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Abstract. 

Directed polymers in random environment can be thought of as 
a model of statistical mechanics in which paths of stochastic pro
cesses interact with a quenched disorder (impurities), depending on 
both time and space. We review here main results which have been 
obtained during the last fifteen years, with proofs to most of the re
sults. The material covers the diffusive behavior of the polymers in 
weak disorder phase studied by J. Imbrie, T. Spencer, E. Bolthausen, 
R. Song and X. Y. Zhou [11, 3, 25], and localization of the paths in 
strong disordered phase recently obtained by P. Carmona, Y. Hu, 
and the authors of the present article [4, 5]. 
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We start with an informal description of the situation we will discuss 
in these notes. Imagine a hydrophilic polymer chain wafting in water. 
Due to the thermal fluctuation, the shape of the polymer should be 
understood as a random object. We now suppose that the water contains 
randomly placed hydrophobic molecules as impurities, which repel the 
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hydrophilic monomers which the polymer consists of. The question we 
address here is: 

(1.1) 
How do the impurities affect the global shape of the polymer chain? 

We try to answer this question in a mathematical framework. However, 
as is everywhere else in mathematical physics, it is very difficult to do so 
without compromising with a rather simplified picture of the real world. 
Here, our simplification goes as follows. We first suppress entanglement 
and U-turns of the polymer; we shall represent the polymer chain as a 
graph { (j, Wj )}j=l in N X zd' so that the polymer is supposed to live 
in (1 +d)-dimensional discrete lattice and to stretch in the direction of 
the first coordinate. Each point (j, Wj) E N X zd on the graph stands 
for the position of j-th monomer in this picture. Secondly, we assume 
that, the transversal motion { Wj }j=1 performs a simple random walk in 
zd, if the impurities are absent. We then define the energy of the path 
{(j,wi)}J=l by 

n 

(1.2) -f3L>l(j,wj), 
j=l 

where {3 = 1/T > 0 is the inverse temperature and {71(n,x): n 2:: 1, x E 

'!ld} is a real i.i.d. random variables, with 77( n, X) describing the presence 
(or strength) of an impurity at site (n, x). The typical shape {(j, Wj )}j=1 
of the polymer is then given by the one that minimizes the energy (1.2). 
Let us suppose for example that 77( n, x) takes two different values + 1 
("presence of a water molecule at ( n, x)") and -1 ("presence of the 
hydrophobic impurity at (n, x)"). Then, the energy of the polymer is 
increased by +{3 each time a monomer is in contact with the impurity 
(71(j,wj) = -1). Therefore, the typical shape of the polymer for each 
given configuration of { 77(j, x)} is given by the one which tries to avoid 
the impurities as much as possible. The purpose of these notes is to 

introduce rigorous results which answer (1.1) roughly as follows. 

(a): If d 2:: 3 and {3 small enough, the impurities do not affect the 
global shape of the polymer (the weak disorder phase). 

(b): If either (i): d ~ 2 and {3 "I 0 or (ii): d 2:: 3 and {3large enough1, 

then, the impurities change the global shape of the polymer dras
tically (the strong disorder phase). 

1To be precise, there are some exceptions. See Remark 2.2.1 below. 
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1.2. Simple random walk model for directed polymers 

We now put the informal description given in section 1.1 into a math
ematical framework. As we mentioned before, the framework can be 
thought of as a model in statistical mechanics. However, no prior knowl
edge of statistical mechanics is needed in this paper. The model we 
consider here is defined as a random walk in a random environment. 
We first fix notation for the random walk and the random environment. 
Then, we introduce the polymer measure. 

• The random walk: ( { Wn }n>o, P) is a simple random walk on the d
dimensional integer lattice zd. :More precisely, we let n be the path space 
0 = {w = (wn)n>oiWn E 7L,d,n;::: 0}, :F be the cylindrical a--field on 0, 
and, for all n ;:=: 0, Wn : w 1--+ Wn be the projection map. We consider the 
unique probability measure P on (0, :F) such that w1 -wo, ... , Wn -wn-1 
are independent and 

P{wo = 0} = 1, P{wn -Wn-1 = ±8j} = (2d)-I, j = 1, 2, ... , d, 

where 81 = (8k1 )~=l is the j-th vector of the canonical basis of zd. In 
the sequel, P[X] denotes the P-expectation of a r.v.(random variable) 
X on (0, :F, P) . 

• The random environment: "'= {ry(n,x): n EN, X E zd} is a se
quence ofr.v.'s which are real valued, non-constant, and i.i.d.(independent 
identically distributed) r.v. 's defined on a probability space (H, Q, Q) 
such that 

(1.3) Q[exp(,Bry(n,x))] < oo for all ,8 E R 

Here, and in the sequel, Q[Y] denotes the Q-expectation of a r.v. Yon 
(H,Q,Q). 

• The polymer measure: For any n > 0, define the probability mea
sure J.ln on the path space (0, :F) by 

where ,8 > 0 is a parameter (the inverse temperature) and 

(1.5) 

is the normalizing constant (the partition function). 
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The polymer measure f..Ln can be thought of as a Gibbs measure on 
the path space (0, :F) with the Hamiltonian (1.2). We stress that the 
random environment 'Tl is contained in both Zn and f..Ln without being 
integrated out, so that they are r.v.'s on the probability space (H, Q, Q). 
The polymer is attracted to sites where the random environment is pos
itive, and repelled by sites where the environment is negative. 

Remark 1.2.1. This model was originally introduced in physics 
literature [10] to mimic the phase boundary of Ising model subject to 
random impurities. Later on, the model reached the mathematics com
munity [11, 3], where it was reformulated as above. 

Here are two standard choices for the distribution of ry( n, x). 

Example 1.2.1. Bernoulli environment ([3, 11, 25]); This is 
the case with 

Q{ry(n,x) = -1} = p > 0, Q{ry(n,x) = +1} = 1- p > 0. 

In the physical picture described in section 1.1, ry( n, x) = -1 ( resp. 
ry( n, x) = + 1) can be interpreted as the presence of a hydrophobic im
purity (resp. a water molecule) at site (x, n). 

Example 1.2.2. Gaussian environment ([4]); This is the case 
in which ry( n, x) is a standard normal random variable; 

1 
Q{ ry( n, x) E dt} = . to= exp( -t2 j2)dt. 

v27r 

2. Some typical results for the simple random walk model 

In this section, we present some typical results for the simple random 
walk model. Here, we focus on the conceptual issues on these results 
and do not go into the proofs. 

We now introduce an important quantity for this model, which ap
pears in the assumptions of the results we present. Let >..((3) be the 
logarithmic moment generating function of ry( n, x), 

(2.1) >..((3) = ln Q [exp(f3ry( n, x))], (3 E R 

The function >..((3) can be explicitly computed for some typical choice 
of the distribution of ry(n,x). For example, >..((3) = ln(pe-.8 + (1-p)e.B) 
for the Bernoulli environment (Example 1.2.2) and >..((3) = ~(32 for the 
Gaussian environment (Example 1.2.2). 
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2.1. The weak disorder phase 

The results we present in this subsection show that the impurities do not 
change the transversal fluctuation of the polymer if d ;::: 3 and (3 is small 
enough. We first recall the following fact about the return probability 
1r d for the simple random walk: 

def { - 1 if d ::; 2, 
(2.2) 7fd =· P{wn = 0 for some n 2: 1} ~ 1 if d 2: 3. 

More precisely, it is known that 7f d+l < 7f d for all d 2: 3 [22, Lemma 1] 
and that n 3 = 0.3405 ... [26, page 103]. In particular, 7rd ::; 0.3405 ... for 
all d;::: 3. 

Theorem 2.1.1. (The diffusive behavior; [11, 3, 25]) Sup
pose that d;::: 3 (hence 7rd < 1} and that 

(2.3) 'Yl(f3) d,g. >.(2(3)- 2>.((3) < ln(1/nd)· 

Then, 

(2.4) 

Note that 'Yl ((3) is increasing on [0, oo) and 'Yt (0) = 0 so that the 
condition in (2.3) does hold if (3 is small. Proof of Theorem 2.1.1 is given 
in section 3.2 

Example 2.1.1. Consider the Bernoulli environment (Exam
ple 1.2.1). In this case, it is not difficult to see from direct computations 
that lim 'Yt(f3) = -ln(1- p). This shows that (2.3) holds for all (3 2: 0 

!3/oo 
if p < 1 - 1fd· 

Example 2.1.2. Consider the Gaussian environment (Exam
ple 1.2.2). Then, 'Yt(f3) = (32 and hence (2.3) holds if (3 < Jln(1/nd)· 

Remark 2.1.1. The first rigorous proof of Theorem 2.1.1 was 
obtained by J. Z. Imbrie and T. Spencer [11] in the case of Bernoulli 
environment. Soon afterwards, a more transparent proof based on the 
martingale analysis was given by E. Bolthausen [3]. The martingale 
proof was then extended to general environment under condition (2.3) 
by R. Song and X. Y. Zhou [25]. By the argument in [3, 25], it is possible 
to get a much more precise statement than (2.4). In fact, under the same 
assumption in Theorem 2.1.1, the following central limit theorem holds; 
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for all f E C(!Rd) with at most polynomial growth at infinity, 

(2.5) 

lim J.tn [! (wn/v'n)] = (211")-d/2 r f (x!v'd) exp(-lxl2 /2)dx, Q-a.s. 
n/oo JJRd 

The diffusive behavior (2.4) follows from (2.5) by choosing f(x) = lxl 2 • 

In [3], (2.5) is obtained for the Bernoulli environment only. However, 
with the help of the observation made in [25], it is not difficult to extend 
the central limit theorem to general environment under the assumption 
in Theorem 2.1.1. We will sketch the proof of (2.5) in Remark 3.2.4 
below. 

We now recall the following well known fact for the simple random 
walk, i.e., the case of f3 = 0; 

(2.6) maxP{wn = x} = O(n-df2 ), as n /' oo. 
xEZd 

The decay rate n-d/2 in (2.6) can be understood as a manifestation of 
the fact that the possible pOsition of Wn is spread over a ball in zd with 
radius const. x y'n. 

For f3 =f. 0, we can still prove (2.6) in a weaker form as follows. 

Theorem 2.1.2. (Delocalization;[4, 5]) Suppose that d 2: 3 
and that f3 is small enough so that (2.3} holds. Then, 

(2.7) 

and thus, 

(2.8) lim maxJ.tn-dwn = x} = 0, Q-a.s. 
n/ooxEZd 

Proof of Theorem 2.1.2 is given in section 3.3. 

Remark 2.1.2. Theorem 2.1.2 was obtained for Gaussian en
vironment by P. Carmona andY. Hu [4] and then for general environ
ment by F. Comets, T. Shiga and N. Yoshida [5]. 

2.2. The strong disorder phase 

The result we present in this subsection shows that the behavior of the 
polymer is quite different from the usual random walk if either (i) d = 1, 2 
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and fJ =/= 0 or (ii) d ~ 3 and fJ is large2 For this model, it is rather recent 
that the phenomena of this kind began to be studied rigorously. 

We now present a result which is in sharp contrast with (2.6) and 
(2.8). 

Theorem 2.2.1. (Localization to the favorite sites [4, 5]) 
Suppose either that 

(i): d = 1,2 and fJ =/= 0 or 
(ii): d ~ 1 and 

(2.9) 72 (fJ} d~. {3>.' (fJ) - >.(fJ) > ln(2d). 

Then, there exists a constant c = c( d, fJ) > 0 such that 

(2.10) lim max:JLn-dwn = x} ~ c, Q-a.s. 
n/'ooxEZd 

The bound (2.10) suggests that the position of wn, viewed under the 
polymer measure Jl.n-1, is concentrated at a small region (the "favorite 
sites") with the size 0(1) as n /' oo. 

Note that 72 is increasing on [0, oo) and therefore that (2.9) holds 
for large enough fJ if 

(2.11) lim 'Y2(fJ) > ln(2d). 
(3/'oo 

We see from Theorem 2.1.2 and Theorem 2.2.1 that, if d ~ 3 and (2.11), 
then a phase transition occurs as fJ increases from the weak disorder 
phase to the strong disorder phase. 

Theorem 2.2.1 under condition (ii) is proved in section 3.4. For the 
proof of this theorem under condition (i), we refer the reader to [4, 5]. 

Remark 2.2.1. For d ~ 3, there are exceptional choices of 
the distribution of ry(n, x) like the one discussed in Example 2.1.1, for 
which (2.10) does not hold even for large fJ (in fact, (2.8) holds for all fJ); 
to be on the safe side for this statement, one can consider unbounded 
environments, or bounded ones without mass on the top point of its 
support. In this case, one has (2.11), and hence (2.9) for large enough 
{3. See Example 2.2.1 and Example 2.2.2 below. 

Example 2.2.1. Consider the Bernoulli environment (Exam
ple 1.2.1). Then, it is not difficult to see from direct computations that 
lim 72 (/3) = ln(1/(1- p)). This shows that (2.9) holds for large enough 

f3/'oo 

fJ if p > 1- 21d" 

2This is again, up to some exceptions See Remark 2.2.1 below. 
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Example 2.2.2. Consider the Gaussian environment (Exam
ple 1.2.1). Then, "(2 (/)) = /)2 /2 and hence (2.9) holds if/)> J2ln(2d). 

Remark 2.2.2. Theorem 2.2.1 was obtained for Gaussian en
vironment by P. Carmona andY. Hu [4] and then for general environ
ment by F. Comets, T. Shiga and N. Yoshida [5]. 

2.3. The normalized partition function and its positivity in 
the limit 

We now introduce an important process on (H, Q, Q) ((2.12) below), 
which is a martingale in fact. The large time behavior of this process 
characterizes the phase diagram of this model and for this reason, many 
of results on the model can be best understood from the viewpoint of 
this process. 

Define the normalized partition function by 

(2.12) Wn = exp( ->.((J)n)Zn, n;::: 1. 

We then have 

Lemma 2.3.1. 

(2.13) 

The limit 

Woo= lim Wn 
n/'oo 

exists Q-a.s. Moreover, there are only two possibilities for the positivity 
of the limit; 

(2.14) Q{W oo > 0} = 1 , 

or 

(2.15) Q{W oo = 0} = 1. 

The proof of this lemma is standard and is given in section 3.1. 
The above contrasting situations (2.14) and (2.15) can be consid

ered as the characterization of the weak disorder phase and the strong 
disorder phase, respectively. In fact, as are shown in Theorem 3.3.1 be
low, (2.14) implies (2.7), while (2.15) implies a weaker form of (2.10) 
that L:n>l maxxEZd f.Ln-1 { Wn = x} = oo, Q-a.s. It is even expected that 
(2.14) implies (2.5) and that (2.15) implies (2.10). 

We close this subsection with the following result, which, in consis
tency with what we discuss above, describes the basic phase diagram of 
the model. 

Theorem 2.3.2. (a): Ford;::: 3, (2.3} implies (2.14}. 
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(b): Either (i} or (ii} in Theorem 2.2.1 implies (2.15}. 

Proofs of Theorem 2.3.2 (a) and (b) are given in Sections 3.2 and 
3.4, respectively. 

Remark 2.3.1. For d 2:: 3, it is an interesting question to 
find a characterization of (2.14) (or (2.15)) in terms of the distribution 
of rJ(n, x). As is shown in section 3.1, (Wn)n;::: 1 is a mean-one, positive 
martingale on (H, Q, Q). In this respect, this question has somewhat 
similar flavor to some other topics in the probability theory such as 
Kakutani's dichotomy for infinite product measure (e.g.,[8, page 244]), 
nontriviality of the limit of the normalized Galton-Watson process [1] 
and of multiplicative chaos [14]. 

3. Martingale analysis on the simple random walk model 

This section is devoted to the proofs of the results introduced in the 
previous one. We define an increasing sequence of sub a-fields of g by 

(3.1) Yn = a[7J(j, X) ; j :::; n, X E zd], n 2:: 1. 

A major technical advantage of the model is that we can relate objects 
of interest such as 

to some martingale on (H, Q, Q) with respect to the filtration (Qn)· As 
is very easy to guess, what makes this possible is the independence of 
the environment { 7J( n, x)}, especially in the time parameter n. We will 
see from the arguments below, the martingale analysis plays a key role 
in everything we do. 

3.1. Proof of Lemma 2.3.1 

We first show that (Wn)n>l is a mean-one, positive (Qn)-martingale on 
(H, 9, Q). Here and in what follows, we use the following notation. 

(3.2) 

(3.3) 

e(n, x) e(n, x, 7J) = exp (f37J(n, x) - .A((3)) , 

el,n(w, TJ) = II e(j,wj)· 
l:<=;j:<=;n 

Note that Wn = P[el,n] in this notation. For any fixed w E 0, e1,n is 
the product of mean-one i.i.d. random variables on (H, Q, Q) and hence 
is a mean-one, positive (Qn)-martingale. This implies the martingale 
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property of Wn. By the martingale convergence theorem, the limit W 00 

exists Q-a.s. It is clear that the event {W 00 = 0} is measurable with 
respect to the tail a-field 

n a[ry(j,x); j 2: n, X E zd]. 
n::::1 

Therefore by Kolmogorov's zero-one law, only (2.14) and (2.15) are the 
possibilities. D 

3.2. The second moment method 

In this subsection, we give proofs to Theorem 2.1.1 and Theorem 2.3.2 
(a). The proofs are based on the L 2 analysis of certain martingales on 
(H, Q, Q). This approach was introduced by E. Bolthausen [3] and then 
investigated further by R. Song and X. Y. Zhou [25]. We summarize the 
main step in their analysis as Proposition 3.2.1 below. The proposition 
deals with a process (Mn)n::::l on (H,Q,Q) of the form; 

(3.4) 

Here, el,n has been introduced by (3.3) and cp : N X zd ---t lR is a function 
for which we assume the following properties: 

(Pl): There are constants Ci,P E [O,oo), i = 0, 1,2 such that 

(3.5) Jcp(n,x)J:s;Co+CllxiP+C2nP12 forall(n,x)ENxzd. 

(P2): ci>n d~. cp(n, wn), n 2: 1 is a martingale on (0., :F, P) with 
respect to the filtration 

(3.6) 

It is easy to see from (P2) that (Mn)n::::l is a (Qn)-martingale on (H, Q, Q). 
The following proposition generalizes [3, Lemma 4] and [25, Theorem 2]. 

Proposition 3.2.1. Consider the martingale (Mn)n>l defined 
by {3.4}. Suppose that d 2: 3 and that (2.3}, {P1}, {P2} are -satisfied. 
Then, there exists"' E [O,p/2) such that 

(3.7) m!1X !Mil = O(n"'), as n /' oo, Q-a.s. 
0:5J:5n 

If in addition, p < !d- 1, then 

(3.8) lim Mn exists Q-a.s. and in L2(Q). 
n/'oo 
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Remark 3.2.1. As will be seen from the way (3.7) is used 
below, it is crucial that the divergence of the right-hand-side is strictly 
slower than nP12 , and this is where the property (P2) is relevant. If we 
drop the property (P2) from the assumption of Proposition 3.2.1, we 
then have a larger bound: 

(3.9) Mn = O(nP12 ), as n / oo, Q-a.s. 

This larger bound from the weaker assumption can be obtained v1a 
Proposition 3.2.1 as in the proof of (2.1) in [3]. 

We will prove Proposition 3.2.1later on. Before doing so, we explain 
how this proposition is used to derive the desired conclusions in Theorem 
2.1.1 and in Theorem 2.3.2 (a). 

• Theorem 2.3.2 (a) is proved by choosing r.p = 1 in Proposition 
3.2.1. By (3.8), Mn = Wn converges in L2 (Q). In particular, 

Q[W 00 ] = lim Q[Wn] = 1. 
n/oo 

This implies Q{W 00 > 0} > 0 and hence that Q{W 00 > 0} = 1 by the 
zero-one law. 

• To prove (2.4), we take r.p(n,x) = lxl 2 - n (hence p = 2). Then, 
by Theorem 2.3.2 (a) and Proposition 3.2.1, there exists ""E [0, 1) such 
that 

We now turn to the proof of Proposition 3.2.1. Here, we follow [25]. 
We present a key step in the proof as a lemma. 

Lemma 3.2.2. Suppose that d 2: 3 and that (2.3), (P1), (P2) 
are satisfied. Then, 

(3.10) Q[M~] = O(bn), as n / oo, Q-a.s. 

where bn = 1 ifp < ~ -1, bn =Inn ifp = ~ -1, and bn = nP-~+l if 

p>~-1. 

Remark 3.2.2. 
"L_lS,jS,njP-~ = O(bn)· 

d 
p- 2• 

The choice of bn is made in order to have 
See (3.15) below for the reason of the power 

Proof of Lemma 3.2.2: On the product space (f22, :F02), we consider 
the probability measure P02 = P02 (dw, dw), that we will view as the 
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distribution of the couple (w, w) with w = (wk)k~o an independent copy 
of w = (wk)k~O· We write Xi 1 , ••• ,ik for the indicator function of the event 

We first expand the second moment Q[M;] as follows: 

(3.11) 

Q[M~] = cJ>~ + L (e'Yl(.B)- 1)k 

To see this, we write M; in terms of the independent copy: 

P[cl>nel,n]2 

(3.12) P02 [ci>n(w )ci>n(w)el,n(w, ry)el,n(w, 77)]. 

It follows from (3.12) that 

(3.13) 

On the other hand, with notation (3.2), we have that 

ane hence that 

(3.14) 

IT ( 1 + (e·n(.B)- 1)Xi) 
l~j~n 

1 + L (e'n(,B) -1)k L Xi1, ... ik· 
l~k~n l~i1 < ... <ik~n 

The expansion (3.11) is now obtained by inserting (3.14) into (3.13) and 
by the martingale property of cl>n. 

Let us fix i 1 , ... ,ik for a moment. We then have by (3.5) that 

where 

A· · - P 1812 [lw· l2vx· · ] B· · - iv P 02 [x· · ] tt, ... ,tk - 'l.k 'l.!,···,'tk ' 't!,···,tk - k 'tl,···,tk 0 

We now bound Ai1 , •.• ,ik from above. As will be seen from the way it is 
done, the same bound (up to the multiplicative constant) is obtained for 
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(3.15) 
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< Cn-~P[Iwni 2P] 
< GnP-~ 

' 
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where we have used (2.6) on the second line. We write it = it - it-b 
£ = 1, 2, .. , k with i 0 = 0. We then see from the Markov property and 
(3.15) that 

Ait, ... ,ik 

< k2p-l ""' P02 [lw· - w· I2PX. · l ~ ~.e ~l-1 'l..t, ... ,t.k 

l::Ol::Ok 

k2p-1 L ( II p®2[Xj,,J) p®2[iwJ£12pXjt] ( II p®2[Xj,,J) 
l::Ol::Ok l::Om<£ t<m::Ok 

d 

< Ck2p-1 L jf-2 II p®2[Xj,.] 
l::Ol::Ok l<m<k 

moil 

Note that 'E1 ::;j:=;njP-~ = CJ(bn) and that 'Ej~l P 02 [xj] 
Therefore, we obtain from what we have seen above that 

p®2[«1>· (w)2x· . ] 'tk 'l.t, ... ,'l..k 

< Ck2p-1 L L . . . L 
l::Ot::Ok l::Oj1::0n 1::0jk::0n 

By this and (3.11), we now arrive at 

.p-~ 
)£ 

l<m<k 
moll 

The summation in k converges, thanks to the assumptions d ~ 3 and 
(2.3). This finishes the proof of (3.10). D 
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Remark 3.2.3. We see from the proof of (3.10) that 

This shows that supn~l Q[W~] < oo if and only if d 2:: 3 and (2.3) holds. 

It is now, easy to complete the proof of Proposition 3.2.1. We set 
M~ = maxo:::;j::<::;n IMil to simplify the notation. For (3.10), it is sufficient 
to prove that for any 8 > 0, 

(3.16) Mn* = /""'(n° Ibn) / Q v y un as n oo, -a.s., 

where bn is the £ 2-bound in Lemma 3.2.2. Moreover, by the mono
tonicity of M~ and the polynomial growth of n° ..;r;;:, it is enough to 
prove (3.16) along a subsequence { nk : n 2:: 1} for some power k 2:: 2. 
Now, take k > 1/8. We then have by Chebychev's inequality, Doob's 
inequality and Lemma 3.2.2 that 

Q{M~k > nkti~} < Q{M~k > n~} 
< Q[(M~k)2]/(n2 bnk) 

< 4Q[M~k]/(n2bnk) 

< cn-2 • 

Then, it follows from the Borel-Cantelli lemma that 

Q{M~k :=:; nktivr;;:;; for large enough n's} = 1. 

This ends the proof of (3.7). 
The second statement (3.8) in Proposition 3.2:1 follows from Lemma 

3.2.2 and the martingale convergence theorem. This completes the proof 
of Proposition 3.2.1. D 

Remark 3.2.4. With Proposition 3.2.1 in hand, we are no 
longer far away from the central limit theorem (2.5). Following [3], we 
now explain a route to (2.5). 

We let a = (aj)j=1 and b = (bj)j= 1 denote multi indices in what 
follows. We will use standard notation lal1 = a1 + ... +ad, xa = x~1 · · · x~d 

and (:X )a = ( 8~1 ) a 1 
• • • ( a~d) ad for x E ~d. It is enough to prove (2.5) 

for any monomial of the form f(x) = xa. We will do this by induction 
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on lah. We introduce 

r.p(n,x) (:e) a exp(O · x- np(O))l
0
=

0
, 

'lj;(n,x) = (~)a exp (o · x -n~) I , 
80 2d 0=0 

where p(O) = ln ( ~ L:1::;j::;d cosh(Oj)). Clearly, the function <p satisfies 

(P1) and (P2) with p = lal 1. On the other hand, we see from the 
definition of 'lj; that 

(3.17) 

Moreover, it is not difficult to see [3, Lemma 3c] that r.p(n, x) = xa + 
<po(n, x) and 'lj;(n, x) = xa + 'l/Jo(n, x) where 

'Po(n, x) = 

for some Aa(b,j) E R In particular, 'Po and '¢0 have the same coefficients 
for xbnj with lbl1 + 2j = !all· We now write J.tn[(wn/ y'n)a] as 

1 
Wn P[r.p(n,wn)el,n]n-1al1 / 2 

1 
- Wn P['¢o(1, Wn/ vn)el,n] 

1 + Wn P[('l/Jo(n,wn)- 'Po(n,wn)) el,n]n-lall/2 

As n / oo, the second term converges to (27r)-d/2 JJRd(xj-Jd)a 
x e-lxl 2 12dx by the induction hypothesis and (3.17). The first and the 
third terms on the right-hand side vanish as n / oo. In fact, we use 
Theorem 2.3.2 (a:), Proposition 3.2.1 for the first term and Theorem 
2.3.2 (a), (3.9) for the third term. 

3.3. The replica overlap 

In this subsection, we prove Theorem 2.1.2 as a consequence of Theorem 
2.3.2 (a) and Theorem 3.3.1 below. 

For n ~ 1, we introduce the following random variables on (H, Q, Q); 

In= I: 1-tn-dwn = x} 2 , 

xEZd 
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It is clear that 

(3.18) 

Both Theorem 2.1.2 and Theorem 2.2.1 deal with the large time behavior 
of Jn, n / oo. As we will see below, In is better suited for the martingale 
analysis. For this reason, we will prove these theorems by studying In, 
rather than Jn itself. 

We now mention to an interpretation of In. On the product space 
(02 , :PZJ2 ), we consider the probability measure 1/~2 = J-L~ 2 (d!..v, dw), that 
we will view as the distribution of the couple (w, w) with W = (wk)k>O 
an independent copy of w = (wk)k~o with law f-Ln· We then have that-

(3.19) 

Hence, the summation 

(3.20) 

is the expected amount of the overlap up to time n of two independent 
polymers in the same (fixed) environment. This can be viewed as an 
analogue to the so-called replica overlap often discussed in the context 
of disordered systems, e.g. mean field spin glass, and also of directed 
polymers on trees [7]. 

The large time behavior of (3.20) and the normalized partition func
tion Wn are related as follows. 

Theorem 3.3.1. Let (3 ¥0. Then, 

(3.21) {Woo= 0} = {LIn= oo}, Q-a.s. 
n~l 

Moreover, if Q{W 00 = 0} = 1, there exist c1 , c2 E (0, oo) such that 
Q-a.s., 

for large enough n 's. 

We first note that Theorem 2.1.2 is now obtained as a consequence 
of Theorem 2.3.2 (a), (3.21) and (3.18). 

Proof of Theorem 3.3.1: To conclude (3.21) and (3.22), it is enough 
to show the following (3.23) and (3.24): 

{Woo= 0} C {LIn= oo}, Q-a.s. 
n~l 

(3.23) 
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There are Ct, c2 E (0, oo) such that 

(3.24) {2: In= oo} C {(3.22) holds}, Q-a.s. 
n;::>:1 

The proof of (3.23) and (3.24) are based on Doob's decomposition for the 
process -ln Wn. It is convenient to introduce some more notation. For 
a sequence (an)n;::>:o (random or non-random), we set ~an =an- an-1 
for n 2: 1. Let us now recall Doob's decomposition in this context; any 
(Qn)-adapted process X = {Xn}n>o C L1(Q) can be decomposed in a 
unique way as 

Xn = Mn(X) + An(X), n 2: 1, 

where M(X) is an (9n)-martingale and 

Mn(X) and An(X) are called respectively, the martingale part and com
pensator of the process X. If X is a square integrable martingale, then 
the compensator An(X2 ) of the process X 2 = {(Xn)2 }n;::>:o c £l(Q) is 
denoted by ( X )n and is given by the following formula: 

Here, we are interested in the Doob's decomposition of Xn = -In Wn, 
whose martingale part and the compensator will be henceforth denoted 
Mn and An respectively 

(3.25) 

To compute Mn and An, we introduce Un = JLn-1 [e(n, Wn)] - 1 (Recall 
(3.2)). It is then clear that 

(3.26) 

and hence that 

(3.27) ~An = -Q[ln(1 + Un)IYn-1], 

~Mn = -ln(1 + Un) + Q[ln(1 + Un)IYn-1]· 

In particular, 

(3.28) 
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We now claim that there is a constant c E (0, oo) such that 

(3.29) 

Indeed, both follow from (3.27), (3.28) and Lemma 3.3.2 below; {ei}, 
{ ai} and Q in the lemma play the roles of { e(n, z H1z1 1 :-s;n, {JLn-1 (wn = 
z)}lzl 1 $n and Q[ · l9n-1]· 

We now conclude (3.23) from (3.29) as follows (the equalities and 
the inclusions here being understood as Q-a.s.): 

{~~?· < oo} c {A=< oo, (M)= < oo} 
C { Aoo < oo, lim Mn exists and is finite} 

n/'oo 

C {Woo> 0}. 

Here, on the second line, we have used a well-known property for mar
tingales, e.g. [8, page 255, (4.9)]. 

Finally we prove (3.24). By (3.29), it is enough to show that 

(3.30) { . ln Wn } {Aoo = oo} C hm --A = 1 , Q-a.s. 
n/'oo n 

Thus, let us suppose that A00 = oo. If ( M )00 < oo, then again by [8, 
page 255, (4.9)], lim Mn exists and is finite and therefore (3.30) holds. 

n/'oo 
If, on the contrary, ( M )00 = oo, then 

_ill Wn = Mn ( M )n + 1 ~ 1 Q 
( ) ~ -a.s. 

An M n An 

by (3.29) and the law of large numbers for martingales, see [8, page 255, 
(4.10)]. This completes the proof of Theorem 3.3.1. 0 

Lemma 3.3.2. Let ei, 1 :::; i :::; m be positive, non-constant 
i.i.d. random variables on a probability space (H, 9, Q) such that 

Q[et] = 1, Q[e~ + ln2 e1] < oo. 

For {aih$i$m C [0, oo) such that L:l<i<m ai = 1, define a centered 
random variable U > -1 by U = L: 1 :-s;i:-s;~ aiei- 1. Then, there exists a 
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constant c E (0, oo), independent of {aih~i~m such that 

(3.31) < Q [2~2u]' 
(3.32) < -Q [ln(1 + U)] ::=; c L 

(3.33) Q [1n2 (1 + U)] :::; c L a;. 
19~m 

The readers are invited to try the proof of this lemma as an inter
esting exercise. A solution can be found in [5]. 

3.4. The fractional moment method 

In this subsection, we prove Theorem 2.2.1(b) and Theorem 2.3.2(b). 
Both are obtained by dealing with the fractional moment Q[W!], 0 < 
(J < 1. To be more precise, we will prove that for some () E (0, 1) and 
an/' oo, 

(3.34) 
- 1 9 
lim -ln Q[WnJ < 0. 

n/'oo an 

Proof of Theorem 2.2.1 under condition (ii): We first assume (3.34) 
with an = n for a moment to see that it implies (2.10). We then have 
by the Borel-Cantelli lemma that there is c3 E (0, oo) such that 

(3.35) 
-1 
lim -ln Wn < -c3, Q-a.s. 

n/'oo n 

Then, by (3.18) and (3.22) we conclude that 

> 

> 

-1"' lim - L.J h 
n/'oo n l~k~n 

- lim - 1-ln Wn 
n/'oo c2n 

> c3/c2. 

We now turn to the proof of (3.34) with an= n. Recall the notation 
(3.2) and define 

W~,m = P [ IJ e(j + n, x + Wj )] , n, m ;::: 1. 
l~j~m 
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For () E (0, 1 ), by the subadditive estimate ( u + v / 1 ::; u0 + v0 , u, v > 0, 
we get 

W~::; (2d)-0 2::: e(1, x) 0(Wf,n_ 1)0. 
x,lxh=1 

Since Wl,n- 1 has the same law as Wn-1, 

where r(()) = (2d) 1- 0Q[e(1, x) 0 ]. Note that() f---> ln r(()) is convex, contin
uously differentiable, and that ln(2d) = ln r(O) > ln r(1) = 0. Therefore 

r(e) < 1 for some () E (0, 1) if and only if 0 < dl:~(O) 10= 1 , which is 

equivalent to 1'2 ((3) > ln(2d). D 

Proof of Theorem 2.3.2(b): We will check (3.34) where an = n 113 

if d = 1 and an = ~ if d = 2. In this respect, we first prove an 
auxiliary lemma. 

Lemma 3.4.1. For () E [0, 1] and A c zd, 

Proof: Repeating the argument in [19, page 453], we see that 

IAIJn > IAI 2::: J-ln-1(Wn = z) 2 

zEA 

> J-ln-1(Wn E A) 2 

(1- J-ln-1(wn tf_ A)) 2 

> 1- 2J-tn-1(wn tf_ A) 

> 1- 2J-tn-1(wn tf_ A)0. 

Note also that 

Q [W~-11-ln-1(wn tf_ A) 0 ] < Q [Wn-1J-ln-1(wn tf_ A)] 0 

P(wn tf_ A)0. 

We therefore see that 

IAIQ [W~-1In] > Q [W~_I] - 2Q [W~-11-ln-1(wn tf- A) 0 ] 

> Q [W~_ 1 ] - 2P(wn tf_ A)0. 

D 



lJirected })oly~ers 135 

Assume now that () E (0, 1), and define a function f : ( -1, oo) ---t 

[0, oo) by 

f(u) = 1 + Ou- (1 + u) 9 • 

It is then clear that there are constants Ct, c2 E (0, oo) such that 

(3.37) 
c u2 

2 ~ u :::; f(u):::; c2u2 for all u E ( -1, oo). 

We see from (3.26), (3.37) and (3.31) that 

Q[.6.W~I9n-1] = W~-1Q[(1 + Un) 9 -1l9n-1] 

= -W~-1Q[J(Un)l9n-1] 
< -c3W~_1ln. 

We therefore have by (3.36) that 

9 ( c3 ) [ 9 ] 2c3 9 (3.38) QWn :::; 1 - TAT Q wn-1 + lAf P(wn f/. A) . 

Ford= 1, set A= ( -n213 , n213 ]. Then, 

P(wn f/. A)= P (l~/2 1 ~ n116 ):::; 2exp(-n~3 
), 

so that (3.38) reads, 

9 ( c3 ) [ 9 ] On113 
QWn:::; 1- 2n2/3 Q Wn_ 1 +4c3 exp(--2-). 

It is not difficult to conclude (3.34) with an = n 113 from the above. 
For d = 2, we set 

to get (3.34) with an = vlfiiTi: in a similar way as above. 

4. Some related models 

D 

The simple random walk model which we have discussed so far has a 
number of close relatives in the literature. We now mention some of 
them. 
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4.1. Gaussian random walk model 

This model considered in M. Petermann [23] and by 0. Mejane [20]. 
The polymer measure for this model is defined by the same expression 
(1.4). Here, however, the random walk (wn)n;:=:1 is the summation of 
independent Gaussian random variables in lRd, i.e., 0 is replaced by 
0 = { w = (wn)n>Oi Wn E JRd' n 2 0} and p is the unique measure on 
(0, F) such that =.,1 - w0, ... , Wn - Wn-1 are independent and 

Moreover, as the random environment, one takes a random field 

{1J(n,x); (n,x) EN x lRd} 

with a certain mild correlation in x variables. A major technical advan
tage in working with the Gaussian random walk rather than the simple 
random walk is the applicability of a Girsanov-type path transformation, 
which plays a key role in analyzing this model. 

4.2. Brownian directed polymer 

This model is introduced in [6] as a continuous model of directed poly
mers in random environment, defined in terms of Brownian motion and 
of a Poisson random measure. We first fix notation we use for the Brow
nian motion and Poisson random measure. Then, we introduce the poly
mer measure. We write JR+ = [O,oo). 

• The Brownian motion: Let ( { Wt h>o, P) denote a d-dimensional 
standard Brownian motion. To be more specific, we let the measurable 
space (0, F) be C(JR+ --+ JRd) with the cylindrical u-field, and P be the 
Wiener measure on (O,F) such that P{w0 = 0} = 1. 

• The space-time Poisson random measure: We let 1J denote the 
Poisson random measure on JR+ x JRd with the unit intensity, defined on 
a probability space (M, Q, Q). To make the definitions more precisely, 
we let B(JR+ x JRd) denote the class of Borel sets in JR+ x JRd. Then, 
1J is an integer valued random measure characterized by the following 
property: If A 1 , ... ,An E B(JR+ X JRd) are disjoint and bounded, then 

Here, IAI denotes the Lebesgue measure of JRd+1. 
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• The polymer measure: We let vt denote a ''tube" around the graph 
{(s, Ws)}o<s9 of the Brownian path, 

(4.2) vt = vt(w) = {(s, x); s E (0, t], x E U(w8 )}, 

where U(x) C JRd is the closed ball with the unit volume, centered at 
x E JRd. For any t > 0, define a probability measure f.Lt on the path 
space (0, F) by 

(4.3) J.Lt(dw) = exp (i~(vt)) P(dw), 

where f3 E lR is a parameter and 

(4.4) Zt = P[exp (f3ry(vt))] . 

The Brownian motion model defined above can be thought of as a natural 
transposition of the simple random walk model into continuum setting. 

Analogous results of Theorem 2.1.2, Theorem 2.2.1, Theorem 2.3.2, 
and Theorem 3.3.1 as well as an almost sure large deviation principle for 
the polymer measure are obtained for this model in [6]. The model allows 
application of stochastic calculus, with respect to both Brownian motion 
and Poisson process, leading to qualitative properties of the quenched 
Lyapunov exponent and handy formulas for the fluctuation of the free 
energy. 

Another strong motivation for the present model is its relation to 
some stochastic partial differential equations. To describe the connec
tion, it is necessary to relativize the partition function, by specifying 
the ending point of the Brownian motion at time t. Let P[·lwt = y] be 
the distribution of the Brownian bridge starting at the origin at time 0 
and ending at y at timet. Define 

(4.5) Zt(Y) = P[exp (f3ry(vt)) lwt = y](21rt)-d/2 exp{ -lyl2 /2t} . 

Then, by definition of the Brownian bridge, 

Zt = { Zt(y)dy. 
JJR.d 

Similar to the Feynman-Kac formula, one obtains [6] the following sto
chastic heat equation (SHE) with multiplicative noise in a certain weak 
sense, 

(4.6) 
dZt(Y) = ~AyZt(y)dt + (ef3- l)Zt- (y)ry(dt x U(y)) , t 2:: 0, y E JRd , 
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where dZt(Y) denotes the time differential and ~Y = ( 8~1 ) 2 + ... + ( 8~d ) 2 • 

In the literature, this equation has been extensively considered in 
the case of· a Gaussian driving noise, instead of the Poisson process TJ 

here. Although we are able to prove (4.6) only in the weak sense, let 
us now pretend that (4.6) is true for all y E JRd. We would then see 
from Ito's formula that the function ht (y) = ln Zt (y) solves the Kardar
Parisi-Zhang equation (KPZ): 

We observe that, since h has jumps in the space variable y, the non
linearity makes the precise meaning of this equation somewhat knotty. 
This equation was introduced in [15] to describe the long scale behavior 
of growing interfaces. More precisely, the fluctuations in the KPZ equa
tion -driven by a 8-correlated, gaussian noise-, are believed to be non 
standard, and universal, i.e., the same as in a large class of microscopic 
models. See [17] for a detailed review of kinetic roughening of growth 
models within the physics literature, in particular to Section 5 for the 
status of this equation. 

4.3. Crossing Brownian motion in a soft Poissonian potential 

This model is studied by M. Wuthrich [30, 31, 32], see also [28]. The 
model investigated there is described in terms of Brownian motion and 
of Poisson points. However, the Brownian motion there is "undirected" , 
in other words, the d-dimensional Brownian motion travels through the 
Poisson points distributed in space JRd, not in space-time as in the Brow
nian directed polymer. 

4.4. First and last passage percolation 

The first (resp. last) passage percolation can be thought of as an ana
logue of directed polymers at (3 = -oo (resp. (3 = +oo). In fact, we 
have for example that 

l. 1 l Z T* clef. ~ . ( . ) 1m -(3 n n= n = max ~ T]J,Wj, 
,8/'+oo wEO:wo=O 

l~j~n 

i.e.' the maximal passage time r:; in the context of the directed last 
passage percolation can be obtained as a limit of the free energy of the 
directed polymer. It is expected and even partly vindicated that the 
properties of the path with minimal/maximal passage time has similar 
feature to the typical paths under the polymer measure [16, 21, 18]. A 
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few exactly solvable models of directed last passage percolation have re
cently been worked out in dimension d = 1 [2, 12, 13]. Johansson [12] 
treats the case of geometrically distributed ry's, and Baik, Deift and Jo
hansson analyze some continuous space Poissonian directed last passage 
percolation model in connection with the longest increasing sequence of 
the random permutation [2, 13]. For these exactly solvable models, it is 
proven that the maximal passage time r;: has the following asymptotic 
form in law as n / oo: 

(4.7) 

where ci, i = 1, 2 are positive constants and X is a random variable 
with the Tracy-Widom distribution. As is well known, the Tracy-Widom 
distribution appeared in the literatures in connection with the Gaussian 
Unitary Ensemble [29]. Since then, it has increasingly realized that 
this distribution is universal as the scaling limit of many other related 
models. For this reason, we are tempted to believe that for d = 1 and 
f3 =/= 0, the free energy ln Zn of the directed polymer has the same large 
time behavior as (4.7) with Ci, i = 1, 2 depending on f3 and the choice 
of rJ [27]. 

4.5. Other models 

Directed polymers in random environment, at positive or zero tempera
ture, relate - even better, can sometimes be exactly mapped - to a num
ber of interesting models of growing random surfaces (directed invasion 
percolation, ballistic deposition, polynuclear growth, low temperature 
Ising models), and non equilibrium dynamics (totally asymmetric sim
ple exclusion, population dynamics in random environment); We refer to 
the survey paper [17] by Krug and Spohn for detailed account on these 
models and their relations. 

5. Critical exponents 

We write ~(d) for the "wandering exponent" ,i.e., the critical exponent 
for the transversal fluctuation of the path, and x( d) for the the criti
cal exponent for the longitu:dinal fluctuation of the free energy. Their 
definitions are roughly 

(5.1) sup \wi\ ~ ne(d) and lnZn- Q[lnZn] ~ nx(d) as n / oo. 
05,j5,n 

There are various ways to define rigorously these exponents, e.g. (0.6) 
and (0.10-11) in [30], (2.4) and (2.6-7-8) in [24], and the equivalence 
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between these specific definitions are often non trivial. Here, we do not 
go into such subtlety and take (5.1) as "definitions". The polymer is 
said to be diffusive if ~(d) = 1/2 and super-diffusive if ~(d) > 1/2. 

These exponents are investigated in the context of various other 
models and in a large number of papers. In particular, it is conjectured 
in physics literature that the scaling identity holds in any dimension, 

(5.2) x(d) = 2~(d)- 1, d 2: 1, 

and that the polymer is super-diffusive in dimension one; 

(5.3) x(1) = 1/3, ~(1) = 2/3. 

See, e.g., [10],[9, (3.4),(5.11),(5.12)], [17, (5.19),(5.28)]. For some models 
of directed first passage percolation, K. Johansson [12, 13] proves (5.3), 
cf. (4.7). 

On the other hand, other rigorous results prove (or suggest) for 
example that 

(5.4) 

(5.5) 

(5.6) 

x(d) 
~(d) 

~(1) 

> 2~(d) - 1 for all d 2: 1, 

< 3/4 for all d 2: 1, 

> 1/2 

M. Piza [24] discusses (5.4) -(5.6) for the simple random walk model. For 
the Gaussian random walk model, M. Petermann [23] proves (5.6), while 
0. Mejane [20] shows (5.5). F. Comets and N. Yoshida [6] discuss (5.4)
(5.6) in the framework of Brownian directed polymer. Critical exponents 
similar to the above are also discussed for the crossing Brownian motion 

· in a soft Poissonian potential by M. Wuthrich [30, 31, 32] and for the 
first passage percolation by C. Licea, M. Piza and C. Newman [21, 18]. 

Acknowledgements: We would like to thank H. Spohn for nice discussions 
and variable remarks. 
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