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Infinite Systems of Non-Colliding Brownian Particles 

Makoto Katori, Taro Nagao and Hideki Tanemura 

Abstract. 

Non-colliding Brownian particles in op.e dimension is studied. N 
Brownian particles start from the origin at time 0 and then they do 
not collide with each other until finite time T. We derive the de
terminantal expressions for the multitime correlation functions using 
the self-dual quaternion matrices. We consider the scaling limit of 
the infinite particles N --+ oo and the infinite time interval T --+ oo. 
Depending on the scaling, two limit theorems are proved for the mul
titime correlation functions, which may define temporally inhomoge
neous infinite particle systems. 

§1. Introduction 

We consider the process X(t), which represents the system of N 
Brownian motions in one dimension all started from the origin and con
ditioned never to collide with each other up to time T. If we take the 
limit T --+ oo, the system becomes a temporally homogeneous diffu
sion process Y(t), which is the Doob h-transform [3] of the absorbing 
Brownian motion in a Weyl chamber 

R~ = {x= (xi,x2, ... ,xN) E RN;x1 < x2 < ··· < XN }, 

with harmonic function hN(x) = IL:::;i<J:SN(xJ -xi) [8]. By virtue of 
the Karlin-McGregor formula [12, 13], its transition density !N(t, x, y) 
from the state x to y in R~ in time period t > 0 is given by 

where Pt(x, y) = vkte-<x-y)2 12t On the other hand, if the non

colliding time interval T remains finite, the process X(t), 0 ::::; t ::::; T, 
is temporally inhomogeneous [15]. 
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We notice an integral formula found in Harish-Chandra [9], Itzykson 
and Zuber [10], and Mehta [16], 

det (Pt(xi,Yj)) J [ 1 ] 
1s,,,]s,N _ d (X utyu)z 

hN(x)hN(Y) - c U exp - 2t tr -

with c-1 = (27r)N/ZtN2
/ 2 TI~i 1 f(i), where X and Y are the N x N 

diagonal matrices, xij = Xi8ij, Yij = Yi8ij, and the integral is taken 
over the group of unitary matrix U of size N. This equality implies that 
the non-colliding Brownian motions such as X ( t) and Y ( t) can be de
scribed by using the eigenvalue-statistics of Hermitian random matrices 
in Gaussian ensembles [18]. In earlier papers[14, 15], it was shown that 
Y(t) is identified with Dyson's Brownian motion model with (3 = 2 [4] 
and the particle distribution is expressed by the probability density of 
eigenvalues of random matrices in the Gaussian unitary ensemble ( GUE) 

with variance t, while Vt(zi-t)X(t) coincides with the distribution of 

eigenvalues of random matrices in the Pandey-Mehta ensemble [19, 25] 

with a= j"fii, and this temporally inhomogeneous process exhibits a 

transition from the GUE statistics to the Gaussian orthogonal ensemble 
(GOE) statistics as the time t goes on from 0 toT. 

It is known that the eigenvalue distributions of Hermitian random 
matrices have determinantal expressions. For instance, in the GUE, the 
probability density of N eigenvalues is expressed by 

with KN(x, y) = ~~-~/ cpe(x)cpe(y), where 

(1.1) cpe(x)= ~e-x2 12Hc(x) 
vhc 

with the £-th Hermite polynomial He(x) and he 
orthogonality of 'Pk(x), we can prove the equality 

J det KN(Xi,xj)dxN' 
1S,i,jS,N' 

J7f 2£ £!. By the 

(1.2) = (N- N' + 1) det KN(xi,xj) 
1S,i,jS,N'-1 

for any 1 ::::; N' ::::; N. Such integral property enables us not only to obtain 
determinantal expressions for correlation functions, but also to argue 
the N ---t = limit of the system by studying the large N asymptotic of 
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the function KN(x, y). With proper scaling limit, determinantal point 
processes with sine-kernel and Airy-kernel are derived. See [27] and 
references therein. 

In the present paper, we derive the determinantal expressions of 
the multitime correlation functions for the process X(t). Our aim is to 
prove limit theorems of the multi time correlation functions in the scaling 
limits of infinite particles N --+ oo and infinite time interval T --+ oo. 
Depending on the scaling, we derive two kinds of limit theorems, one of 
which provides a spatially homogeneous but temporally inhomogeneous 
infinite particle system (Theorem 1), and other of which does the system 
with inhomogeneity both in space and time (Theorem 2). We remark 
that it is easier to prove the limit theorems for Dyson's Brownian motion 
model Y(t). Corresponding to Theorem 1, we will obtain the multitime 
correlation functions of the homogeneous system, which coincides with 
the system studied by Spohn [28], Osada [24], and Nagao and Forrester 
[21]. Similarly, corresponding to Theorem 2, an infinite system with 
spatial inhomogeneity will be derived, which is related with the Airy 
process recently studied by Prahofer and Spohn [26] and Johansson [11]. 

One of the key points of our arguments is that, in order to give the 
determinantal expressions for the correlation functions for the present 
processes, we shall prepare matrices with the elements, which are neither 
real nor complex numbers, but quaternions 

with Qi E C, 0 :::; i :::; 3, in which the four basic units {1, e1, e2, e3} have 
the following 2 x 2 matrix representations, C: Q ~ Mat2 (C); 

C(1) = ( ~ ~ ) , 

C( e2) = ( _J=r -fl ) , 
C(e1) = ( 

0 
1 

-1 ) 
0 ' 

( A o ) C(e3) = 0 -A . 

The dual of a quaternion q is defined by qt = q0 - ~~=l qiei, and for 
a quaternion matrix Q = ( Qij), Qij E Q, its dual matrix Qt = ( ( Qt)ij) 
is defined to have the elements (Qt)ij = qJi. Following Dyson's defi
nition of the quaternion determinant for self-dual matrices [5, 17, 18], 
we can give the quaternion determinantal expressions having the simi
lar properties to (1.2) for arbitrary multitime correlation functions for 
X(t) (Theorem 3). As briefly reported in [23], the present results can 
be regarded as simple applications of the results given in Nagao and 
Forrester [22] and Nagao [20] for multimatrix models, and in Forrester, 
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Nagao and Honner [6] for the asymptotic of quaternion determinantal 
systems, here we give, however, a self-contained explanation for all the 
formulae and calculus developed in the random matrix theory, which are 
used to prove our limit theorems. 

The theorems proved here mean the convergence of processes in the 
sense of finite dimensional distributions. As argued in Priihofer and 
Spohn [26] and in Johansson [11], tightness in time should be confirmed. 

§2. Statement of Results 

For a given T > 0, we define 

(201) T ( . . ) _ fN(t- s, X, y)NN(T- t, y) 
9N s,x,t,y - NN(T-s,x) 

for 0 ~ s ~ t ~ T,x,y E R~, where NN(t,x) = JRN !N(t,x,y)dy, 
< 

which is the probability that a Brownian motion started at x E R~ 
does not hit the boundary of R~ up to time t > 0. The function 
9h(s,x;t,y) can be regarded as the transition probability density from 
the state x E R~ at time s to the state y E R~ at time t, and associated 
with the temporally inhomogeneous diffusion process, which is the N 
Brownian motions conditioned not to collide with each other in a time 
interval [0, T]. In (14, 15] it was shown that as lxl -+ 0, 9h(O, x, t, y) 
converges to 

N 

(2.2) 9h(0, o, t, y) = C(N, T, t)hN(y)NN(T- t,y) ITPt(O, Yi), 
i=1 

where C(N, T, t) = 'lrN/2 ( nf=1 r(j /2)) -1 TN(N - 1)14rN(N - 1)/2 
0 Then 

the diffusion process X(t) starting from 0 can be constructed. 
We denote by X the space of countable subset .; of R satisfying 

~(.; n K) < oo for any compact subset K. We introduce the map 
"(from u:=1Rn to X defined by "f(XI.X2,····Xn) = {xi}f=l" Then 
3N (t) = "(X(t) is the diffusion process on the set X with transition 
density function g'f.;(s, .;; t, 17), 0 ~ s ~ t ~ T: 

{ 
9h(s, x; t, y), if s > 0, ~.; = ~1] = N, 

gJ;(s, .;; t, 17) = 9h(O, 0; t, y), if s = 0, .; = {0}, ~1J = N, 
0, otherwise, 

where x and y are the elements of R~ with .; = "(X, 1J = '"YY· For 

xC::) E R~, 1 ~ m ~ M + 1, and N' = 1,2, ... ,N, we put xr;;) = 
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( (m) (m) (m)) d t:N' (m) v · · · 1 [0 T] x1 , x 2 , ... , xN' an '>m = fXN' . ror a g1ven time 1nterva , , 

we consider the M intermediate times 0 < t1 < t2 < · ·' < tM < T. 
Then the multitime transition density function of the process gN (t) is 
given by 

M 

(2.3) p~(t1,~[Y; ... ;tM+l,~~+l) = II @(tm,~:;;,;tm+l•~:;;,+l), 
m=O 

where, for convenience, we set t 0 = 0, tM+l = T and ~{;r = {0}. From 
(2.1) and (2.2) we have 

(2.4) p~(tb~f;t2,~f; ... ;tM+l•~~+l) 

= C(N, T, t1)hN ( xW) sgn ( hN ( xW"+l))) 

N M 

X II Pt1 ( 0, X~l)) II 1 <?~~N (Pt,+1 -t, ( x~m), xjm+l))) . 
i=l m=l - '1 -

For a sequence {Nm}~~i of positive integers less than or equal to N, 
we define the ( N1, N2, ... , N M +1 )-multi time correlation function by 

( ) T (t t:Nl.t t:N2. ·t t:NM+l) 2.5 PN b'>l •2•'>2 , ... ,M+b'>M+l 

We will study limit theorems of the correlation functions p'f,t as 
N -+ oo. First, we consider the case TN = 2N. Let 

S(s, x; t, y) 111 2 - d).. cos()..(x- y))e-.X (t-s)/2 

7f 0 

sin(x- y) 
7r(x- y) 

-- d).. cos()..(x- y))e-.X (t-s)/2 1100 
2 

7f 1 

if s > t 

if s = t 

if s < t 
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111 2 II}(s,x;t,y) = -- d>.. >..sin(>..(x- y))e-(s+t).A 12 

7r 0 

lf(s,x;t,y) = -~100 d>.. ~ sin(>..(x- y))e(s+t)..\2 /2. 
7r 1 >.. 

And let qm,n(x,y) be the quaternion, whose 2 x 2 matrix expression is 
given by 

lf(sm, x; Sn, y) 
S(sn,YiSm,X) )· 

Let M ;::: 1 and {Nm}~~f be a sequence of positive integers. We de

note by Q ( x~~, x~~, ... , x~:~)) the self-dual ~~;t; Nm X ~~;t; Nm 

quaternion matrix whose elements are qm,n ( x~m), x)n)), 1 :::; i :::; Nm, 

1 :::; j :::; Nn, 1 :::; m, n :::; M + 1, that is, 

with blocks of Nm x Nn quaternion matrices 

for 1 :::; m, n :::; M + 1. 
For an N x N self-dual quaternion matrix Q, the quaternion deter

minant TdetQ is defined by Dyson [5] as 

£(7r) 

TdetQ = L ( -1)N-£(7r) II qabqbc • · • qda, 

7rESN 1 

where £( 1r) denotes the number of exClusive cycles of the form (a -+ b -+ 

c -+ · · · -+ d -+ a) included in a permutation 1r E S N. 
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Theorem 1. Let TN = 2N. For any M 2:: 1, any sequence {Nm}~~{ 
of positive integers, and any strictly increasing sequence { sm}~~{ of 
nonpositive numbers with s M +1 = 0, 

Remark 1. The above system is spatially homogeneous, since all 
elements of the quaternion determinant are functions of difference of 
positions, x~m) - x)n). This expresses the bulk property of our in
finite particle system. When M = 1, the present system is equiv
alent with the N -+ oo limit of the two-matrix model reported by 
Pandey and Mehta [19, 25]. In the system defined by Theorem 1, 
if we take the further limit such that Sm -+ -oo with the time dif
ference Sn - Sm fixed, 1 ~ m, n ~ M, then lDl(sm, x; sn, y) -+ oo, 

TI(sm,XiSn,Y)-+ 0, while the product lDl(sm,XiSn,y)TI(sm,XiSn,Y)-+ 0. 
Therefore, we may replace lDl and lf by zeros in this limit, and the 

quaternion determinant Tdet Q ( x~~, x~~, ... , x~~) will be reduced to 

an ordinary determinant det A ( x~~, x~~, ... , x~) with the elements 

am,n (x(m) x(n)) = § (s x(m). s x(n)) Hence we obtain a tempo-
t ' 1 m, 2 ' n, 1 · , 

rally and spatially homogeneous system, whose correlation functions are 
given by 

Such a homogeneous system was studied by Spohn [28], Osada [24] and 
Nagao and Forrester [21] as an infinite particle limit of Dyson's Brownian 
motion model[4]. 

Next, we consider the case that TN = 2N113 . In order to state the 
result, we have to introduce the following functions. Let Ai(z) be the 
Airy function: 

(2.6) 
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For s,t < 0 and x,y E R, we put 

V(s,x;t,y) 

I(s,x;t,y) 

and 

~ [1oo d)... es>-./2 Ai(x + >..) dd>.. { et>-./2 Ai(y + >..)} 

-100 
d)... et>-./2 Ai(y + >..) d~ { es>-./2 Ai(x + >..)}] , 

100 
d)... et>-./ 2 Ai(y- >..) 100 

d>..' es>-.' 12 Ai(x - >..') 

- 1oo d)... es>-./2 Ai(x- >..) 1oo d>..' et>-.' /2 Ai(y- >..'), 

S(s, x; t, y) = S(s, x; t, y)- P(s, x; t, y)1(s < t), 

with 

S(s,x;t,y) 

P(s, x; t, y) 

100 
d)... e(t-s)>-./2 Ai(x + >..)Ai(y + >..) 

+~Ai(y) {oo d>.. es>-./2 Ai(x- >..), 
2 Jo 

£:d)... e(t-s)>-.f2Ai(x + >..)Ai(y + >..), 

where 1(s < t) = 1 if s < t, and = 0 otherwise. And let qm,n(x, y) be 
the quaternion, whose 2 x 2 matrix expression is given by 

Let M ::;:: 1 and {Nm}~~f be a sequence of positive integers. We de

note by Q ( x~~, x~;, ... , x~:~)) the self-dual L;~;!:{ Nm XL;~;!:{ Nm 

quaternion matrix whose elements are qm,n (x~ml,xjnl), 1::::; i::::; Nm, 

1 ::::; j ::::; Nn, 1 ::::; m, n ::::; M + 1. 

Theorem 2. Let TN = 2N113 and aN ( s) = 2N213 - s 2 /4 for s E R. For 
any M ::;:: 1, any sequence { N m} ~~{ of positive integers, and any strictly 

increasing sequence { sm}~~{ of nonpositive numbers with SM+l = 0, 
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Remark 2. This theorem may define an infinite particle system, in 
which any type of space-time correlation function is given by the above 
quaternion determinant. This quaternion determinantal system is the 
same as that derived in Forrester, Nagao and Honner [6], and it is in
homogeneous both in space and time. The spatial inhomogeneity is 
attributed to the fact that this system expresses the edge property of 
the infinite non-colliding Brownian particles. Thus, if we take the bulk 
limit, x;m) ---> -oo with the position differences x;m) - x)n) fixed, then 
the system should recover spatial homogeneity. It is confirmed by ob
serving that the quaternion determinantal system given in Theorem 1 
can be derived as the bulk limit of the system of Theorem 2, if we use 
the asymptotic expansion of the Airy function (2.6) [1], 

A1(-x) "" cos -x - -. 1 (2 3/2 7f) 
7fl/2xl/4 3 4 

as x ---> oo. 

On the other hand, keeping the spatial inhomogeneity, one can consider 
the limit Sm ---> -oo with the time difference Sn - Sm fixed, 1 :::; m, n :::; 
M. In this limit, 'D(sm,x;sn,Y)---> 0, I(sm,x;sn,Y)---> 0, and 

Hence the off-diagonal elements vanish in the 2 x 2 matrix expressions 
of quaternion qm,n(x, y) and 

( am,no(x, y) C(qm,n(x, y)) ___, 

for 1:::; m,n:::; M, where 

if m?: n 

if m < n. 

Then the quaternion determinant Tdet Q ( x~~, x~;, ... , xc::J) is re

duced to an ordinary determinant det A ( x~~, x~;, ... , xc::J) with the 
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elements am,n ( x~m), x)n)). In this way, we will obtain the infinite par

ticle system, which is temporally homogeneous but spatially inhomoge
neous with the multitime correlation functions 

In particular, if we set N 1 = N 2 = · · · = NM = 1, then 

This is the same as the system called the Airy process by Priihofer and 
Spohn in [26]. (See also [11].) 

§3. Quaternion determinantal expressions of the correlations 

In this section we give quaternion determinantal expressions for the 
correlation functions defined in (2.5) along the procedure in [20]. From 
now on we consider the case N is even, for simplicity of notations. See 
[20], for necessary modifications for odd case. For 1 :S m, n :S M + 1, 
define 

(3.1) PT-t= (x, w) I 
PT-tn (y, w) ' 

where Po(y,x)dy = 8x(dy). We introduce an antisymmetric inner prod
ucts 

(f,g)m = l dx l dy pm,m(x,y)J(x)g(y), 

and 

Fork= 0, 1, ... we consider the polynomials in x of degree k defined by 

(3.2) 

where c = Jt,(2T-h) z = V2T-t, 
1 T ' 1 t, ' 

(3.3) 
if k is even, 

if k is odd, 
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and Hj(x) are the Hermite polynomials. They are monic and satisfy the 
skew. orthogonal relations: 

(R2j,R2£+1) = -(R2£+1,R2j) =ri8Jf_, 

(R2i, Ru) = (R2Hl. R21+1) = 0, j, f = 0, 1, 2, ... , 

where 

r· = r(j + ~)r(j + 1) (ti)2j+l/2 
J n T 

For m = 1, 2, ... , M + 1, and k = 0, 1, ... , put 

Then we can prove the skew orthogonal relations 

(R(m) R(m) ) (R(m) p(m)) i: 
2j ' 2£+1 m = - 2£+ll.L"2j m = TjUj£, 

(R~"'j), R~;'))m = (~';21, R~;'~1)m = 0, j, f = 0, 1, 2, ... , 

for any m = 1, 2, ... , M + 1. Form= 1, 2, ... , M + 1, define 

Now we introduce the functions on R 2 , Dm,n, Im,n and sm,n, 1 :::; m, n :::; 
M + 1, given by 

(N/2)-1 

(3.6) Dm,n(x,y)= 2: r1 [R~';:')(x)R~~~1 (y)-R~';:'~1 (x)R~~)(y)], 
k=O k 

(N/2)-1 

(3.7) Im,n(x,y) =- 2: : [<I>~';:')(x)<I>~~~1(y)- <I>~';:'~1(x)<J>~~)(y)J, 
k=O k 

(N/2)-1 

(3.8) sm,n(x,y) = 2: r~ [<I>~';:')(x)R~~~ 1 (y)- <I>~';:'~ 1 (x)R~~\y)]. 
k=O 

Further we define 

(3.9) 

(3.10) 

§m,n(x, y) = sm,n(x, y)- Ptn-trn (x, y)1(m < n), 
jm,n(x, y) = Im,n(x, y) + pm,n(x, y). 



294 M. Katori, T. Nagao and H. Tanemura 

Define the quaternions qm,n(x, y), 1 :::; m, n :::; M + 1, x, y E R so that 
these 2 x 2 matrix expressions C ( qm, n ( x, y)) are given by 

C(qm,n(x, y)) = ' ( 
sm,n(x y) 
nm,n(x, y) 

Let M 2:: 1 and {Nm}~~f be a sequence of positive integers less 

than or equal to N. For x<;;'l E R~, 1 :::; m :::; M + 1, we de-

note by Q (x~;,x~~' ... ,x~~~)) the self-dual 'E~:t{ Nm X 'E~:t{ Nm 

quaternion matrix whose elements are qm,n ( x~m), xjn)), 1 :::; i :::; Nm, 

1 :::; j :::; Nn, 1 :::; m, n:::; M + 1. Then we show the following relation. 

Theorem 3. The multitime correlation function (2.5) is written as 

In order to prove the theorem, first we introduce the Pfaffian. For 
an integer N and an antisymmetric 2N x 2N matrix A = (ai1), the 
Pfaffian is defined as 

Pf(A) = Pfl:Si<j:s;2N(aij) 

1 
= N! L::sgn(a)aa(l)a(2)aa(3)a(4) ·· ·aa(2N-l)a(2N), 

0' 

where the summation is extended over all permutations a of (1, 2, ... , 2N) 
with restriction a(2k- 1) < a(2k), k = 1, 2, ... , N. If Q is anN x N 
self-dual quaternion matrix, then 

(3.11) TdetQ = Pf(Jc(Q)), 

where J is an 2N x 2N antisymmetric matrix with only non-zero elements 

lzk+1,2k+2 = -Jzk+2,2k+l = 1, k = 0, 1, 2, ... , N- 1. 

See, for instance, Mehta [17]. 
For a function '1/Jm,n defined on R 2 we denote the N X N-matrices 

whose ( i, j)-entry is '1/Jm,n ( x;m), xjn)) by '1/Jm,n ( x<;;'l, x~)), or simply 

by '1/Jm,n for short. And we denote by R(m) ( x<;;'l) the N x N ma

trix with R(m) (x~)) .. = RJ~~(xi), and by <f>(m) (x~)) that with 
•,J 
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cP{m) ( x};')) .. = cPJ~~ (xi)· Let L be the N X N diagonal matrix with 
•,J 

Li,i = y'r[{i-1)/2]• i = 1, 2, ... , N, and _R{m) ( x};')) = L - 1 R(m) ( x};')). 

Then we have 

(3.12) 

As the first step of the proof of Theorem 3. We show that the 
multitime probability density defined in (2.3) is written as 

(3.13) T ( eN eN ) Td Q ( {1) {M+1)) PN t~,.,1 ; ... ;tM+b'-M+1 = et xN , ... ,xN . 

For simplicity of notation, here we give the proof of (3.13) forM= 2. 
It is straightforward to prove (3.13) for general M. Since 

( ( {3))) ( ( {3) {3))) sgn hN xN = Pf1~i<j~N sgn xi -xi , 

and sgn(y- x) = F 3 •3 (x, y), we have 

(3.14) 

Noting that Rk(x) is the monic polynomial of degree k, we have 

and so 

(3.15) 

Since det L = n:~~-1 Tk = C(N, T, tt)-1 ' from (3.12) and (3.15) 

N 

(3.16) C(N,T,t1) IJPt1 (o,xP)) hN (x<1)) = det [.R<1) (xW)] 
i=1 

= Pf [ .R<1) ( xW) JR(1) (x~)) T] 

= Pf [D1•1 ( x~), x~))] . 
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Then from (2.4), (3.14) and (3.16) we have 

pfv(tl' ~f"; t2, ~f; t3, ~f) 
2 

= Pf[D1 ' 1]Pf[F3•3] IT 1 Ae~N [Pt,+1 -t,] 
m=l - ,J_ 

= ( -1)3N/2pf [ Dl,l 0 ] rr2 Pf [ 0 
0 - F 3•3 m=l Pt,+l -t, 

By basic properties of the Pfaffians, we have 

= Pf 

D1,1 

0 

D1,1 

0 
0 
0 

0 
_p3,3 

0 
0 

0 0 
0 0 
0 -(Pt2-tl)T 

0 

0 
0 
0 
0 

0 
0 
0 
0 Pt 2 -tl 

0 0 0 0 0 -(Pt3 -t2 )T 

0 0 0 0 Pt3 -t2 0 

Dl,l 0 0 0 0 0 

= Pf 

0 0 Pt 2 -t 1 0 0 0 
0 -(Pt2-tl)T 0 0 0 0 
0 0 0 0 Pt3 -t 2 0 
0 0 0 -(Pt3 -t2 )T 0 0 
0 0 0 0 0 _p3,3 

D1,1 0 0 0 0 0 

0 _pl,l Pt 2 -t 1 
_p1,2 Pt3 -t 1 

-F1,s 

0 -(Pt2-tl)T 0 0 0 0 
= Pf 

0 _p2,1 0 _F2,2 Pt3-t2 
_p2,3 

0 -(Pt3 -t1 )T 0 -(Pts-t2)T 0 0 

0 -Fs,1 0 -Fs,2 0 _ps,s 

Since xW E R;'2, hN ( xW) -=f. 0, and so det [R(l) ( xW) J -=f. 0 by (3.15). 

Hence we can define matrices 

which satisfies 

u(m)Dl,l(U(n))T = Dm,n, 

V(m)Dl,l(U(n))T = sm,n, 

v<m)Dl,l(v<nlf = _ 1m,n, 

U(m)Dl,l(V(n))T = -(Sn,m)T. 
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By repeating elementary operations, we see that the last Pfaffian equals 
to 

D1,1 (81,1)T D1,2 (82,1)T D1,3 (83,1)T 

1 

-81,1 _j1,1 _§1,2 _j1,2 _§1,3 _j1,3 

Pf 
D2,1 (§1,2)T D2,2 (82,2)T D2,3 83,2 

-82,1 -f2·1 _§2,2 _j2,2 _§2,3 -f2·3 
D3,1 (S1,3)T Daj2 (S2,3)T D3,3 (8 3,3)T 
-83,1 -f3·1 -83,2 -f3·2 -83,3 -f3·3 

= (-l)3N/2pf [ 

A1,1 A1,2 A1,3 

] ' A2,1 A2,2 A2,3 
A3,1 A3,2 A3,3 

where each Am,n = (Aij'n) is a 2N X 2N matrix which consists of 2 x 2 
blocks 

sr::m ) J• 

-J''!':•n 
•J 

We can see that the above matrix A = (Aij'n) satisfies the relation 
A= JC(Q). Therefore, (3.13) is derived from (3.11). 

For square integrable functions ¢ and 1/J defined on R 2 , put ¢ * 
'1/J(x, y) = JR cp(x, z)'l/J(z, y)dz. Then we have 

sm,p * SP,Tn = J1n,p * Dp,n = vm,p * pp,n = sm,p, 
nm,p * 8 p,n = nm,n, 8m,p * JP,n = 8m,p * pp,n = 1m,n, 

if p < n. 

Hence by simple calculation we see that 

L qm,m(z,z)dz = N, 

L qm'P(x, z)qP,n(z, y)dz = qm,n(x, y) 

+qm,n(x, y)K-(n,p) - K-(p, m)qm,n(x, y), 

where K-( n, p) is a quaternion with 

( 
1-1(p < n) 

C(K.(n,p)) = 
0 

0 ) -1(n < p) 
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Then by slight modification of Theorem 6 in [22] we have the following 
integral formula for any 1 :::; Nm :::; N, m = 1, 2, ... , M + 1, 

which is the generalization of the formula (1.2) given in Introduction of 
the present paper. Successive application of the above relation yields 
Theorem 3. 

§4. Expansion using Hermite polynomials 

In this section we show expansions of functions Ptn-t,., Rkm) and 

<I>km) by using Hermite polynomials Hk. Put 

T-tn 
'Yn = --T--' 

and r(n) = -log Zn· By simple calculation we have 

for 1 :::; m < n < M + 1. Using Mehler's formula [2] 

we will have the following expansions using the Hermite polynomials. 
For 1 :::; m < n :::; M + 1, 

(4.1) Ptn-t,.,.(x,y) = 
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and for 1 < m :::; M + 1, 

Then from (302), (3.4) and the orthogonal relation of the Hermitian 
polynomials, we obtain 

(402) 

From the definition (301) and the expansion (401) we can obtain 

(403) 

where (o, o)* is the antisymmetric inner product defined by 

(f,g)* = /_: dw j_: dz e-(z2 +w2 )/ZT[f(z)g(w)- f(w)g(z)]o 

Put R'k(x) = "L-7=o CX.kjHj (c:+J 0 Then {R'k(x)} satisfy the following 

skew orthogonal relations 

(404) (R;,j, R;£+1)* = -(R;£+1 , R;j)* = rj8jc, 

(R~j' R;c)* = 0, (R;H1 , R~£+1 )* = 0, for j, £ = 0, 1, 2, 0 0 0, 

where r£ = 4h2cT(ct/2)4£+1
o We put 

2k -k{j c1 j k, 

2k(k21 )'{ c{(~)!} - 1, 
0, 

if k is even, 

if k,j are odd and k 2: j, 
otherwise, 
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for nonnegative integers k and j. Then I:;=s f3kjG-js = 8k8 , if 0::; s::; k, 
and 

k 

Hk ( :r) = ~!3kiRj(x). (4.5) 

From the definition (3.5) and the equations (4.2) and (4.3) we have 

q>(m)(x) = Cm e-~(l+')',)(xjc,)2 ek1-(1) 
k .../27rtm (2T- tm) 

x f t efT("') Hf (..!?._) akj I Hj (-· ) , Hf (-· ) \ 

f=O j=O hf Cm \ VT VT I* 
e-~(l+')',)(xjc,)2 (1) oo oo efT("') ( X ) 

= ekT ""'(R* R":) """-H - !3 · 
J27rT(2T- tm) ~ k• 3 * {;j hf f Cm fJ · 

Using the skew orthogonal relations ( 4.4), we show that for k = 0, 1, 2, ... 

(4.6) 
e-~(l+')',)(xjc,)2r* (1) 

--c=::::=::=;===:=;==;==:="'-k e2kT 
J21rT(2T- tm) 

X f ef~<"'l f3f2k+1Hf (..!?._), 
f=2k+l f Cm 

e- ~(l+')',)(xjc,)2 r* ( (1) 
_ k e 2k+l)T 

J27rT(2T- tm) 
(4.7) 

X f ef~<"'l f3f2kHf (..!?._) · 
f=2k f Cm 

Using above expansions we show the following lemma. 

Lemma 4. For 1 ::; m, n::; M + 1, 

(4.8) pm,n(x,y) = f r1k [q>~';)(x)q>~~~l(y)- q>~';~l(x)q>~~\y)], 
k=O 

(4.9) Jm,n(x,y) = f r1 [q>~';)(x)q>~~~1 (y)- q>~';~l(x)q>~~)(y)] · 
k=N/2 k 

Proof. By (4.6), (4.7) and the relation 

(4.10) 
1 ( tl ) 2k+l/2 * 

rk = 27rT 2T- h rk, 
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we have 

f r1 [-1P~;l1 (x)IP~~)(y) + IP~;)(x)IP~~~ 1 (y)J 
k=O k 

e-!(H'Y,.)(xjc,.) 2 e-!(l+"Yn)(y/cn) 2 00 

--~===;:=:;:=::=====;o,----- I>k 
yi(2T- tm)(2T- tn) k=D 

By ( 4.4) and ( 4.5) the right hand side of the above equation equals to 

where we have used (4.3). From the definitions (3.7) and (3.10), (4.9) is 
derived from (4.8). 

§5. Proof of Theorems 

The following formulae are known for (1.1) [2, 29]. For u E R, 

(5.1) . ( )£ 1/4 ( u ) 1 hm -1 £ 'P2£ In = r;:;; cosu, 
R-+oo 2v £ V 7r 

(5.2) . ( )£ 1/4 ( u ) 1 . hm -1 e 'P2£+1 In = r;:;;smu, 
R-+oo 2y £ y 7r 

(5.3) lim T~e-bcpe (V2i- u ) =Ai(-u) 
R-+oo J2 £_1/6 

Here we give the proof of Theorem 2 by using (5.3). The proof of The
orem 1 will be easier and given by the similar argument using (5.1) and 
(5.2). 
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Let b'"'(x) = v'2T- tmexp { 1/2'Ym(x/c,)2 -NT(m)} and ('"'(x) be 

the quaternion with 

For xY:) E R~, 1 ~ m ~ M + 1, we consider the transformation of the 

quaternions q'"''n ( x~m), x;n)) 1-+ qm,n ( x~m), x;n)) defined by 

We denote by Q (x~~,x~;, ... ,x~:~)) the self-dual ~~:!:i Nm x 

~~:!:i Nm quaternion matrix whose elements are qm,n ( x~m), x;n)), 1 ~ 
i ~ Nm, 1 ~ j ~ Nn, 1 ~ m, n ~ M + 1. By the definition of quaternion 
determinants, the following invariance is established: 

( (1) (2) (M+l) ) ~ ( (1) (m) (M+1) ) Tdet Q xN , xN , ... , xN = Tdet Q xN , xN , ... , xN . 
1 2 NM+1 1 2 NM+1 

Hence to prove Theorem 2 it is enough to show the following lemma. 

Lemma 5. Let TN = 2N113 and tm = TN + Sm, 1 ~ m, n ~ M + 1. 
Then for any x, y E R, 

(5.4) lim b ( ~b ( ) D'"',n(aN(sm) + x, aN(sn) + y) = V(sm, x; sn, y), 
N-+oo '"'X n y 

(5.5) lim b'"'(x)bn(y)i'"'•n(aN(sm) + x, aN(sn) + y) = I(sm, x; sn, y), 
N-+oo 

b'"'(x) - -
(5.6) lim -b ( ) sm,n(aN(sm) + x, aN(sn) + y) = S(sm, x; Sn, y). 

N-+oo ny 

We start to prove this lemma by showing 

. b'"'(x) 
(5.7) J~oo bn(y) Ptn-tm (aN(sm) + x, aN(sn) + y) = P(sm, x; Sn, y). 

By ( 4.1) and the fact 

aN(sm) +X = y'2N + X + O(T-1) 
Crn ../2N1/6 N ' 

T(n) = .!!.!::.._ + O(T-2 ) 
TN N ' 
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for large N, we have 

where we have used (5.3). Then we have (5.7). 
From (3.8), (4.2), (4.6) and (4.7), we have 

with 

S (mn)( ) 2 x,y 

where B(k) = ~- Since 
(2k+l)! 

B(k) = (~) 114 (l O (lk-£1)) B(£) £ + k + £ ' 

by the same argument to show (5.7) we have 

(5.8) 

(5.6) is derived from (5.7) and (5.8). 
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From (4.6) and (4.7), by calculations with (4.10), we have 

bm(x )bn(y )~!>);'J2p(x )~Pt~2p+l (y) 

3/2 T (2 )T(n) ( Y ) = -2 TN/2+ e P 'PN+2p -
p JN + 2p+ 1 Cn 

X~ B(N/2 + k) e(2k+l)T(m) (~) 
~ B(N/2 + p) 'PN+2k+l Cm . 
k=p 

From (4.9) we obtain (5.5) by the same procedure as above. 
From ( 4.2), by calculations with (3.3) and 

e-y2
/ 2 He+l (y) = -2 d~ ( e-y2

/ 2 He(y)) + 2£e-y2
/ 2 He- 1 (y), 

we have 

Using the fact that 

we obtain (5.4). This completes the proof of Lemma 5. 
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