B$.

We prove (a). Let \mathcal{T} be the variety of semisimple classes in L. Then \mathcal{U} is the inverse image under the canonical map $L \rightarrow \mathcal{T}$ of a subset \mathcal{U}^{\prime} of \mathcal{T}. It is enough to show that \mathcal{U}^{\prime} is non-empty, open in \mathcal{T}. Let T be a maximal torus of L . Then $\mathcal{T}=T / W^{\prime}$. Let \mathcal{T}^{\prime} be the inverse image of \mathcal{U}^{\prime} under the open $\operatorname{map} T \rightarrow \mathcal{T}$. It is enough to show that \mathcal{T}^{\prime} is non-empty, open in T. Now $\mathcal{T}^{\prime}=\mathcal{U} \cap T=\left\{t \in T ; Z_{G}^{0}(t) \subset L\right\}$. Let R (resp. R^{\prime}) be the set of roots of G (resp. of L) with respect to T. Then $R^{\prime} \subset R$ and

$$
\begin{aligned}
\mathcal{T}^{\prime} & =\left\{t \in T ;\{\alpha \in R ; \alpha(t)=1\} \subset R^{\prime}\right\} \\
& =\left\{t \in T ; \alpha(t) \neq 1 \quad \forall \alpha \in R-R^{\prime}\right\}
\end{aligned}
$$

This is non-empty, open in T and (a) is proved.
We prove (b). In the setup of (a) we have

$$
\mathcal{Z}_{r}=\mathcal{Z} \cap \mathcal{T}^{\prime}=\left\{t \in \mathcal{Z} ; \alpha(t) \neq 1 \quad \forall \alpha \in R-R^{\prime}\right\}
$$

It is enough to observe that, if $\alpha \in R-R^{\prime}$, then $\left.\alpha\right|_{\mathcal{Z}}$ is not identically 1 .
We prove (c). We have $g_{s} \in B$. We can find a maximal torus T^{\prime} of G such that $g_{s} \in T^{\prime} \subset B$. Since $g_{s} \in T^{\prime}$, we have $T^{\prime} \subset Z_{G}^{0}\left(g_{s}\right)$. Since $Z_{G}^{0}\left(g_{s}\right) \subset L$, we have $T^{\prime} \subset L=Z_{G}(\mathcal{Z})$. Thus, $\mathcal{Z} \subset Z_{G}\left(T^{\prime}\right)=T^{\prime}$. Since $T^{\prime} \subset B$, we have $\mathcal{Z} \subset B$. The lemma is proved.
2.3. Let $\dot{G}=\{(g, B) ; B \in \mathcal{B}, g \in B\}, \tilde{\mathcal{U}}=\{(g, B) \in \dot{G} ; g \in \mathcal{U}\}$, $\dot{L}=\left\{(l, \beta) ; \beta \in \mathcal{B}^{\prime}, l \in \beta\right\}, Y=\{(l, \beta) \in \dot{L} ; l \in \mathcal{U}\}$.

The direct image of $\overline{\mathbf{Q}}_{l}$ under the first projection $\dot{G} \rightarrow G, \tilde{\mathcal{U}} \rightarrow$ $\mathcal{U}, \dot{L} \rightarrow L, Y \rightarrow \mathcal{U}$, is denoted by $K, J, K^{\prime}, J^{\prime}$ respectively. By [L1], K is an intersection cohomology complex with W-action and K^{\prime} is an intersection cohomology complex with W^{\prime}-action. Now $J=\left.K\right|_{\mathcal{U}}$, (resp. $J^{\prime}=K^{\prime} \mid \mathcal{U}$) inherits a W-action (resp. W^{\prime}-action) from K (resp. K^{\prime}).

Lemma 2.4. Let $g \in \mathcal{U}, n \in \mathbf{Z}$. The W-modules $\mathcal{H}_{g}^{n}(J)$, $\operatorname{ind}_{W^{\prime}}^{W}\left(\mathcal{H}_{g}^{n}\left(J^{\prime}\right)\right)$ are isomorphic. (Here $\mathcal{H}_{g}^{n}(J), \mathcal{H}_{g}^{n}\left(J^{\prime}\right)$ are stalks at g of the cohomology sheaves of J, J^{\prime}.)

Let $\mathcal{B}_{\mathcal{Z}}=\{B \in \mathcal{B} ; \mathcal{Z} \subset B\}$. Then $\mathcal{B}_{\mathcal{Z}}=\bigsqcup_{d \in D} \mathcal{B}_{\mathcal{Z}, d}$ (decomposition into connected components isomorphic to \mathcal{B}^{\prime} by $B \mapsto B \cap L$), where D is an indexing set. Let $d_{0} \in D$ be such that $\mathcal{B}_{\mathcal{Z}, d_{0}}=\{B \in \mathcal{B} ; B \subset P\}$. Note that D is a homogeneous W-space and the isotropy group at d_{0} is W^{\prime}. Now

$$
\tilde{\mathcal{U}}=\left\{(g, B) \in \dot{G} ; B \in \mathcal{B}_{\mathcal{Z}}, g \in \mathcal{U}\right\}=\bigsqcup_{d \in D} \tilde{\mathcal{U}}_{d}
$$

where $\tilde{\mathcal{U}}_{d}=\left\{(g, B) \in \dot{G} ; B \in \mathcal{B}_{\mathcal{Z}, d}, g \in \mathcal{U}\right\}$. We have an isomorphism $\tilde{\mathcal{U}}_{d} \xrightarrow{\sim} Y$ given by $(g, B) \mapsto(g, B \cap L)$. It follows that $J=\bigoplus_{d \in D} J_{d}$ where J_{d} is isomorphic to J^{\prime} canonically. In particular, J is an intersection cohomology complex on \mathcal{U} (since J^{\prime} is). It is enough to show that the W-action on J satisfies $w J_{d}=J_{w d}$ for $w \in W$ and the restriction to W^{\prime} of the W-action on $J_{d_{0}}$ is just the W^{\prime}-action on J^{\prime}. It is enough to check this over the open dense subset of semisimple elements of L that are regular in G. This is obvious. The lemma is proved.
2.5. Let $t \in \mathcal{Z}_{r}$. Let u be as in 1.2. Then $u t \in \mathcal{U}$, hence Lemma 2.4 is applicable, so that the W-modules $H^{n}\left(\mathcal{B}_{u t}\right), \operatorname{ind}_{W^{\prime}}^{W}\left(H^{n}\left(\mathcal{B}_{u t}^{\prime}\right)\right)$ are isomorphic. Since $t \in \mathcal{Z}, H^{n}\left(\mathcal{B}_{u t}^{\prime}\right)$ may be identified with $H^{n}\left(\mathcal{B}_{u}^{\prime}\right)$ as a W^{\prime}-module. This completes the proof of Proposition 1.4.

§3. Proof of Proposition 1.5

3.1. To prove 1.5 , it suffices to show that, if $w \in W$, then

$$
\begin{equation*}
\operatorname{tr}\left(w, \sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{t u}\right)\right)=\operatorname{tr}\left(w, \sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{\tau u}\right)\right) \tag{a}
\end{equation*}
$$

for any $t \in \mathcal{Z}, \tau \in \mathcal{Z}_{r}$. The right hand side is independent of the choice
of τ. Indeed, for $\tau \in \mathcal{Z}_{r}$ we have

$$
\operatorname{tr}\left(w, \sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{\tau u}\right)\right)=\operatorname{tr}\left(w, \sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{u} \cap \mathcal{B}_{\mathcal{Z}}\right)\right)
$$

where $\mathcal{B}_{\mathcal{Z}}=\{B \in \mathcal{B} ; \mathcal{Z} \subset B\}$, since $\mathcal{B}_{\tau u}=\mathcal{B}_{u} \cap \mathcal{B}_{\tau}=\mathcal{B}_{u} \cap \mathcal{B}_{\mathcal{Z}}$. (A special case of Lemma 2.2(c).)

Lemma 3.2. Let Γ be a finite group, let E, E^{\prime} be two finite dimensional representations of Γ over a field C of characteristic 0 . Assume that the function $\phi: \Gamma \rightarrow C$ defined by $\phi(\gamma)=\operatorname{tr}(\gamma, E)-\operatorname{tr}\left(\gamma, E^{\prime}\right)$ is integer valued. Let $x, y \in \Gamma$ be such that $x y=y x$ and $y^{f}=1$ where f is a prime number. Then $\phi(x y)-\phi(x) \in f \mathbf{Z}$.

Let \bar{C} be an algebraic closure of C, let ξ_{1}, \ldots, ξ_{n} (resp. $\xi_{1}^{\prime}, \ldots, \xi_{m}^{\prime}$) be the eigenvalues of $y: E \rightarrow E$ (resp. $y: E^{\prime} \rightarrow E^{\prime}$). Let α_{i} be the trace of x on the ξ_{i}-generalized eigenspace of $y: E \rightarrow E$; let α_{j}^{\prime} be the trace of x on the ξ_{j}^{\prime}-generalized eigenspace of $y: E^{\prime} \rightarrow E^{\prime}$. Then

$$
\phi(x)=\sum_{i} \alpha_{i}-\sum_{j} \alpha_{j}^{\prime}, \phi(x y)=\sum_{i} \alpha_{i} \xi_{i}-\sum_{j} \alpha_{j}^{\prime} \xi_{j}^{\prime}
$$

Let C^{\prime} be the subfield of \bar{C} generated by $\xi_{i}, \alpha_{i}, \xi_{j}^{\prime}, \alpha_{j}^{\prime}$. (An algebraic number field.) Let A^{\prime} be the ring of integers of C^{\prime} and let \mathfrak{m} be a prime ideal of A^{\prime} such that $\mathfrak{m} \cap \mathbf{Z}=f \mathbf{Z}$. Let $\bar{\xi}_{i}$ be the image of ξ_{i} in $A^{\prime} / \mathfrak{m}$ (a finite field of characteristic f). Since $\xi_{i}^{f}=1$ we have $\bar{\xi}_{i}^{f}=1$ in $A^{\prime} / \mathfrak{m}$ hence $\bar{\xi}_{i}=1$, that is $\xi_{i}-1 \in \mathfrak{m}$. Similarly, $\xi_{j}^{\prime}-1 \in \mathfrak{m}$. It follows that $\sum_{i} \alpha_{i} \xi_{i}-\sum_{j} \alpha_{j}^{\prime} \xi_{j}^{\prime}-\sum_{i} \alpha_{i}+\sum_{j} \alpha_{j}^{\prime} \in \mathfrak{m}$, that is $\phi(x y)-\phi(x) \in \mathfrak{m}$. Hence $\phi(x y)-\phi(x) \in \mathfrak{m} \cap \mathbf{Z}=f \mathbf{Z}$. The lemma is proved.
3.3. Let N, h_{a} be as in $2.2(\mathrm{a})$. We have $h_{a}=\tilde{h}_{a}^{e_{a}}$ where $\tilde{h}_{a}: \mathcal{Z} \rightarrow \mathbf{k}^{*}$ is a non-trivial character whose kernel is connected and $e_{a} \geq 1$ is an integer.

Let \mathcal{P} be the set of all prime numbers f such that $f>N$ and f does not divide $p e_{1} e_{2} \ldots e_{N}$.

Let u be as in 1.2 and let $t \in \mathcal{Z}$. We choose a finite subfield F_{q} of \mathbf{k} with q elements and an F_{q}-split rational structure on G with Frobenius $\operatorname{map} F: G \rightarrow G$ such that $F(u)=u, F(t)=t, F(L)=L, F(P)=P$.

Lemma 3.4. Let $f \in \mathcal{P}$. Let s_{0} be the smallest integer ≥ 1 such that $q^{s_{0}}-1$ is divisible by f, that is the order of q in $\mathbf{Z} / f \mathbf{Z}$. If $s \geq 1$ is divisible by s_{0}, then there exists $y \in t^{-1} \mathcal{Z}_{r}$ such that $F^{s}(y)=y$ and $y^{f}=1$.

Let $d=\operatorname{dim} \mathcal{Z}$. If $d=0$ then $\mathcal{Z}_{r}=\mathcal{Z}$ and we may take $y=1$. Assume now that $d \geq 1$. The number of elements $y \in \mathcal{Z}^{F^{s}}$ such that $y^{f}=1$ is f^{d}. For any $a \in[1, N]$, let n_{a} be the number of elements $y \in t^{-1} \operatorname{ker}\left(h_{a}\right)$ such that $y^{f}=1$. Let n_{a}^{\prime} be the number of elements $y \in \operatorname{ker}\left(h_{a}\right)$ such that $y^{f}=1$. Clearly, n_{a} equals either n_{a}^{\prime} or 0 . Since f does not divide e_{a}, we have

$$
n_{a}^{\prime}=\sharp\left(y \in \operatorname{ker}\left(\tilde{h}_{a}\right) ; y^{f}=1\right)=f^{d-1} .
$$

Thus n_{a} equals either f^{d-1} or 0 . It follows that

$$
\begin{aligned}
\sharp\left(y \in \mathcal{Z}^{F^{s}} ; y^{f}=1, y \notin \bigcup_{a=1}^{N} t^{-1} \operatorname{ker}\left(h_{a}\right)\right) & \geq f^{d}-N f^{d-1} \\
& =f^{d-1}(f-N)>0 .
\end{aligned}
$$

The lemma is proved.
3.5. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of F on $\bigoplus_{i ; i \text { even }} H^{i}\left(\mathcal{B}_{t u}\right)$ (in an algebraic closure of \mathbf{Q}_{l}) and let $\lambda_{1}^{\prime}, \ldots, \lambda_{n^{\prime}}^{\prime}$ be the eigenvalues of F on $\bigoplus_{i ; i \text { odd }} H^{i}\left(\mathcal{B}_{t u}\right)$. Let μ_{1}, \ldots, μ_{m} be the eigenvalues of F on $\bigoplus_{i ; i \text { even }} H^{i}\left(\mathcal{B}_{u} \cap \mathcal{B}_{\mathcal{Z}}\right)$ and let $\mu_{1}^{\prime}, \ldots, \mu_{m^{\prime}}^{\prime}$ be the eigenvalues of F on $\bigoplus_{i ; i \text { odd }} H^{i}\left(\mathcal{B}_{u} \cap \mathcal{B}_{\mathcal{Z}}\right)$. For any $s \geq 1$ we have
(a)
(b)

$$
\begin{aligned}
\operatorname{tr}\left(F^{s} w, \sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{t u}\right)\right) & =\sum_{i} \lambda_{i}^{s} a_{i}-\sum_{j} \lambda_{j}^{\prime s} a_{j}^{\prime} \\
\operatorname{tr}\left(w, \sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{t u}\right)\right) & =\sum_{i} a_{i}-\sum_{j} a_{j}^{\prime}, \\
\operatorname{tr}\left(F^{s} w, \sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{u} \cap \mathcal{B}_{\mathcal{Z}}\right)\right) & =\sum_{h} \mu_{h}^{s} b_{h}-\sum_{k} \mu_{k}^{s} b_{k}^{\prime}, \\
\operatorname{tr}\left(w, \sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{u} \cap \mathcal{B}_{\mathcal{Z}}\right)\right) & =\sum_{h} b_{h}-\sum_{k} b_{k}^{\prime} .
\end{aligned}
$$

Here $a_{i}, a_{j}^{\prime}, b_{h}, b_{k}^{\prime}$ are integers. (They are traces of $w \in W$ on some W module.) Let C be the algebraic number field generated by $\lambda_{i}, \lambda_{j}^{\prime}, \mu_{h}, \mu_{k}^{\prime}$. Let A be the ring of integers of C. Let \mathcal{I} be the set of all non-zero prime ideals \mathfrak{p} of A which contain at least one of the elements $\lambda_{i}, \lambda_{j}^{\prime}, \mu_{h}, \mu_{k}^{\prime}$. Note that \mathcal{I} is a finite set. Let $\overline{\mathcal{I}}$ be the set of prime numbers f such that $\mathfrak{p} \cap \mathbf{Z}=f \mathbf{Z}$ for some $\mathfrak{p} \in \mathcal{I}$. Note that $\overline{\mathcal{I}}$ is a finite set. Hence $\mathcal{P}-\overline{\mathcal{I}}$ is an infinite set. Let $f \in \mathcal{P}-\overline{\mathcal{I}}$. Let \mathfrak{p} be a prime ideal of A such that $\mathfrak{p} \cap \mathbf{Z}=f \mathbf{Z}$. Then \mathfrak{p} does not contain any of the elements
$\lambda_{i}, \lambda_{j}^{\prime}, \mu_{h}, \mu_{k}^{\prime}$. Hence these elements have non-zero images in A / \mathfrak{p} (a finite field of cardinal f^{c} where $c \geq 1$). Hence if s is divisible by $f^{c}-1$, then $\lambda_{i}^{s}-1 \in \mathfrak{p}, \lambda_{j}^{\prime s}-1 \in \mathfrak{p}, \mu_{h}^{s}-1 \in \mathfrak{p}, \mu_{k}^{\prime s}-1 \in \mathfrak{p}$. It follows that for such s we have

$$
\begin{align*}
& \sum_{i} \lambda_{i}^{s} a_{i}-\sum_{j} \lambda_{j}^{\prime s} a_{j}^{\prime}=\sum_{i} a_{i}-\sum_{j} a_{j}^{\prime} \bmod \mathfrak{p} \tag{c}\\
& \sum_{h} \mu_{h}^{s} b_{h}-\sum_{k} \mu_{k}^{\prime s} b_{k}^{\prime}=\sum_{h} b_{h}-\sum_{k} b_{k}^{\prime} \bmod \mathfrak{p} \tag{d}
\end{align*}
$$

According to [L2], if s is large enough, we have

$$
\operatorname{tr}\left(F^{s} w, \sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{t u}\right)\right)=\operatorname{tr}\left(t u, R_{w, F^{s}}\right)
$$

and for any $\tau \in \mathcal{Z}_{r}^{F^{s}}$, we have

$$
\operatorname{tr}\left(F^{s} w, \sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{u} \cap \mathcal{B}_{\mathcal{Z}}\right)\right)=\operatorname{tr}\left(\tau u, R_{w, F^{s}}\right)
$$

where $R_{w, F^{s}}$ is the virtual representation of $G^{F^{s}}$ over \mathbf{Q}_{l} associated in [DL] to an F^{s}-stable maximal torus in G corresponding to w.

We can choose s large enough (as above) and so that s is divisible by $f^{c}-1$ and by s_{0} (see Lemma 3.4). By 3.4 , we can find $\tau \in \mathcal{Z}_{r}^{F^{s}}$ such that τt^{-1} has order f. We can apply Lemma 3.2 with $\Gamma=G^{F^{s}}$, $x=t u, y=\tau t^{-1}$ and we obtain

$$
\operatorname{tr}\left(\tau u, R_{w, F^{s}}\right)=\operatorname{tr}\left(t u, R_{w, F^{s}}\right) \quad \bmod f \mathbf{Z}
$$

Hence

$$
\begin{aligned}
& \operatorname{tr}\left(F^{s} w, \sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{t u}\right)\right) \\
& \quad=\operatorname{tr}\left(F^{s} w, \sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{u} \cap \mathcal{B}_{\mathcal{Z}}\right)\right) \bmod f \mathbf{Z}
\end{aligned}
$$

and therefore, by (a),(b),

$$
\sum_{i} \lambda_{i}^{s} a_{i}-\sum_{j} \lambda_{j}^{\prime s} a_{j}^{\prime}=\sum_{h} \mu_{h}^{s} b_{h}-\sum_{k} \mu_{k}^{\prime s} b_{k}^{\prime} \quad \bmod f \mathbf{Z}
$$

Using now (c),(d) and the inclusion $f \mathbf{Z} \subset \mathfrak{p}$ we deduce

$$
\sum_{i} a_{i}-\sum_{j} a_{j}^{\prime}=\sum_{h} b_{h}-\sum_{k} b_{k}^{\prime} \bmod \mathfrak{p}
$$

Since the left hand side is an integer and $\mathfrak{p} \cap \mathbf{Z}=f \mathbf{Z}$, we deduce

$$
\sum_{i} a_{i}-\sum_{j} a_{j}^{\prime}=\sum_{h} b_{h}-\sum_{k} b_{k}^{\prime} \quad \bmod f \mathbf{Z}
$$

Thus the integer $\sum_{i} a_{i}-\sum_{j} a_{j}^{\prime}-\sum_{h} b_{h}+\sum_{k} b_{k}^{\prime}$ is divisible by infinitely many prime numbers (those in $\mathcal{P}-\overline{\mathcal{I}}$) hence it is 0 . Thus, $\sum_{i} a_{i}-\sum_{j} a_{j}^{\prime}=$ $\sum_{h} b_{h}-\sum_{k} b_{k}^{\prime}$ hence

$$
\operatorname{tr}\left(w, \sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{t u}\right)\right)=\operatorname{tr}\left(w, \sum_{n}(-1)^{n} H^{n}\left(\mathcal{B}_{u} \cap \mathcal{B}_{\mathcal{Z}}\right)\right)
$$

The proposition follows.

References

[AL] D. Alvis and G. Lusztig, On Springer's correspondence for simple groups of type $E_{n}(n=6,7,8)$, Math.Proc.Camb.Phil.Soc., 92 (1982), 65-72.
[DL] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. Math., 103 (1976), 103-161.
[L1] G. Lusztig, Green polynomials and singularities of unipotent classes, Adv.Math., 42 (1981), 169-178.
[L2] G. Lusztig, Green functions and character sheaves, Ann.Math., 131 (1990), 355-408.
[S] T. A. Springer, Trigonometric sums, Green functions and representations of Weyl groups, Inv.Math., 36 (1976), 173-207.

Department of Mathematics
M.I.T.

Cambridge, MA 02139
U.S.A.

[^0]: Supported in part by the National Science Foundation
 Received August 24, 2001

