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The Canonical Contact Form 

Peter J. Olver 

Abstract. 

The structure group and the involutive differential system that 
characterize the pseudo-group of contact transformations on a jet 
space are determined. 

§1. Introduction 

The canonical form on the coframe bundle over a smooth mani­
fold originally arose as the natural generalization of the canonical form 
on the cotangent bundle, which plays an essential role in Hamilton­
ian mechanics, [19, §III.7]. The coframe bundle F* M ---+ M forms 
a principal GL(m) bundle over the m-dimensional manifold M. The 
canonical form on the coframe bundle serves to characterize the diffeo­
morphism pseudo-group of the manifold, or, more correctly, its lift to 
the coframe bundle. Indeed, the inv'ariance of the canonical form forms 
an involutive differential system, whose general solution, guaranteed by 
the Cartan-Kiihler Theorem, is the lifted diffeomorphism pseudo-group. 
Kobayashi, [11], introduces a vector-valued canonical form on the higher 
order frame bundles over the manifold. He demonstrates that the com­
ponents of the canonical form constitute an involutive differential system 
that characterizes the higher order lifts of the diffeomorphism group. 

The geometrical study of differential equations relies on the jet space 
first introduced by Ehresmann, [6]. In the jet bundle framework, the 
pseudo-group of contact transformations, [13], [16], assumes the role of 
the diffeomorphism pseudo-group. Contact transformations are charac­
terized by the fact that they preserve the contact ideal generated by 
the contact forms on the jet bundle. Thus, the characterization of the 
contact pseudo-group by an involutive differential system should rely on 
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a "canonical contact form" constructed on a suitable principal bundle 
lying over the jet bundle. This canonical contact form should play the 
same basic role in the study of the geometry of jet bundles and differ­
ential equations that the canonical form over the coframe bundle plays 
in the ordinary differential geometry of manifolds and submanifolds. 
In [21], Yamaguchi uses the theory of exterior differential systems to 
conduct a detailed investigation of the contact geometry of higher order 
jet space, but does not provide a general construction of the required 
principal bundle or canonical form. This is more complicated than the 
frame bundle construction, since the definition of a contact transforma­
tion via the contact ideal does not directly yield an involutive differential 
system; see [4], [16]. One must apply the Cartan procedure of absorp­
tion and normalization of torsion in order to reduce the original structure 
group to the appropriate involutive version, and this in turn will yield 
the "minimal, involutive" version of the canonical contact form. 

A crucial theorem, due to Backlund, [2], demonstrates that every 
contact transformation is either a prolonged point transformation, or, in 
the case of a single dependent variable, a prolonged first order contact 
transformation; see also [16], [20]. This allows us to restrict the struc­
ture group associated with the contact pseudo-group to one of block 
upper triangular form, but this still is not enough to produce an involu­
tive differential system, and further normalizations must be imposed. In 
this paper, we find the complete system of normalizations, thereby con­
structing an involutive differential system on a certain principal bundle 
over the jet bundle that characterizes the contact pseudo-group. 

A significant source of applications of this construction can be found 
in a variety of equivalence problems defined on the jet bundle, including 
differential equations, variational problems, and others. In such situa­
tions, one needs to incorporate the contact structure into the problem 
via the contact forms. The canonical contact form will provide the min­
imal lift that can be imposed on the contact component of the lifted 
coframe, and thus help avoid normalizations that are universally valid 
for all contact transformations. Examples include equivalence problems 
for differential equations, for differential operators, and for variational 
problems. See [10], [16] for typical problems and applications. Addi­
tional applications to the method of moving frames developed by Mark 
Fels and the author, [8], [9], [17], will appear elsewhere. 

§2. Contact Forms on Jet Bundles 

We will work with the smooth category of manifolds and maps 
throughout this paper. Let E ---+ X be a smooth vector bundle over 
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a p-dimensional base manifold X, with q-dimensional fibers. We use 
x = (xi, ... , xP) to denote local coordinates on X, and u = ( u I, ... , uq) 
to denote the fiber coordinates, so that sections of E are prescribed by 
smooth functions u = f ( x). Let Jn = Jn E denote the nth jet bundle 
of E, with associated local coordinates z(n) = (x, u(n)) =( ... xi ... u'J .. . ), 
where the derivative coordinates u'J are indexed by unordered multi­
indices J = (j1 , ... ,jk), with 1 ::=; j,. ::=; p, of orders 0 ::=; k = #J ::=; n. 
Given a (local) section f: X---+ E, we let jnf: X---+ Jn denote its n-jet, 
which forms a section of the nth order jet bundle. 

Definition 2.1. A differential form() on the jet space Jn is called 
a contact form if it is annihilated by all jets: On!)*() = 0. 

The space of contact forms on Jn forms differential ideal I( n) , called 
the contact ideal, over Jn. 

Theorem 2.2. In local coordinates, every contact one-form on Jn 
can be written as a linear combination of the basic contact forms 

p 

(2.1) O'J = du'J - I: u'J,i dxi, a = 1, ... , q, 0 ::=; #J < n. 
i=l 

These one-forms constitute a basis for the contact ideal I(n). 

For instance, in the case of one independent and one dependent 
variable, the basic contact forms are 

(2.2) 

Oo = du- Ux dx, 

01 = dux - Uxx dx, 

()2 = duxx - Uxxx dx, 

In (2.1), we call #J the order of the contact form O'J. The reader 
should note that the contact forms on Jn have orders at most n - 1. 

Lemma 2.3. A section F: X---+ Jn locally coincides with then-jet 
of a section f: X---+ E, meaning F = jnf on an open subset of X, if 
and only if F annihilates all the contact forms on Jn: 

(2.3) F*(}':j = 0, a = 1, ... , q, 0 ::=; #J < n. 

Definition 2.4. A local diffeomorphism W: Jn ---+ Jn defines a 
contact transformation of order n if it preserves the contact ideal, mean­
ing that if() is any contact form on Jn, then 'IT*() is also a contact form. 

Definition 2.5. The (n + k)th order prolongation of the con­
tact transformation w(n) is the unique contact tran~formatiori 
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w(n+k): Jn+k ----7 Jn+k satisfying n;;:+k 0 w(n+k) = w(n) 0 n;;:+k' where 
n;;:+k: Jn+k ____, Jn is the usual projection. 

In local coordinates, a local diffeomorphism \li defines a contact 
transformation if and only if 

(2.4) \)1*1}" - "'""Aa,K e!3 
J - L..-t J,/3 K' 

/3,K 

for suitable coefficient functions A~,'{[ : Jn ____, R There are nontrivial 
constraints on these coefficients resulting from Backlund's Theorem, [2]. 

Theorem 2.6. If the number of dependent variables is greater than 
one, q > 1, then every contact transformation is the prolongation of a 
point transformation 'ljJ : E ____, E. If q = 1, then every nth order contact 
transformation is the prolongation of a first order contact transformation 
'ljJ: Jl ----7 Jl. 

Remark. Interestingly, if one restricts to a submanifold of the jet 
space defined by system of differential equations, additional "inter­
nal" higher order contact transformations can exist; see [1] for a 
Backlund-style classification of these transformations. 

§3. The Prolonged General Linear Group 

There are two fundamental transformation groups that lie at the 
foundation of the geometric characterization of contact transforma­
tions. The first is the standard prolongation of the general linear group, 
[12, p. 139], [14]. Let GL(p) denote the general linear group on JR.P con­
sisting of all real, invertible, p x p matrices. Let V 0 (p) denote the space 
of all diffeomorphisms <p: JR.P ____, JR.P preserving the origin, so <p(O) = 0. 
We let jn<p(O) denote the n-jet (or nth order Taylor expansion) of the 
diffeomorphism at the origin. 

Definition 3.1. The nth prolongation of the general linear group 
GL(p) is the group 

(3.1) GL(n)(p) = {jn<p(O) I <p E 'Do(p)}. 

The group multiplication is given by composition of diffeomorphisms, so 
that if S = jn<p(O), T = jn'l/J(O), then S · T = jn( <p o 'ljJ )(0). 

Note that the one-jet of a diffeomorphism <p at 0 is uniquely deter­
mined by its Jacobian matrix D<p(O), which can be viewed as an invert­
ible matrix in GL(p), and, in this way, we identify GL(p) = GL(1l(p). 
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The most convenient method of representing the elements of 
GL(n)(p) is via formal Taylor polynomials. We introduce coordinates 
t = (t1 , ... , tP) in a neighborhood of 0 E M. We then identify a 
group elementS E GL(n)(p) with the vector-valued Taylor polynomialt 
S(t) = (S1 (t), ... , SP(t))T of any smooth diffeomorphism 'P(x) that rep­
resents it, so 

where i = 1, ... ,p. 

Note that there is no constant (order 0) term in the Taylor polyno­
mial (3.2) since we are assuming that 'P(O) = 0; moreover the first order 
Taylor coefficients ( SJ) form an invertible p x p matrix, whereas the 

higher order coefficients can be arbitrary. Therefore, GL(n) (p) forms a 
Lie group of dimension 

(3.3) 

The group multiplication is then given by formal composition of poly­
nomials, so that U = R · S if and only if the corresponding polynomials 
satisfy 

(3.4) U(t) = R(S(t)) mod n, 

where mod n means that we truncate the resulting polynomial to order n. 
The explicit formulae can be identified with the Faa di Bruno formula, 
[7, p. 222], [14], for the derivatives of the composition of two functions. 

Example 3.2. In the one-dimensional situation, p = 1, the Taylor 
polynomial of a diffeomorphism 'P __, lR __, lR that fixes 0 = 'P(O) takes 
the form 

(3.5) 

with the coefficients s 1 , s2 , ..• representing the derivatives Sk = 'P(k)(O) 

of our diffeomorphism 'P: lR __, lR fixing 0 = 'P(O). The composition 
formula (3.4) gives the explicit rules 

u1 = r1s1, u2 = r1s2 + r2si, U3 = r1s3 + 3r2s1s2 + r3si, 

u4 = r1s4 + r2(4s1s3 + 3s~) + 6r3sis2 + r4si, 

twe use a formal variable t here instead of x for later clarity. 
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and so on. As in [5, §3.4], the one-dimensional Faa di Bruno formula is 

k 

Uk = L rmBk'(st, ... , Sk), 
(3.6) m=1 

where Bk'(s1, ... ,sk)= L 
EI=k 

Si1 Si2 • • • Sim 

I!(#I)! 

is a Bell polynomial, [3], [18, §2.8]. The sum in (3.6) is over all unordered 
multi-indices I= (it, ... , im) with 1::; iv ::; k, 'LJ = i1 + · · · + im = k, 
and where J = #I denotes the "repetition" multi-index of I, so that 
Jr = #{ iv = r} indicates the number of times that the integer r appears 
in the multi-index I. 

We can explicitly realize GL(n)(p) as a matrix Lie group, namely 
a subgroup of GL(p(n)), as follows. The space of vector-valued 
Taylor polynomials x(t) of degree at most n without constant term, 
x(O) = 0, can be identified with ~P(n). GivenS E GL(n)(p), we define 
p(S) E GL(p(n)) by 

(3.7) p(S)x(t) = x(S(t)), 

where S(t) is the Taylor polynomial (3.2) corresponding to S. The 
explicit formulae for the Fad di Bruno injection p can be found in [14, 
p. 503]. 

Example 3.3. In the one-dimensional situation described in 
example 3.2, we identify a fourth order Taylor polynomial (3.5) with 
its coefficient vector (s1, s2, s3, s4). The corresponding matrix is 

The reader may enjoy verifying that this forms a subgroup of GL(4). 
The kth order version has p(S) equal to the upper triangular matrix 
with entries given by the Bell polynomials Bj(st, ... , Sj) fori::; j. 

We next determine the left and right-invariant Maurer-Cartan forms 
on the prolonged general linear group. These will be found by adapting 
the usual formulae 

(3.8) /-LL = A-1 · dA, JLR = dA · A-1 , 
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valid for matrix Lie groups G C GL(n), [16]. In our case, the Maurer­
Cartan forms will appear as the coefficients of a formal "Taylor" poly­
nomial 

(3.9) 

where each a J is a p vector of one-forms defined on the group GL(n) (p). 
Using (3.8) and the multiplication rule (3.4) for the group, we deduce 
that the right-invariant Maurer-Cartan form polynomial is given by 

(3.10) iT(t) = dS[S-1 (t)] modn, 

obtained by composing the formal inverse series (or inverse Taylor poly­
nomial) s-1 (t) and the formal series of basis one-forms 

(3.11) dS(t) = 

on the group. On the other hand, the left-invariant Maurer-Cartan 
form polynomial can be found by first computing the differential of the 
composition 

(3.12) d[T(S(t))] = DT(S(t)) · dS(t), 

of the two power series with respect to the coefficients of S. Here 
DT(t) = (8Ti j8ti) denotes the Jacobian matrix series associated with 
T(t). Replacing T in (3.12) by the inverse of S(t) and truncating pro­
duces the left-invariant Maurer-Cartan form polynomial: 

(3.13) u(t) = DS-1 (S(t)) · dS(t) mod n = DS(t)-1 · dS(t) mod n, 

where DS(t)-1 is the inverse of the Jacobian matrix of S(t). 

Exrunple 3.4. For the one-dimensional situation considered above 
we have 
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Therefore, the right-invariant Maurer-Cartan forms on GL(n) (1) are 
obtained as the coefficients of the "Maurer-Cartan polynomials" 

-() dS [ 1 ] - 1_ 2 1_ 3 1_ 4 u t = -- = IJ1t + -IJ2t + -IJ3t + -IJ4t + ... 
S(t) 2 3! 4! 

ds1 s1ds2-s2ds1 2 sids3 -3s1s2ds2- (s1s3 -3s§)ds1 3 
= -t+ t- t 

s1 2sr 6s~ 

+ ~{sr ds4- 6sis2 ds3- (4sis3- 15s1s~) ds2 
24s1 

- (sis4- 10s1s2s3 + 15s~) ds 1 }t4 + · · · . 

The left-invariant Maurer-Cartan form polynomial (3.10) for GL(n)(1) 
IS 

Let p(u) = p(S)- 1dp(S) denote the corresponding left Maurer­
Cartan matrix, (3.8). In view of (3.7), (3.13), it acts on the column 
vector x according to the power series formulation 

[p(u)x](t) = p(S)-1 d[p(S)x](t) = p(S)-1 d[x(S(t))] 

= p(S)-1 (t ~~ [S(t)] dS(t)) 

= t ~~ (t) dSi[s- 1 (t)J 
i=1 

p ax . 
= L 8ti (t) u"(t). 

i=1 
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Exrunple 3.5. For the one-dimensional version, we have 

() 1 2 1 3 1 4 
x t = x1t + -xzt + -x3t + -x4t + · · · 2 3! 4! . ' 

'( ) 1 2 1 3 x t = x1 + xzt + -x3t + -x4t + · · · . 
2! 3! 

Therefore, 

p(u)x(t) = x'(t)u(t) 

= (a1x1)t + ~(azxl + 2a1xz)t2 

1 ( 3 + 31 li3X1 + 3azxz + 3alx3)t 

1 ( 4 + 41 a4x1 + 4a3x2 + 6a2x3 + 4a1x4 )t + · · · , 

and hence the Maurer-Cartan form matrix for GL(n)(1) is 

(3.14) p(u) = 

(jl (j2 

0 2a1 
0 0 
0 0 

li3 (j 4 

3a2 4a3 
3al 6a2 

0 4al 

The ( i, j) entry of the full n x n matrix is 

(3.15) 

§4. The Leibniz Group 

i ~ j, 

i > j. 

275 

Besides the prolonged general linear group that provides the struc­
ture group for jets of diffeomorphisms, we also require a structure group 
related to the multiplication of jets. 

Definition 4.1. The Leibniz group L(n)(p, q) is the Lie group con­
sisting of all n-jets of smooth maps W: JRP --+ GL(q) at the point 0, so 

(4.1) 

The group law is induced by matrix multiplication !J>(x) · 'll(x) of the 
smooth maps. 
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Given a vector bundle E -+ X over a p-dimensional base with 
q-dimensional fiber, there is an induced representation 

(4.2) 
whenever 

of L(n) (p, q) on the jet fiber Jn E. As with the prolonged general linear 
group, we identify the elements of the Leibniz group with their Taylor 
series. Thus, the group element L(n) = jn \IJ(O) is identified with the nth 

order truncation of the power series 

(4.3) L(t) = 

where each LJ is a q x q matrix. The entries (LJ )3 can be identified 
with the Taylor coefficients ak W3 I axJ ( 0) for the corresponding matrix 

entry of \IJ(x). Identifying a point z(n) E Jn with the corresponding nth 
order Taylor polynomial z(t), the action of the Leibniz group is given by 

( 4.4) [r(L(nl)z](t) = L(t) · z(t) mod n. 

Example 4.2. In the one-dimensional version, GL(1) ~ ][~* is just 
the set of nonzero reals, and so the maps \IF: ~ -+ GL(1) are scalar­
valued. The Leibniz group is induced by multiplication of Taylor series, 
and so the product of 

1 2 1 3 
L(t)=Za+ht+ 2ht + 3!Z3t +···, 

1 2 1 3 
M(t) = ma + m1t + 2m2t + 3! m3t + · · · , 

is given by truncating the product series 

1 2 
L(t) · M(t) =lama+ (Zaml + hma)t + 2(Zam2 + 2hml + l2ma)t 

+ ~(lam3 + 3hm2 + 3Z2ml + l3ma)t3 + · · · , 
3. 

at order n. The action ( 4.4) on a series 

(4.5) 1 2 1 3 
z(t) = za + z1t + -z2t + -z3t + · · · 

2 3! 
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is the same- just replace them's by z's. Therefore, the matrix repre­
sentation ( 4.2) of an element of L(4) (1, 1) is 

The matrix of Maurer.,Cartan forms on the Leibniz group are found 
using the usual formula (3.8), which becomes 

tJ 
.X= L JIAJ, 

J • 
(4.6) 

where each AJ is a q x q matrix of one-forms. We have 

(4.7) .X(t) = T(L)-1 dL(t) = L(t)-1 dL(t) = dlogL(t). 

Let T(.X) = T(L)-1dT(L) denote the corresponding Maurer-Cartan 
matrix. In view of (4.4), it acts on the column vector z according to the 
power series formulation 
(4.8) 

[T(.X)z](t) = T(L)-1d[T(L)z](t) = T(L)-1d[L(t)] · z(t) = .X(t) · z(t). 

Exrunple 4.3. For the one-dimensional version, we have 

1 2 1 3 
L(t) = l0 + ht + 2bt + 31 ht + · · · , 

1 2 1 3 
dL(t)=dlo+tdh+-t dl2+ 1 t dl3+···, 

2 3. 

L( )_1 1 h lol2 - 2Z~ 2 l~l3 - 6lohl2 + 6l~ 3 t = - - 'it- 3 t - 4 t + .... 
lo l0 2l0 6l0 

Therefore, the Maurer-Cartan form series for L(n)(1, 1) is 

. 1 2 1 3 
.X(t) = dlog L(t) = >.o + >.1t + ->.2t + 1 >.3t + · · · , 

2 3. 
dlo lo dh - h dlo l~ dl2 - 2Zoh dh - (lol2 - 2Z~) dlo 2 

= Tc; + l~ t + . 2Z5 t 

+ 6~d { zg dh - 3Z5h dl2 - 3(Z5Z2 - 2Zom dh 

- (l5l3- 6lohl2 + 6l~) dl0 }t3 + · · · . 
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Given z(t) as in (4.5), equation (4.8) implies that 

r(..\)z(t) = ..\(t)z(t) 

Thus, the Maurer-Cartan form matrix for L(n)(1, 1) is 

>.o >.1 >.2 >.3 >.4 
0 >.o 2>.1 3>.2 4>.3 
0 0 >.o 3>.1 6).2 

(4.9) r(..\) = 0 0 0 >.o 4>.1 
0 0 0 0 >.o 

The ( i, j) entry of the full n x n matrix is 

(4.10) 
i 5, j, 

i > j. 

Note the remarkable similarity between the Maurer-Cartan form matri­
ces for the prolonged general linear group, (3.14), and for the Leib­
niz group, (4.9)! The Leibniz version forms a "Pascal upper triangular 
matrix", whereas the prolonged version is obtained by throwing away 
the main diagonal of the Pascal matrix. 

§5. The Contact Group 

We are now in a position to describe the structure group for the 
pseudo-group of contact transformations on the jet bundle Jn. 

Definition 5.1. The nth order contact group is the semidirect 
product group 

(5.1) 

The group acts on a Taylor series z(t) according to 

(5.2) 'lj;(S, L) . z(t) = L(t) . z(S-1 (t)), 
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and then truncating to order n. Therefore, the group multiplication in 
c<n) (p, q) is given, in series form, by 

(5.3) (S(t),L(t)) · (T(t),M(t)) = (S(T(t)),L(t) · M(S- 1 (t))). 

The Maurer-Cartan form matrix for the contact structure group is 
given by the "difference" between the two Maurer-Cartan form matrices, 
so 'lj;(u, .X)= p(u)- T(A) . Thus, we find 

~ &z . 
['¢(u, -\)z](t) = .X(t) · z(t)-~ &ti (t)u'(t). 

i=l 

Note that the prolonged general linear group acts trivially on the zeroth 
order coefficient in the power series for z. In the one-dimensional version, 
we have 
(5.4) 

Ao -\1 Az A3 A4 
0 Ao- u1 2,\1- O"z 3,\z- 0"3 4,\3- 0"4 
0 0 Ao- 2u1 3,\1- 30"1 6,\z- 4u1 

'lj;(.X,u) = 0 0 0 Ao- 3u1 4-\1 - 6uz 
0 0 0 0 Ao- 4u1 

We now introduce the infinite power series of basis contact forms 

(5.5) oa(t)= I: ~eJ, a=l, ... ,q, 
O<;,.#J 

in the variable ua, and let O(t) = (81 (t), ... ,Oq(t))T be the associated 
column vector-valued series of contact forms. Note that the contact 
forms on Jn are obtained by truncating the series O(t) at order n- 1 
and not at order n. 

We are now able to introduce the goal of our investigations. 

Definition 5.2. The canonical contact form is the vector-valued 
series of one-forms 

(5.6) iJ(t) = 'lj;(L, S)O(t) = L(t) · O(S-1 (t)), 

where L(t) and S(t) are the associated group series. 

Example 5.3. In the one-dimensional situation, the canonical 
contact form is composed of the following linear combinations of contact 
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forms: 

(5.7) 

Remark. We can compute {)k by repeatedly applying the (for­
mal) differential operator D = ( 1 I s1) D x to fJo, using the identifications 
D(l1) = lj+l, D( Sj) = Sj+l I s1. A proof of this observation is left to the 
reader. 

Theorem 5.4. The canonical contact form of order n defines an 
involutive differential system. The equivalence maps preserving the canon­
ical contact form are the lifts of contact transformations on Jn. 

The structure equations are found as follows. The usual contact 
form structure equations 

p 

dB[ = L B[,i 1\ dxi, 
i=l 

can be rewritten in series form 

(5.8) 
1 ~ 8(J · 

d9(t) = 9 (t) 1\ dx = ~ 8ti 1\ dx', a= 1, ... ,q. 
i=l 

Here 9'(t) = (80'"' l8ti) is the formal q x p Jacobian matrix of 9(t) with 
respect tot. Therefore, using (5.8), we can compute 

(5.9) 
diJ(t) = A(t) 1\ iJ(t) + iJ'(t) 1\ u(t) + L(t)d9(S- 1 (t)) 

= A(t) 1\ iJ(t) + iJ'(t) 1\ u(t) + L(t)9'(S- 1 (t)) 1\ dx. 

In the language of the Cart an equivalence method, cf. [10], [16], the first 
two terms in (5.9) form the group components of the structure equations, 
while the third term is the torsion. 
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On the other hand, using the definition (5.6), we can compute 

! D(t) = L'(t) · 8(S-1 (t)) + L(t) · 8'(S-1 (t)). ! [s-1 (t)] 

= L'(t) · L(t)-1 ·D(t) + L(t) .1J'(s-1(t)). [S'(S-1(t))r\ 
the last equality following from the chain rule. Therefore, 

(5.10) 
diJ(t) = A(t) 1\ D(t) + D'(t) 1\ u(t) 

+ [D'(t)- L'(t) · L(t)- 1 ·D(t)] 1\ S'(S-1 (t)) dx. 

Most of the torsion terms can therefore be absorbed by suitably modify­
ing theMaurer-Cartan forms A(t) and u(t); the only exceptions are the 
constant terms multiplying D'(t); this is because u(t) does not contain 
any constant terms, i.e., u(O) = 0. If we define the modified Maurer­
Cartan forms to be 

(5.11) 
;x(t) = A(t) + L'(t) · L(t)-1 · S'(S-1 (t)) dx, 

u(t) = u(t) + [S'(S-1 (t))- S'(O)] dx, 

we can rewrite the structure equations (5.10) in the "semi-absorbed 
form" 

(5.12) dD(t) = ;x(t) 1\ D(t) + D'(t) 1\ u(t) + D'(t) 1\ S'(O) dx. 

We now complete the canonical contact form to a coframe on Jn by 
including the additional pone-forms 

(5.13) e = S'(O)dx+ a'I'J(O) + BD'(O). 

Here a = (a~) is a p x q matrix and B = (b~k) a p x p x q tensor of 
parameters. In components, -(5.13) reads 

p q q p 

(,i = L:sjdxj + L:a~~<> + L Lb~~f:, 
j=1 <>=1 a=1k=1 

where 
81J"' 

~k = atk (0), 

are the lifted zeroth and first order contact forms, which can be writ­
ten as linear combinations of the ordinary zeroth and first order contact 
forms ()<>, ()~ via (5.6). Backlund's Theorem implies that the x coordi­
nates depend only on x, u, and, if q = 1, first order derivatives of u. 
This implies that the first order contact form coefficients in (5.13) must 
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vanish, B = 0, when q > 1. (Alternatively, one can use a particular 
unabsorbable torsion term to justify this normalization.) We therefore 
use (5.13) to rewrite the structure equations (5.12) in the fully absorbed 
form 

(5.14) diJ(t) = X(t) 1\ iJ(t) + iJ'(t) 1\ o-(t) + iJ'(t) 1\ e, 

where the modified Maurer-Cartan forms are now 

(5.15) 
:\(t) = :X(t)- a· iJ'(t), 

u(t) = u(t) +a· [iJ(t)- iJ(O)] + B · [iJ'(t)- iJ'(O)]. 

(Again, note that u(O) = u(O) = 0, so that this modification is allowed.) 
The only term in (5.12) which remains unaccounted for is 

iJ'(t) 1\ B · iJ'(t), 

but this vanishes because either q = 1, in which case the wedge prod­
uct of the two scalar one-forms iJ'(t) is zero, or q > 1, in which case, 
by Backlund's Theorem, B = 0. In fact, this is the essential torsion 
component that provides the equivalence method proof of this part of 
Backlund's Theorem, cf. [16]. Equation (5.14) provides the main con­
stituent of the structure equations for the contact pseudo-group. 

We also need to compute the remaining structure equations for the 
one-forms (5.13). We find 

(5.16) de = u' (0) 1\ e + a 1\ iJ(O) + f3 1\ iJ' (0) +a· diJ(O) + B diJ' (0), 

where a, f3 are the Maurer-Cartan forms corresponding to the addi­
tional group parameters a, B. Note that a, f3 do not depend on t. 
Differentiating (5.14) with respect to t, and recalling u(O) = 0, we find 
(5.17) 

diJ(O) = :\(O) 1\ iJ(O) + iJ'(O) 1\ e, 

diJ'(o) =X' (o) 1\ iJ(o) + :\(o) 1\ iJ'(o) + iJ'(o) 1\ o-'(o) + iJ"(o) 1\ e. 

Moreover, according to (5.11), (5.15), for any constant (column) vector 
Z E JRP, 

u'(o). z = u'(o). z + [a. iJ'(o) +B. iJ"(o)] . z 

= u'(O) + S"(O)(S'(o)- 1 · z,x) +[a· iJ'(o) + B · iJ"(O)]· z. 

Wedging the result with e, and using (5.13), (5.17) and, we find 

(5.18) u' (0) 1\ e = u' (0) 1\ e + 7r 1\ iJ(O) + iJ' (0) 1\ w + B · iJ" (0) 1\ e, 
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for certain one-forms 1r, w, whose precise form is not hard to find, but 
which is unimportant. Note that we used the fact that the extra term 

S" (0) (S' (o)-1 · e, S' (0)-1 ·e) = 0 

vanishes by symmetry of second order derivatives. Finally, substituting 
(5.18), (5.17) into (5.16), we conclude that 

(5.19) de = a' (o) (\ e +a(\ -o(o) + 13 (\ -o' (o), 

where Ci' (0) are the order 1 terms of our earlier modified Maurer-Cartan 
forms (5.15), while a, fj are suitably modified one-forms corresponding 
to the additional structure group parameters a, B. Note particularly 
that (5.19) contains no essential torsion. Equations (5.14) and (5.19) 
form the complete structure equations for the contact pseudo-group on 
the infinite jet bundle. 

There is one final item to deal with when working on a finite jet 
bundle Jn. Since the contact forms which are well-defined on Jn have 
orders at most n -1, we must include q(P+~- 1 ) additional one-forms to 
complete the coframe on Jn. These will clearly be the basis forms du'J, 
#J = n, which must be lifted appropriately. (See [15] for more details.) 
However, we can most simply accomplish this as follows: First, truncate 
the canonical contact form series t?(t) at order n. The resulting lifted 
contact form will depend on ( n + 1 )st order derivatives of u. These can 
be eliminated, while retaining the proper lift, by adding in a suitable 
multiple of the base forms dxi. Thus, the lifted coframe on Jn consists 
of the one-forms (5.13) along with the modified canonical contact form 

(5.20) D(t) = -o(t) + e(tn) . e mod n, 

where e = (el) is a q x (P+~- 1) matrix of additional group parameters. 
The corresponding truncated structure equations are now 

~ ~ ~ ~t ~t 

(5.21) d'!?(t) = .\(t) (\ '!?(t) + '!? (t) (\ Ci(t) + e(tn) (\ e + '!? (t) (\ e mod n. 

This completes our proof. 
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Exrunple 5.5. The structure equations for the one-dimensional 
situation are as follows: 

(5.22) 

dfJo = Ao A fJo +~A fJ1, 

dfJ1 = A1 A fJo + (Ao- a1) A fJ1 +~A fJ2, 

dfJ2 = A2 A fJo + (2A1 - a2) A fJ1 + (Ao- 2a1) A fJ2 +~A fJ3, 

dfJ3 = A3 A fJo + (3A2 - a3) A fJ1 + (3A1 - 3a2) A fJ2 

+ (Ao - 3a1) A fJ3 +~A fJ4, 

d{}n-1 = ~ [ (n ~ 1)An-1-i- (;~~)an-i] A {}i +~A Jn, 

dJn = ~ [(;)An-i- C: 1)an+1-i] A {}i + c A~' 
d~ = a1 A~ + r.p A fJo + 'l/J A fJ1. 

Here Ao, ... , An are the Leibniz Maurer-Cartan forms, a1, ... , an the 
prolonged general linear group Maurer-Cartan forms, and s, r.p, 'lj; the 
three additional Maurer-Cartan forms, corresponding to the truncated 
or non-canonical part of the lifted coframe. 
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