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Introduction 

Since Lie, Klein and Cartan, there has been a great deal of progress 
in understanding deep relations between groups, geometry and differen­
tial equations. 

In this paper we give a survey on some recent development made by 
systematic studies from the view point of nilpotent geometry on trans­
formation groups (or rather Lie algebras), geometric structures and dif­
ferential equations, placing ourselves on filtered manifolds. 

A filtered manifold is a differential manifold M endowed with a 
filtration {fP} pEZ consisting of subbundles fP of the tangent bundle T M 
such that 

i) fP :J fP+l, 

ii) f0 = 0, upEZ fP = TM, 
iii) [.f, eJ C fp+q for all p, q E Z, 

where fP denotes the sheaf of the germs of sections of fP. 
This notion of a filtered manifold has arisen from a fundamental 

paper of Tanaka [Tan70] on differential systems that he elaborated, 
inspired by the deep work of Cartan, especially by [CarlO]. 

Of fundamental importance is the fact that, to a filtered manifold 
(M, f), there is associated at each point x of M the nilpotent graded 
Lie algebra grfx, as the first order approximation at x to the filtered 
manifold, where grfx = EB f~/f~+l. It should be remarked that if the 
filtration is trivial (i.e., f- 1 = T M) then grfx is nothing but the tangent 
space TxM regarded as an abelian Lie algebra. 

To study various objects on filtered manifolds by letting the tangent 
nilpotent Lie algebras play the usual role of the tangent spaces may be 
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called nilpotent geometry or nilpotent analysis. The generalization from 
the abelian to the nilpotent allows one to develop more refined theories 
than the anterior from much wider perspectives. 

We now describe the contents of this paper. 
In Section 0 we give basic definitions and notation about filtered 

manifolds. 
In Section 1 we study transformation groups on filtered manifolds, 

confining ourselves only to the algebraic parts of transitive infinitesimal 
transformation groups. 

We know well about the structures of transitive filtered Lie 
algebras (algebraic abstractions of transitive transformation groups) 
through the work of Guillemin-Sternberg [GS64], Singer-Sternberg 
[SS65], Kobayashi-Nagana [KN66] and others. 

If a transitive transformation group on a filtered manifold preserves 
the tangential filtration, then the transitive Lie algebra corresponding 
to the transformation group admits a natural filtration compatible with 
the tangential filtration and more refined than the usual filtration, the 
former deriving from the "weighted" Taylor expansion and the latter 
from the usual Taylor expansion. This leads to the notion of a transitive 
filtered Lie algebra of depth !1(?. 1) introduced in [Mor88]. If 11 = 1 it 
reduces to the usual one. 

The fundamental problem is to understand how the structure of a 
transitive filtered Lie algebra (L, { £P}) can be determined from the trun­
cated structure L / Lk which consists of finite dimensional data, or cer­
tain information up to finite orders. This is a prototype of the problems 
that we encounter in the study of geometric structures and differential 
equations. 

By extending the theory of Guillemin-Sternberg to the transitive 
filtered Lie algebras of depth greater than one, we have a fairly complete 
answer to the above algebraic problem. 

We shall introduce the notion of weighted involutivity by using gen­
eralized Spencer cohomology groups. This notion plays a fundamental 
role not only in the study of filtered Lie algebras, but also in the study 
of geometric structures and differential equations. 

In Section 2 we study geometric structures on filtered manifold and 
explain our general method to treat equivalence problems. 

The key concept is what we introduced as C-fibre in [Mor83] and 
as tower in [Mor93] (the latter is a refinement of the former to apply to 
filtered manifolds). 

Roughly speaking, it is a principal fibre bundle P over a manifold M 
with structure group G endowed with a 1-form e taking values in a vector 
space E which defines an absolute parallelism on P and satisfies some 
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natural conditions. In particular, we assume Eisa G-module containing 
the Lie algebra f1 of Gas a G-submodule and e is an equivariant map. 

It should be noticed that P is not necessarily finite dimensional and 
that E is not necessarily a Lie algebra. The reader who is familiar with 
Cartan connections will notice that if E is a Lie algebra containing fl 
the tower introduced above is just a principal fibre bundle with a Cartan 
connection. Therefore the notion of a tower is a generalization of that 
of a Cartan connection. However, we might rather say that the former 
precedes (and is more basic than) the latter; the notion of a tower seems 
to represent some general heuristic ideas of Cartan which appeared in his 
papers of infinite groups [Car04], [Car05], [Car08], [Car09] much earlier 
than his notion of espace generalise. 

The category of the towers has an advantage that it is well adapted 
to deal with all possible (virtual) symmetries of geometric structures. 
Moreover, the notion of differentiation is geometrically well represented 
by the associated filtration on the bundle P (and on the group G). If 
a tower (P, M, G) on a filtered manifold (M, f) is compatible with the 
tangential filtration f, it admits another natural filtration on P and on 
G associated with f, which is a filtration deriving from "weighted order", 
and it is this filtration that plays an important role when we treat towers 
on filtered manifolds. 

In the framework of tower we shall construct a unified scheme to 
treat geometric structures on filtered manifolds. Any geometric struc­
ture on a filtered manifold may be regarded as a tower or as a truncated 
tower on a filtered manifold. Given a geometric structure on a filtered 
manifold, we shall show the general procedure to find the invariants of 
the structure. When we study geometric structures, it is important to 
distinguish the difference between the intransitive and the transitive, and 
that between infinite type and finite type. It should be remarked that 
a structure of infinite type in the usual sense can be of finite type with 
respect to the weighted filtration associated with the filtered manifold. 

To treat a transitive geometric structure on a filtered manifold of 
infinite type, we introduce a notion of weighted involutivity and clarify 
the procedure to find all the invarints of the structure, which is exactly 
a geometrical version of the procedure to determine a transitive filtered 
Lie algebra from a truncated Lie algebra. 

Though we can also treat the intransitive infinite cases, we will not 
enter into the discussion rather complicated. 

For a geometric structure of finite type, it is important in appli­
cations to construct a Cartan connection associated to it. But the 
construction has been usually difficult and technical. Our method also 
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answers this question. We shall give a criterion (probably best possi­
ble) for the existence of a Cart an connection and a unified algorithm to 
construct the Cartan connection. 

In Section 3 we study general systems of non-linear partial differen­
tial equations on filtered manifolds. 

Now we just recall the development of general theories on analytic 
systems of non-linear partial differential equations. As seen easily, any 
system of differential equations can be brought to an exterior differential 
system. Cartan established for the first time a general existence theorem 
in the framework of exterior differential systems [Car04]. He introduced 
the notion of a Pfaff system in involution and obtained the solutions by 
successive use of the Caucy-Kowalevski theorem, which was generalized 
to any involutive exterior differential system by Kahler [Kah34] as well 
known as the Cartan-Kahler theorem. 

The modern theory of these systems was initiated by Kuranishi to 
establish the so-called Cartan-Kuranishi prolongation theorem [Kur57]. 
Using Ehresman's theory of jet, Spencer introduced fundamental tools 
to treat systems in jet formulation (cf. [Spe69]). In this framework 
Goldschmidt [Gol67] and Quillen [Qui64] established a formal theory of 
systems of partial differential equations clarifying in modern language 
the notion of involutivity; the sufficient condition for the existence of 
formal solutions. Malgrange [Mal72] gave an elegant proof for the exis­
tence of analytic solutions to an involutive analytic system by using the 
"privileged neighbourhood theorem" of Grauert. 

Now in studying differential equations on a filtered manifold, it is 
the notion of weighted orders for differential operators associated with 
the filtered manifold that will play the principal role. 

We shall first introduce the notion of a weighted jet bundle for a 
vector bundle on a filtered manifold, and establish a formal theory in 
terms of weighted jet bundles analogously to the formal theory of Gold­
schmidt. We introduce a notion of weighted involutivity for the system, 
which gives sufficient condition in order that the formal solutions can be 
constructed in some regular way by "weighted Taylor expansion". 

Next we consider the problem of convergence. Since a weightedly 
involutive system is in general not involutive in the ordinary sense, we 
cannot expect in general the existence of analytic solutions. 

Without loss of generality we will work on a standard filtered man­
ifold, namely a nilpotent Lie group N whose Lie algebra n is graded: 

n = EB~=l np. 
We first establish the following theorem: 
For a weightedly involutive analytic system, there exists a formal 

solution satisfying a certain type of estimate, called Gevrey estimate. 
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The Gevrey estimate is expressed in terms of the filtration of the 
filtered manifold and is a little weaker than the analyticity estimate. 
We can then define the class of formal Gevrey functions on a filtered 
manifold. 

For the proof of the above theorem we employ Malgrange's method 
after generalizing the privileged neighbourhood theorem to the universal 
enveloping algebra of a nilpotent Lie algebra n. 

We then study geometric properties of formal Gevrey functions on 
a graded nilpotent Lie group N, which leads to the following remarkable 
theorem: 

If the Lie algebra n is generated by n1 (Hormander condition), then 
the formal Gevrey function on N are analytic. 

Combining the above theorems, we finally establish the following 
existence theorem (a generalization of the Cartan-Kiihler theorem): 

Consider an analytic system of non-linear partial differential equa­
tions of weighted order k on a graded nilpotent Lie group N with a Lie 
algebra n = EB~=l np. Suppose that the Lie algebra n is generated by 
n1 , and that the system is weightedly involutive. Then there exists an 
analytic solution for any prescribed weighted k-jet solution. 

It should be noted that the class of the weightedly involutive systems 
is much larger than that of the ordinary involutive systems and contains 
a wide class of differential equations with singularities. 

Our primary purpose of this paper is to try to make clear intrinsic 
relations underlying three objects; Lie algebras, geometric structures, 
and differential equations on filtered manifolds. We, therefore, will not 
enter into the details of each subjects, and not intend to give a com­
plete proof of each statement, referring for them to our papers ([MorS3], 
[MorSS], [Mor90], [Mor93], [Mor95], [MorOx]), on which our discussions 
are mainly based. 

§0. Filtered manifolds 

0.1. Definitions. 
A tangential filtration f on a differentiable manifold M is a sequence 

{fP}pEZ of subbundles of the tangent bundle TM of M such that the 
following conditions are satisfied: 

i) fP ::J fP+l, 
ii) f0 = 0 U fP = T M ' pEZ ' 

iii) [Y,tl C y+q, for all p, q E Z, 

where Y denotes the sheaf of the germs of sections of fP. 
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A filtered manifold is a differentiable manifold M equipped with 
a tangential filtration f. We shall denote the filtered manifold by (M, f) 
or often by the bold letter M and its tangential filtration by {fP}, 
{fPTM} or {TPM}. 

An isomorphism of a filtered manifold M onto a filtered manifold 
M' is a diffeomorphism cp: M ---+ M' such that cp*TPM = TPM' for all 
p E Z, where cp* denotes the differential of cp. 

If M is a filtered manifold, by definition there is an integer J.L ?: 0 
such that r-~-'M = TM. The minimum of such integers is called the 
depth of M. 

Let M be a filtered manifold. The tangential filtration {TPM} 
defines on each tangent space TxM, x E M, the induced filtration 
{T:fM}. We denote by TxM this filtered vector space (TxM, {T:fM} ). 
Now by setting 

grpTxM = T:fM/T:r+1M, 

we form a graded vector space: 

grTxM = EIJgrpTxM. 
pEZ 

This vector space carries a natural bracket operation induced from the 
Lie bracket of vector fields: For ~ E grpTxM, 7] E grqTxM, take local 
cross-sections X, Y ofTPM, TqM resp. such that~= Xx(mod T:f+lM), 
7] = Yx (mod TJ+l M), and define 

[~, 77] = [X, Y]x 

It is then easy to see that this bracket operation is well defined and 
makes grTxM a Lie algebra. Clearly we have: 

i) [grpTxM, grqTxM] C grp+qTxM, 
ii) grpTxM = 0 for p?: 0. 

This graded Lie algebra grTxM is called the symbol algebra of M at x 
([Tan70]), and may be consider as the tangent space (algebra) at x of 
the filtered manifold M. 

We say that a filtered manifold M is regular of type m if the symbol 
algebras grTxM are all isomorphic to a graded Lie algebra m. 

0.2. Some examples. 

1) Trivial filtration. A differentiable manifold M itself may be 
regarded as a filtered manifold equipped with the trivial filtration defined 
by ffrTM = TM for p < 0 and f'frTM = 0 for q?: 0. The symbol alge­
bras grTxM of this trivial filtered manifold is nothing but the tangent 
space TxM regarded as an abelian Lie algebra with trivial gradation. 
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2) Standard filtered manifold. Let n be a finite-dimensional nilpo­
tent Lie algebra endowed with a gradation n = EBpEZ np such that 

i) [np, nq] c np+q, 
ii) nP = 0 p 2: 0. 

Let N be a Lie group whose Lie algebra is n. Set nP = EBi2:p ni and 
identify N x nP with a left invariant sub bundle of TN, then { N x nP} pEZ 
is a tangential filtration on N. The filtered manifold N = (N, { N x nP}) 
is called a standard filtered manifold of type n. 

3) Tangential filtration derived from a regular differential system 
[Tan70]. Let D be a differential system on a differentiable manifold 
M, that is, a subbundle of the tangent bundle of M. Then there is 
associated a sequence of subsheaves {VP}p<o of TM, called the derived 
systems of D, which is defined inductively by: 

(p < 0). 

It then holds that: 

for p, q < 0. 

Now suppose that the derived systems VP are all vector bundles, 
that is, there are sub bundles DP C T M such that DP = VP for all 
p < 0 (in this case the differential system D is called regular [Tan70]). 
Then there exists a minimum integer 11 2: 1 such that DP = D-J.L for all 
p :S: -f-1. Setting 

fPTM = {~P 
TM 

(p 2: 0) 
(-12:p2:-f.L) 
(p :s: -f.L- 1), 

we have a filtered manifold (M, f) derived from the regular differential 
system D. If D-~" = TM, we say that the tangential filtration f is 
generated by the differential system D. If D-~" ~ TM, then n-~" is 
completely integrable and defines a foliation on M. In particular, if Dis 
completely integrable the filtered manifold M is nothing but a foliated 
manifold. 

If a filtered manifold M (or M') is derived from a differential system 
Don M (resp. D' on M'), then M and M' are isomorphic if and only if 
(M, D) and (M', D') are isomorphic, that is, there is a diffeomorphism 
tp: M ____, M' such that tp*D = D'. 



212 T. Morimoto 

4) Higher order contact manifold (cf. [Yam82]). Let 7!": M-+ N be 
a fibred manifold. Let Jk(M, N) be the bundle of k-jets of cross-sections 
of 7r. On this jet bundle we have a sequence of canonical differential sys­
tems { DP} called the higher order contact structure. In local coordinates 
it is expressed as follows: Let (x\ ... , xn ), (x1, ... , xn, y\ ... , ym) be 
local coordinates of Nand M respectively. Then (x\ ... , xn, ... ,p~, .. . ), 

where p~ = a~~i with a = (a1, ... , an), Ia I ::::; k, gives a local coordi­
nate system of Jk(M, N) called a canonical coordinates system. Put 

n 

i_di-"'i dxj 
W0 - Po L...,.Pa+1; 

j=1 

for lal ::::; k - 1, with a+ 1j = (a1, ... , aj + 1, ... , an), and define 
DP(p::::; -1) by the following Pfaff equations: 

(i=1, ... ,n lal::::;k+p). 

It is easy to see that DP are well-defined subbundles ofT Jk(M, N) and 
satisfy: 

i) Dp-1 = DP + [Q_P,D-1], 
ii) DP = T Jk(M,N) for p::::; -k -1. 

We thus obtain a canonical tangential filtration {DP} on Jk(M,N) of 
depth k+ 1 generated by D-1. It should be noted that if dimM = n+1, 
dimN =nand k = 1 then J 1 (M,N) is a contact manifold having D-1 
as its contact structure. 

0.3. We shall often use the following notation and terminologies 
throughout this paper without explicit mention in each place. 

For filtered objects (vector spaces V, W, Lie groups G etc.) we 
denote by {fP} not only their filtrations but also the induced filtrations 
defined naturally on various associated spaces, for instance: 

fP (V EB W) = fPV EB fPW 

fP(V®W) = L rv®fW 
r+s=p 

fP(G/fhG) = fPGffPG n fhG 

fP Hom(V, W) = {a E Hom(V, W) I a(fV) C fi+PW Vi} 

fPGL(V) ={a E GL(V) I a -1v E fPHom(V, V)}. 

When we take a quotient space, for instance f0 G/fPG, we often write it 
simply as f0G /fP. 
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If tl = E9 tlp, ttl = E9 ltlp are graded vector spaces, we set 

Hom(tl, tu)p ={a E Hom(tl, tu) I a(tli) C tui+p \ii}, 

that is, the set of all linear maps of degree p. 

§1. Transitive Lie algebras on filtered manifolds 

1.1. Let us begin with the following definition: 

Definition 1.1. A transitive filtered Lie algebra (TFLA) of depth 
p,(?:. 1) is a Lie algebra L equipped with a filtration {LP}vEZ satisfying: 

i) L = L-~" 
ii) LP ::) £P+ 1 

iii) [LP, Lq] C £P+q 
iv) dim LP / LP+l < oo 

v) npEZ LP = 0 
vi) £P+1 = { x E LP; [x, La] C £P+a+l for all a < 0} for p ?:. 0. 

To justify the above definition, some remarks are in order. 

Remark 1. The so-called continuous groups that Lie studied are 
in modern language the pseudo-groups of transformations on manifolds 
which are defined by systems of partial differential equations. In other 
words, a continuous group of Lie is a pseudo-group of transformations 
that leave invariant certain geometric structure on a manifold. To study 
such pseudo-groups, in particular, infinite dimensional ones to which 
there are no good global representatives such as finite dimensional Lie 
groups, it is usually more convenient to study infinitesimal objects, 
namely Lie algebra subsheaf .C of the Lie algebra sheaf T M of the germs 
of local vector fields on a manifold M. The Lie algebra sheaf .C is said 
to be transitive if the evaluation map .Cx --> TxM is surjective for all 
x EM, where .Cx denotes the stalk of .Cat x. 

Let .C be a Lie algebra sheaf on M. We can associate to each x the 
formal algebra Lx defined as follows [SS65]: Let, for k ?:. 0, fk .Cx be the 
subalgebra of .Cx consisting of all germs [X]x at x of sections X of .C such 
that X vanishes at x to order k. Then put Lx = proj limk--+oo .Cx/fk .Cx. 
The formal algebra Lx has a natural filtration {LnvEZ, where we put 
L~ = proj limk--+oo fP .CxffP+k .Cx, and L% = Lx for q < 0. It is then 
easy to see that {L~}vEZ satisfies all the conditions of Definition 1.1 
with p, = 1 except (vi), which is also satisfied if .C is transitive. Thus 
the formal algebra Lx of a transitive Lie algebra sheaf .C is a transitive 
filtered Lie algebra of depth 1. It is well-known that under the category 
of analyticity and under certain regularity condition .C is locally uniquely 
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determined by its formal algebra Lx at a point x. In these contexts, and 
in particular, in connection with the classification of simple infinite Lie 
algebras, the transitive filtered Lie algebras of depth 1 were well studied 
([GS64], [SS65], [KN66], [Hay70], etc.). 

Remark 2. Suppose now we are given a transitive Lie algebra sheaf 
£ on a filtered manifold (M, f) and suppose that £ leaves invariant the 
filtration f. Then we can introduce on its formal algebra Lx another 
filtration more refined than the original one and well adapted to the 
underlying filtration f: We define for q ~ 0 L'fc to be the subspace of Cx 
consisting of all germs [X]x at x of sections X of£ such that Xx E f'!c 
and set L'fc to be the its image on Lx. For p > 0 we define L~ by the 
condition (vi) of Definition 1.1, replacing Lk by L~. In this way we have 
a transitive filtered Lie algebra { L~} of depth f.l· (If we use the notion of 
weighted jet bundle introduced in Section 3, we can better understand 
the meaning of this new filtration.) 

The remarks above will motivate to study the transitive filtered Lie 
algebras of depth greater than 1, which not only leads us to a natural 
generalization of Guillemin-Sternberg but also becomes a good guide 
to studying geometric structures and differential equations on filtered 
manifolds. 

In this section we study the transitive filtered Lie algebras of depth 
greater than 1, and we shall see how a filtered Lie algebra can be con­
structed from finite dimensional data i.e., its truncated Lie algebra. 

Let L be a transitive filtered Lie algebra of depth f.l· Let gr L = 

EBpEZ grpL be its associated graded Lie algebra, where grpL = LP j £P+l. 
Then gr L is a transitive graded Lie algebra of depth 11 in the following 
sense: 

Definition 1.2. A graded Lie algebra g = EBpEZ gP is called tran­
sitive graded Lie algebra (TGLA) of depth 11 if it satisfies the following 
conditions: 

i) gp = 0 for p < -11 
ii) dim gP < oo 

iii) For i ~ 0, Xi E gi, if [xi, g_] = 0 then Xi = 0, 

where we set g_ = EBp<O 9p· 

Let us recall the notion of prolongation concerning a TG LA ( [ GS64], 
[Tan70]). For this we first give the following: 

Definition 1.3. Let k be an integer or oo. A truncated graded Lie 
algebra of order k is a graded vector space g(k) = EBP:Sk gp equipped 
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with a bracket operation (skew-symmetric bilinear map) 

defined partially for p, q, p+q::; k, satisfying the partial Jacobi identity: 

for Xp E 9p, Yq E 9q, Zr E 9n whenever p, q, p + q, q + r, r + p, 
p + q + r ::; k, where 6 denotes the cyclic sum in Xp, Yq, Zr. If moreover 
the conditions (1) (2) (3) of Definition 1.2 are satisfied, 9(k) is called 
truncated transitive graded Lie algebra (truncated TGLA) of order k of 
depth J.L. 

Note that a truncated TGLA of order oo is just a TGLA. If 9(k) = 
ffip:Sk 9p is a truncated TGLA of order k, then for each integer l ::; k, 
EBP:Si 9p becomes a truncated TGLA of order l with respect to the 
induced bracket operation, which we will denote by Thun1 9(k). Mor­
phisms of truncated TFLA's can be defined in the natural manner. In 
particular, a homomorphism cp: l)(k) ---> 9(k) will be called an embed­
ding if cp induces an isomorphism of IJ- = ffip<O l)p onto 9- = ffip<O 9p· 
Note that an embedding is necessarily injective. 

Now let us define the prolongation of a truncated TGLA 9(k) = 

ffip:Sk 9p of order k ~ -1. Put 9- = ffip<O 9p and define Derk+l 9(k) to 
be the vector space consisting of all a E Hom(9-, 9( k)) such that 

{ 
a(9p) C 9p+k+l (p < 0) 

a([x,y]) = [a(x),y] + [x,a(y)], for x, y E 9-

and we set 

p9(k) = 9(k) EEl Derk+l 9(k). 

It is then easy to see that there exists a unique bracket operation on 
p9(k) which makes p9(k) into a truncated TGLA of order k+l such that 
Trunk(P9(k)) = 9(k) and [a, x] = a(x) for a E Derk+1 9(k), x E 9-· 

Iterating this construction, we obtain a truncated TGLA pi9(k) 
(= p(pi- 19(k)) of order k + i, and a TGLA p=9(k) (= injlimpi9(k)). 
Thus we have: 

Proposition 1.1 (Tanaka). For a truncated TGLA 9(k) of order 
k, there exists, uniquely up to isomorphism, a truncated TGLA pi9(k) 
of order k + i(O ::; i ::; oo) which satisfies the following conditions: 

i) Thunk(Pi9(k)) = 9(k) 
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ii) If ~(k + i) is a truncated TGLA of order k + i and if there 
is an embedding 1/Jk: Trunk ~(k + i) --> g(k), then there 
exists a unique embedding 1/Jk+i: ~(k + i) --> pig(k) such that 

1/Jk+i !Trunk ~(k+i)= 1/Jk· 

The truncated TGLA pig(k) is called the prolongation of g(k). We 
will often denote p00 g(k) by Prolg(k). We say also that a TGLA g 
is the prolongation of Trunk g if g = Prol Trunk g. Note that, by the 
proposition above, g can be always identified with a graded subalgebra 
of Prol Trunk g. 

1.2. Generalized Spencer cohomology groups. Now we define a 
cohomology group associated with a TGLA g = E9pEZ gp- We set 

m = g_ = ffigp, 
p<O 

which is a nilpotent subalgebra of g, and consider the cohomology 
group associated with the adjoint representation of m on g, namely 
the cohomology group H(m, g) = E9 HP(m, g) of the cochain complex 
(C(m,g) = EEJCP(m,g),8), where 

CP(m, g) = Hom(I\P m, g) 

and the coboudary operator 8: Hom(t\Pm,g) --> Hom(t\P+1 m,g) is 
defined by 

n+l 
(8w)(X1, ... ,Xp+l) = 2:::(-l)i-l[Xi,w(Xl, ... ,Xi, ... ,Xp+l)] 

i=l 

+ 

for w E Hom(t\P m, g), X1, ... , Xp+l E m. Since both m and g are 
graded, we can define a bigradation E9 H~(m, g) of H(m, g) as follows: 
Denote by Hom(t\P m, g)r the set of all homogeneous p-cochain w of 
degree r (i.e., w(ga1 1\ · · · 1\ gap) C ga 1 +··+ap+r for any a1, ... , ap < 0), 
and set Cr(m, g) = Hom(t\ m, g)r = E9P Hom(t\P m, g)r· Note that 8 
preserves the degree. Hence Cr(m, g) is a subcomplex and the direct 
sum decomposition 

C(m,g) = ffiCr(m,g) 

yields the decomposition of the cohomology group: 

H(m,g) = ffiHr(m,g) = ffiH~(m,g). 
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This cohomology group H(m, g) was introduced by Tanaka [Tan79] 
with another gradation: 

H 8 'P(m, g) = H~+p-l (m, g). 

It should be remarked that if the depth 11 = 1, then m is abelian and 
H 8 'P(m, g) is known as the Spencer cohomology group. The following 
theorem generalizes the well-known result in the case 11 = 1 to the case 
of arbitrary 11 [Mor88]. 

Theorem 1.1. Let g be a TGLA of depth 11· Then there exists an 
integer ro such that Hr(m, g) = 0 for all r 2:: ro. 

The proof is based on the fact that the universal enveloping algebra 
of a finite dimensional Lie algebra is Noetherian. 

For a concrete criterion in terms of quasi-regular bases for the van­
ishing of the cohomology group, see [Mor91]. 

1.3. Truncated transitive filtered Lie algebras. Let A be a vector 
space. For a, f3 E Hom(/\ 2 A, A) define a o f3 E Hom(/\ 3 A, A) by 

(a o f3)(x, y, z) = 6a(f3(x, y), z), 

where 6 denotes the cyclic sum in x, y, z EA. Define then a quadratic 
map 

J: Hom(f\2 A,A) ---+Hom(f\3 A,A) 

by J ( '"'/) = '"'/ o '"'/ for '"'/ E Hom(/\ 2 A, A). Note that to define a Lie algebra 
structure on A is equivalent to taking a '"'/ E Hom(/\ 2 A, A) satisfying 
J('"Y) = 0. 

Now if A is endowed with a descending filtration { AP}pEz, 
then Hom(!\r A, A) has the natural filtration {Hom(/\r A, A)k}, 
where Hom(!\r A, A)k consists of all a E Hom(/\r A, A) satisfying 
a(APl 1\ 0 0 0 1\ APr) c APl+·+Pr+k for any (Plo 0 0 0 ,pr) E zr. Let us 
introduce on Hom(!\r A, A)0 another filtration {Jk Hom(!\r A, A) 0 hEZ 
by defining Jk Hom(!\r A, A)0 to be the subspace of Hom(!\r A, Ak)o 
which consists of all a E Hom(/\r A, A)0 such that 

a(APl 1\0 ··/\APr) c AP~+·+p;+k 

for any (p1 , ... ,pr) E zr, where we set p* = Min{p, 0}. 
It is easy to check that if a - f3 E Jk Hom(!\ 2 A, A)0 for 

a, f3 E Hom(/\2 A,A)0 then J(a)-J(/3) E JkHom(/\3 A,A)0 . Therefore 
if we put 
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we have the induced map 

[ ( 2 )O][k] [ ( 3 )O][k] 
J: Hom f\ A,A -) Hom f\ A,A 

defined by Ja[k] (J(a))[k] for a E Hom(/\2 A,A)0 , where 
,B[k] denotes the equivalence class of ,B E Hom(/\r A, A)0 modulo 
Jk+l Hom(/\r A, A)0 . 

Definition 1.4. A truncated filtered Lie algebra of order k is a 
vector space A endowed with a descending filtration { AP}vEz and a 
truncated bracket l'[k] E [Hom(/\ 2 A, A)0 ] [k] satisfying the following con­
ditions: 

i) Ak+1 = 0 
ii) J(l'[kl) = 0 (truncated Jacobi identity) 

Note that if A(k) =(A, {AP}, l'[k]) is a truncated filtered Lie algebra 
then gr A has the induced structure of truncated graded Lie algebra, 
which will be denoted by grA(k). 

Definition 1.5. A truncated filtered Lie algebra A(k) is called a 
truncated transitive filtered Lie algebra (truncated TFLA) if grA(k) is 
transitive. 

Note that a truncated TFLA of order oo is just a TFLA. 
If A(k) is a truncated TFLA of order k(~ oo) then for each l ~ k, 

we have a truncated TFLA of order l denoted by Trun1 A( k) by passage 
to the quotient A(k)jA1+1 . 

Homomorphisms of truncated TFLA's are defined in the natural 
manner. Note that a homomorphism r.p: A(k) -) B(k) of truncated 
TFLA's gives rise to a homomorphism grr.p: grA(k)-) grB(k) of trun­
cated GLA's. We say r.p is an embedding if so is grr.p. 

For a truncated TFLA A(k), the cohomology group HJ?(grA(k)) will 
be defined to be HJ?((Prolgr A(k))_, Prolgr A(k)). 

1.4. Now we are in a position to state main structure theorems: 

Theorem 1.2. Let A(k) be a truncated TFLA of order k > 0. 
Assume that 

for r ~ k + 1 and s ~ Max{k + 1,2}. Then there exists, uniquely up to 
isomorphism, a complete TFLA L such that 

TrunkL = A(k) and grL = ProlgrA(k). 
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Theorem 1.3. Let L be a complete TFLA and k a non-negative 
integer such that 

H;-,(grL) = H;(grL) = 0 for r;:::: k + 1. 

If there is an embedding '1/Jk: Trunk K-+ Trunk L for a TFLA K, then 
there exists an embedding cp: K-+ L such that Trunk cp = '1/Jk Moreover, 
two such embeddings differ by an inner automorphism of L which fixes 
Trunk£. 

Theorem 1.4. Let L 1 and L2 be complete TFLA 's and k a non­
negative integer such that 

Then L1 and L2 are isomorphic if and only if so are Trunk L1 and 
Trunk L2. 

Corollary 1.5. If L is a complete TFLA satisfying 

H;-,(grL) = H;(grL) = 0 for r;:::: 1, 

then L is graded, that is, isomorphic to the completion of gr L. 

For the proofs see [Mor88]. The above theorems as well as their 
proofs clarify how a TFLA is constructed step by step from a truncated 
TFLA of lower order. 

§2. Geometric structures on filtered manifolds 

2.0. The main problem that we discuss in this section is the equiv­
alence problem: It is, given two geometric structures, to obtain criteria 
to decide whether they are (locally) equivalent. For this problem, geo­
metrically, the main task is to determine the complete invariants of a 
given structure. 

The general equivalence problem was first posed by Lie to find the 
differential invariants under the action of a finite or infinite dimensional 
Lie group and was investigated during the last quarter of the 19th cen­
tury by Lie himself, Halphen, Tresse, Wilczynski etc., mainly for various 
classes of differential equations. 

At the beginning of the 20th century Cartan invented a powerful 
method for the equivalence problem by combining Lie group theory and 
the method of moving frames, and applied it to his extensive work, 
especially to his brilliant work in 1900s on the theory of infinite groups 
and on geometric studies of differential equations. Later in 1920s he 
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also introduced the notion of espace generalise, what is nowadays called 
Cartan connection. He wrote: 

In the wake of the movement of ideas which followed the general 
theory of relativity, I was led to introduce the notion of new geometries, 
more general than Riemannian geometry, and playing with respect to the 
different Klein geometries the same role as the Riemannian geometries 
play with respect to Euclidean space. The vast synthesis that I realized 
in this way depends of course on the ideas of Klein formulated in his 
celebrated Erlangen programme while at the same time going far beyond 
it since it includes Riemannian geometry, which had formed a completely 
isolated branch of geometry, within the compass of a very general scheme 
in which the notion of group still plays a fundamental role. (E. Cartan 
[Car31] p. 58. The translation is borrowed from [Sha97].) 

However, it took a rather long time until after the second world 
war that Cartan's fundamental ideas came to be rigorously formulated 
and developed into modern theory by the work of Ehresmann, Chern, 
Kuranishi, Spencer and others. In particular, Chern [Che54], Guillemin, 
Singer and Sternberg ([GS64], [SS65]) formulated the equivalence prob­
lem as that of G-structures and clarified many of Cartan's ideas. 

Meanwhile, inspired by the deep work of Cartan, Tanaka elaborated 
skilled methods to construct Cartan connections through his studies on 
conformal and projective connections, on C R geometry and on geometry 
of differential equations. In particular, he developed fundamental work 
on differential systems. ([Tan62], [Tan70], [Tan76] and [Tan79].) 

Pursuing a more complete treatment of equivalence problem, 
Morimoto introduced the notion of C-fibre [Mor83] and then e:x:tended 
this as that of tower on filtered manifolds [Mor93], which gives us wider 
perspectives to develop .a unified theory on the equivalence problem, in 
particular, to lead us to a basic notion of weighted involutivity and to a 
general criterion for the existence of Cartan connection. 

In this section we will introduce the notion of a tower and explain 
the method to treat the equivalence problem, laying emphasis on the 
conceptual aspects and referring to [Mor93] for technical details. 

2.1. Let us begin with some reflection on differentiation. Let f be a 
function of x~, ... , Xn· The partial derivatives *!; are nothing but the 
coefficients of df: 

df = fi dx1 + · · · + fn dxn. 

If we have in mind a certain geometric structure and if we have no 
reason to choose a special system of coordinates but a certain family 
of coframes w~, ... , Wn invariantly associated to the structure, it will be 
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better to differentiate with respect to the coframes: 

But then fi will be a function not only of (x1 , ... , Xn) but also of new 
parameters >.1, ... , >.1 if coframes w1, ... , Wn depend on l-parameters 
>.1, ... , >-z. 

Next if we have a distinguished family of coframes of the space 
Xl, ... ,xn, .A1, ... ,.Az, say, w1, ... ,wn, 7r1, ... ,7rz, where 7rp are 1-forms 
expressed in terms of x1, ... , Xn, >.1 , ... , Az and new parameters Jh, .. . , 
J.Lm, we get second order derivatives with respect to these coframes: 

where fij, fi;p are now functions of x, >., J.L. 
If each family of coframes is taken in an invariant way, then the 

parameter spaces { >.1, ... , .Az}, { A1, ... , .Az, /11, ... , J.Lm} will all form Lie 
groups. 

Iterating this procedure to higher orders, we may arrive to a space to 
which we need no longer to add new parameters, or we have to continue 
the procedure infinitely. 

This leads us to consider as a model of the space in which we finally 
arrive after the above procedure the following objects: (P, M, G, E, p, B), 
where Pis a principal fibre bundle over a manifold M with the structure 
group G equipped with an absolute parallelism, that is, a 1-form B taking 
values in a vector space E such that Bz: TzP --+ E is an isomorphism 
for all z. 

It will be natural to assume that there is a representation p of G on 
E and satisfies the following conditions: 

(T1) R~B = p(a)- 10 for a E G, 

where Ra denotes the right translation by a. 
(T2) There is an exact sequence of G-modules: 

0--+ g--+ E, 

where the Lie algebra g of G is regarded as a G-module by the adjoint 
action of G on g. 

(T3) B(A) =A for A E g, 

where A denotes the vector field on P induced by the right translations 
{RexptA}· 
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The structure (P, M, G, E, p, 0) as above, with some additional 
assumptions mentioned later on, will be called a tower on M with ( alge­
braic) skeleton (G, E, p). 

If E happens to be a finite dimensional Lie algebra I containing gas 
a Lie subalgebra, then the tower is just a principal fibre bundle with a 
Cartan connection. If moreover the structure function 1 defined by the 
structure equation; 

1 
dO+ 2'(0 1\ 0) = 0 

is constant, then the tower represents locally a homogeneous 
space : L ---+ L / G, where L is a Lie group with Lie algebra I and 0 is 
the Maurer-Cartan form of L. 

It should be noted that towers P (and hence G, E) may be infinite 
dimensional. 

Example. The infinite order frame bundle F 00 (M) of a differen­
tiable manifold M is defined to be the set of all infinite order jet j 0 f, 
where f: JRn ---+ M is a local diffeomorphism from a neighbourhood of 
the origin 0 E JRn into M. This is a principal fibre bundle (of infinite 
dimension) over M of which the structure group c=(JR.n) is the group 
consisting of all j 0 g, where g: (JRn, 0) ---+ (JR.n, 0) is a local diffeomor­
phism with g(O) = 0. Let L = J0 TJR.n denote the set of all oo-jet at 0 
of local vector fields on a neighbourhood of 0 in JRn, i.e., the Lie algebra 
of all formal vector fields at 0. Since the tangent space of :r=(M) at 
j 0 f may be identified with JJ(0 )TM, the map 

j(!;;l): J'!(o)TM---+ JffTJRn 

defines a £-valued 1-form 0 on F 00 (M). 

What is important is that every tower has a natural filtration which 
represents implicitly the notion of "differentiation". Let (P, M, G, 0, E) 
be a tower. Then there is a canonical filtration ftr of G and g (and then 
on the tangent bundle of P) defined inductively by the following exact 
sequences: 

(2.1) 
_) 

with f~rG = G and ffrg denoting the Lie algebra of ffrG. This is, so to 
speak, the filtration according to the Taylor expansion. 

It is natural to assume the action of G is formally effective in the 
following sense: 

(T4) 
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Now let us turn our attention to filtered manifolds. A tower 
(P, M, G, B) with skeleton (E, G, p) is called a tower on a filtered mani­
fold M if there is a filtration { fP E I g} of E I g invariant under the action 
of G and if B preserves the filtrations, that is, for all z E P the map 
T-rr(z)M---+ Elg induced by Bz preserves the filtrations. 

In this case the skeletoJ;l ( E, G, p) leaves invariant the filtration 
{ fP E I g}, and we can introduce another filtration { fP G} of G by the 
following exact sequence: 

with f0 G = G, where the filtration {fk} of E lfPg is the induced one 
from that of E I g for k :::; 0 and from fk g for k 2': 0, and the filtration 
fJGL(EifPg) is the natural one induced from that of ElfPg. 

This filtration derives from the notion of weighted order of the fil­
tered manifold and will be used exclusively in studying the towers on 
the filtered manifold. 

So far we have not specified the category in which possibly infinite 
dimensional objects P, G, E are considered. By virtue of the filtrations 
introduced above, we see the proper category is that of projective limits 
of finite dimensional objects, where we can freely speak of principal 
bundles, Lie groups, their Lie algebras, differential forms etc. as in the 
finite dimensional case. 

2.2. To define the morphisms of towers on filtered manifolds, we 
make the following convention: 

We choose once for all one filtered vector space V = (V, {VP}) for 
each isomorphic class of filtered vector spaces, for instance, V = JRdim v, 
VP = JRdim vv with fixed standard inclusions, and we assign to each 
filtered manifold M one such filtered vector space V called the type 
(filtered vector space) of M such that TxM is isomorphic to V for all 
x E M. Thus two filtered manifolds are of the same type if they are 
isomorphic. 

If P is a tower on a filtered manifold M with skeleton ( E, G), then 
E I g is isomorphic to the type space V of M. We shall always fix one 
splitting V---+ E for the skeleton (E, G) so that we have: 

(T5) 

Now let M and M' be filtered manifolds of the same type V. Let 
P(M, G, B) and P(M', G', B') be towers on M and M' respectively. A 
morphism of towers P to P' is a homomorphism of principal fibre bundles 
<p: P ---+ P' with the induced diffeomorphism <p( -l) : M ---+ M' and the 
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induced Lie homomorphism L: G --+ G' such that 

cp*()' = L*. o (), 

where L* denotes the induced map: 

A morphism cp will be referred to as an isomorphism if cp is a diffeomor­
phism, and as an embedding if M = M' and c.p(-l) = IdM. 

The category of towers has the following remarkable properties: 

Proposition 2.1. For a filtered manifold M there exists a univer­
sal tower on M such that any tower on M is uniquely embedded in the 
universal tower. 

We denote the universal tower of the filtered manifold M of type V 
by (R(M), M, G(V), OR) and its skeleton by (E(V), G(V)). 

Using the filtration introduced by (2.2), we set: 

the quotient bundle by the action of fk+ 1G(V). It is a principal bundle 
over M with structure group G(k)(V) = G(V)/fk+1 and is referred to as 
the non-commutative frame bundle of M of (weighted) order k + 1. 

We say that a principal subbundle p(k) of '](_(k)(M) is adapted if 
there exists a tower P on M such that p(k) = P /fk+l. We then have: 

Proposition 2.2. For an adapted subbundle p(k) ofR(k) (M) there 
exists a unique universal tower np(k) such that '](_p(k) /fk+l = p(k) and 
any tower Q on M is embedded in np(k) if Qjfk+1 c p(k). 

We have also: 

Proposition 2.3. If f: M --+ M' is an isomorphism of filtered 
manifolds, it canonically induces isomorphisms Rf: R(M) --+ R(M') 
and '](_(k) f: '](_(k)(M)--+ '](_(k)(M'). Moreover if p(k) is an adapted sub­
bundle ofR(k)(M), then (R(k) j)P(k) is also adapted and (Rf)(RP(k)) = 
n((nCk) J)PCk)). 

The tower np(k) is called the universal tower prolonging p(k) or 
the universal prolongation of p(k). We set 

and call it also the prolongation of p(k). 
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The above universal properties completely characterize the inductive 
construction of R_(P)(M) and np(k) ffP+ 1 to obtain 'R(M) and R_p(k) as 
their projective limits. 

The first order frame bundle R. (o) (M) of a filtered manifold M of 
type V is given as follows: Let ftCO) (M) be the set of all linear frames 

preserving the filtrations. It is a principal fibre bundle over M whose 
structure group is f0 GL(V), the group of all filtration preserving linear 
isomorphisms. Then we see 

namely, the quotient bundle by the action of f1GL(V), which is a prin­
cipal fibre bundle over M with structure group G(o) (V) = f0 G L(V) /f1 . 

In other word, R. (o) (M) is a the set of all isomorphisms of graded 
vector spaces 

z: grV---+ grTxM. 

Then the inductive construction can be carried out by the following 
properties: 

(1) Every subbundle of n<0l(M) is adapted. 
(2) For k > 0, a subbundle p(k) of R_(k)(M) is adapted if and only 

if so is p(k-1) = p(k) /fk and p(k) is a sub bundle of #P(k-1). 

(3) To every adapted subbundle (P(k),G(k)) of R_(k)(M), there is 

associated the principal fibre bundle (#P(kl,if-c<k)) over M consisting 
of filtration preserving linear isomorphisms 

such that 

i) zk+1 (A) = Azk for A E g(k), 

ii) [zk] = zk, where [zk] denotes the equivalence class modulo fk+ 1 

and zk is defined by the commutative diagramme: 

V EB g(k) 
zk+l 

Tzkp(k) -------+ 

1 1 ~. 
V EB gCk-1) 

zk 
Tzk-1 p(k-1) -------+ 

(4) For an adapted subbundle p(k) of R.k(M), 

#p(k) = if-p(k) /fk+2. 
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Then R(M) and R,p(k) are obtained by 

R(M) = projlim#i'R.(o)(M), R,p(k) = proj lim#ip(k). 
i---too i-~>oo 

We remark that if M is a trivial filtered manifold then R(M) has a 
system of local coordinates (xL ... ,j,J with 1 :::; i, j1, ... ,jm :::; dimM, 
m = 0, 1, 2, ... , (the introduction of new variables which stand for the 
higher order derivatives, but without any commutation relations), while 
the usual infinite order frame bundle :F=(M) is embedded in R(M) by 
the equation x 3i. 3. = x 3i. 3. for all permutations cr. This is the 

u(l), ... , a(m) b···' tn 

reason why R(M) is called the non-commutative frame bundle of M and 
has a great advantage for studying curved spaces. 

For instance, if the filtration is not trivial, since the filtered manifold 
M itself may not be even locally trivial, we have a priori no counter-part 
to :F(M) associated to M, but we always have the non-commutative 
frame bundle R(M) which is large enough to contain all curved struc­
tures. 

2.3. Structure functions. 
We now introduce the structure function of a tower. Let (P, M, G, B) 

be a tower on a filtered manifold M with skeleton (E, G). Since B defines 
an absolute parallelism on P, there exists a unique Hom(/\ 2 E, E)-valued 
function 'Y on P which satisfies the following structure equation: 

(2.3) 
1 

dB+ 2,'Y(B, B) = 0. 

This function 'Y, referred to as the structure function of the tower 
P, has the following properties: 

Proposition 2.4. Let 'Y be the structure function of a tower 
(P,M,G,B). Then 

i) "f(z)(A, X) =A· X for z E P, A E g, X E E. 
ii) 'Y(za)(X, Y) = a-1"f(z)(aX, aY) for z E P, a E G, X, 

YEE. 
iii) If <p: P --+ P' is a morphism of towers then <p*"f' = "f, where 

"f1 denotes the structure function of P'. 

If we denote also p the natural representation of G on Hom(/\ 2 E, E), 
then the above formula (2) is written as 

R~'Y = p(a)-1"f. 

Since E = V E9 g, we have the direct sum decomposition: 

Hom(f\2 E,E) =Hom(f\2 V,E) E9Hom(g®E,E). 
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Note that Hom(/\ 2 V, E) is a G-invariant subspace of Hom(/\ 2 E, E), 
while Hom(g 0 E, E) is not invariant. Let f3 denote the element of 
Hom(g 0 E, E) given by the action of g on E: 

f3(A, X) = A· X for A E g, X E E. 

Then the representation p induces the affine representation of G on the 
affine subspace f3 + Hom(/\ 2 V, E), and the structure function 'Y is a 
G-equivariant map from P to the affine space f3 + Hom(/\ 2 V, E). The 
Hom(/\ 2 V, E)-valued function c given by 

(2.4) "f=f3+c 

is therefore the crucial part of 'Y and also called the structure function 
of P. 

We next introduce the structure function of a truncated tower. 
Let (P(k), M, G(k)) be a truncated tower, that is, an adapted subbun­
dle of R(k) (M). Let (P, M, G, B) be any tower prolonging p(k), i.e., 
P/fk+l = p(k) and 'Y its structure function. Let {fPHom(/\2 E,E)} be 
the natural induced filtration. First of all we see that the structure 
function of a tower takes values in f0 Hom(/\2 E, E). 

To define the structure function of p(k) we put 

Here { Jk} is the filtration of Hom(/\ 2 E, E), the same filtration as we 
used for truncated Lie algebras (cf. §1, 1.3): 

a E Ik Hom(/\ 2 E, E) {::::=} a(fP E 1\ fq E) C fP*+q*+k E Vp, q E Z, 

where p* = p for p < 0 and p* = 0 for p;::: 0. Note that 

( 2 ) [k] ( 2 ) Hom 1\ E, E ~ f0 Hom 1\ E(k), E(k) / Jk+1 . 

Note also that G acts on Hom(/\ 2 E, E)[k] with fk+1G acting triv­
ially. Hence the structure function 'Y of P induces a map 'Y[k] which 
makes the following diagramme commutative: 

P ~ Hom(/\ 2 E, E) 

l l 
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Moreover, with respect to the induced representation plkJ of G(k) on 
Hom(/\2 E,E)lkJ, we have 

for z E p(kl, a E G(k)_ 

It should be noted that '"Y[k] does not depend of the choice of the tower 
P but only on p(k). We can also decompose '"Y[k] as 

(2.6) 

where c(k) is the f0 Hom(/\2 V, E(k-l))/fk+l_component and ,B[k] the pro­
jection of ,6. 

The function '"Y[k] as well as c(k) will be referred to as the structure 
function of p(k). Summarizing the above discussion, we have: 

Proposition 2.5. The structure function ')'[k] of a truncated tower 
(P(k), M, G(k)) is a G(k)_equivariant map 

( 2 ) [k] ( 2 ) ')'[k]: p(k) ---+Hom (\ E, E ~ f0 Hom (\ E(k), E(k) / Jk+l, 

and if <p(k): p(k) ---+ pt(k) is an adapted homomorphism then 

Let (P, M, n; e) be a tower with skeleton (E, G). Let us see what 
the tower P looks like when the structure function ')' is constant. 

Assume that ')' is constant. Applying the exterior differentiation to 
the structure equation (2.3), we have 

'"Y('"Y(e, e), e) = o, 

which implies '"Y(E Hom(/\2 E,E)) satisfies the Jacobi identify: 

6')'('"Y(x, y), z) = 0, x, y, z E E. 

Hence the filtered vector space E, endowed with the bracket operation 
given by ')', becomes a Lie algebra. Moreover, as easily seen, it is a 
transitive filtered Lie algebra. Thus, 

Proposition 2.6. If the structure function ')' of a tower P with 
skeleton ( E, G) is constant, then ( E, ')') is a transitive filtered Lie algebra. 

Thus a tower (P, M, G; e) with constant structure function '"Y is an 
analogue of a homogeneous space G/G with G a Lie group possibly 
infinite dimensional and G its closed Lie subgroup. 
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We have also: 

Proposition 2. 7. If the structure function r[k] of a truncated 
tower (P(k), M, G(k)) is constant, then (E(k), l(k]) is a truncated transi­

tive filtered Lie algebra. 

It should be noted that the constancy of the structure function 1 or 
r[k] has a strong effect to reduce the "size" of G or Q(k) (hence P and 
p(k)) just as the passage from a tensor algebra to an enveloping algebra. 

2.4. Equivalence problems. 
Without much loss of generality, we may define a geometric structure 

of weighted order k on a filtered manifold M to be an adapted sub bundle 
p(k) of R(M)(k), which will be alternatively called a truncated tower of 
order k on M. 

Two geometric structures (P(k), M, Q(k)) and (P'(k), M', G'(k)) are 
said to be isomorphic (or equivalent) if there exists an isomorphism 
rp(k): p(k) ~ pt(k) of adapted subbundles. This is equivalent to saying 
that there exists an isomorphism f : M ~ M' of filtered manifolds such 
that the lift R.(k) f: R.(k) (M) ~ R.(k) (M') sends p(k) onto pt(k). 

We say that p(k) and pt(k) are locally isomorphic (or locally equiv­
alent) at (x, x') EM x M' if there exist neighbourhoods U, U' of x, x' 
respectively and an isomorphism of filtered manifolds f: U ~ U' such 
that f(x) = x' and that 

R(k) f(P(k)iu) = p'(k)lu'· 

Given a geometric structure of order k + 1 on a filtered manifold M, 
that is, a truncated tower (P(k), M, Q(k)). The general procedure to find 
the invariants of p(k) proceeds as follows: 

Since the structure function l(k]: p(k) ~ Hom(/\ 2 E, E)[k] is a 
G(k)_equivariant map, the image l(k] decomposes into G(k)_orbits. Sup­

pose that it consists of a single G(k)_orbit. Then choose a~ E l(kl(pCkl), 

and reduce p(k) to obtain Q(k) = (rtkl)- 1 (~). Note that a different 

choice of ~ yields a conjugate subbundle. 
Note also that Q(k) may not be adapted. If it is not adapted we 

take an l(< k) such that QCll = Q(k) ffl+1 is adapted. (If Q(k) ____, p(l-l) 

is surjective then Q(l) is adapted. Q(O) is always adapted.) 
Next we prolong Q(l) to get #Q(l) and iterate this procedure. 
In the course of the procedure, if the image of a structure func­

tion happens to contain more than one orbits, the geometric structure 
is intransitive. To treat the intransitive cases, we have to generalize 
our formulation to treat principal bundles whose structure groups Q(k) 
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may vary with parameters. For detailed discussion we refer to [Kis79], 
[Mor83] and [Mor93]. 

If the structure is transitive, then the finiteness theorem (Theo­
rem 1.1) of generalized Spencer cohomology group assures that after a 
finite number of prolongation and reduction we will arrive at what we 
call a ( weightedly) involutive truncated tower: 

Definition 2.1. An adapted subbundle (p(k), M, Q(k)) of 
R_(k)(M) (namely, a truncated tower) is called weightedly involutive if 
the following conditions are satisfied: 

i) The structure function l[k] is constant. 
ii) H 2 (grE(k))r = 0 for r :2': k + 1. 

Note that, in the definition above, since l[k] is constant, gr E(k) 
becomes a transitive truncated graded Lie algebra, so that it makes 
sense to speak of the cohomology group H (Prol gr E(k l), which is denoted 
simply by H(grE(k)). 

We shall often use the adjective "involutive" in the extended sense 
of "weightedly involutive" if it is clear from the context. 

Then we have: 

Theorem 2.1. For an involutive truncated tower p(k), we can 
construct, in a natural manner, a tower P with constant structure func­
tion such that P /fk+1 = p(k). 

In fact, by the vanishing of the cohomology group, it can be shown 
that the image of the structure function l[k+l] of #P(k) consists of 

a single orbit, moreover that the reduction p(k+l) = (r[k+ll)- 1 (~) is 

adapted and involutive for any ~ E lm l[k+lJ. Iterating this, we obtain 
a tower P with constant structure function: P = proj lim1 p(k+l) 

Thus, after we reach an involutive tower the prolongation and reduc­
tion procedure proceeds automatically and there appear no essentially 
new invariants. 

It should be remarked that the way of constructing p(k+l) from p(k) 
just correspond to the way in which truncated transitive Lie algebra 
(E(k+l), r(k+l)) is algebraically constructed from (Ek, l(kl). 

Now, assuming the analyticity, we solve the local equivalence prob­
lem of involutive truncated towers. 

Theorem 2.2. Let M and M' be filtered manifolds of type V, 
and let (P(k), M, Q(k)) and (P'(k), M', G'(k)) be involutive subbundle of 

RJk)(M) and R.(k)(M') with structure functions l[k] and r,[k] respec­
tively. Then under the assumption of analyticity the following two con­
ditions are equivalent: 
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1) G(k) = G'(k) and l[k] = ,,[k] 

2) For any (p,p') E p(k) x P'(k), there exist open neighbourhoods 
U and U' of 1r(p) and 1r1(p') respectively (1r and 1f1 denote 
the projections p(k) ---+ M and P'(k) ---+ M'), and a filtra­
tion preserving analytic homomorphism cp: U ---+ U' such that 
(R(k)cp)(P(k)lu) = P'(k)lu' and that (R(k)cp)(p) = p'. 

To prove the theorem, it might seem rather natural to use the theory 
of differential equations on filtered manifolds that we shall discuss in the 
next section. However, the usual Cart an Kahler theorem suffices to prove 
it, since the structure is actually transitive and has no singularities in 
this case. 

2.5. Cartan connections. 
2.5.0. What we nowadays call Cartan connection was first intro­

duced by E. Cartan as "espace generalise". It is a curved space modeled 
after a homogeneous space. Let us recall the definition. 

Let [ be a Lie algebra and £ a Lie subalgebra of L Let K be a Lie 
group with Lie algebra£ equipped with a representation p: K---+ GL(£) 
such that the differential p*: £ ---+ g£(g) coincides with the adjoint rep­
resentation of £ on [. By abuse of notation this representation p will be 
denoted by Ad. 

Let P(M, K) be a principal fibre bundle over a manifold M with 
structure group K. A Cartan connection in P of type(£, K) is a 1-form 
0 on P with values in [ satisfying the following conditions: 

i} 0: TzP---+ [is an isomorphism for all z E P. 
ii) R~O = Ad(a)-10 for a E K. 

iii) O(A) =A for A E £. 

We know various examples of Cartan connections hitherto obtained: 
Riemannian, conformal, projective (cf. [Kob72]), or strongly pseudo­
convex CR-structures [Tan62], and more generally certain geometric 
structures associated with simple graded Lie algebras [Tan79]. 

It then naturally arises the following question: Given a geometric 
structure r on a manifold M, is it possible to construct a principal 
bundle over Manda Cartan connection 0 in Pin such a way that (P, 0) 
is canonically associated with r? 

First of all it should be remarked that our frame bundle R(M) has 
the universal property also for the Cartan connections: Assume that 
the pair (£, K) is formally effective (see (T4) in §2, 2.1). By choosing a 
complementary subspace V of [to£ we can view (£, K, Ad) as a skeleton 
over V. Then it is clear that a Cartan connection (P, M, K, 0) of type 
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(l, K) is a tower over M. Hence, by Proposition 2.1, there exists a unique 
embedding~= P --t R(M) such that ~*On= 0. 

Thus the problem of finding a Cartan connection is reduced to the 
problem of constructing, for a given tower Q (or truncated tower Q(k) 

of order k) on a filtered manifold (M,F), a sub-tower P(M,O,E) in a 
canonical way so that E becomes a Lie algebra. 

In the next subsections we will give a general criterion and a unified 
method to construct Cartan connections. 

2.5.1. First we need to introduce reduced frame bundles. Let 
m = ffip<O mp be a graded Lie algebra. We say that a filtered mani­
fold M is regular (of type m) if the symbol algebra grTxM (x EM) are 
all isomorphic (to m) as graded Lie algebras. 

Let (R(o) (M), M, G(0) (V)) be the first order frame bundle of M. 
Then, we have immediately: 

Proposition 2.8. A filtered manifold is regular if and only if the 
structure function of 1(_(o) (M) takes its values in a single G(o) (V) -orbit. 

Given a filtered manifold M regular of type m, we shall identify m 
with the type filtered vector space V and also with gr'V (as filtered vector 
space or as graded vector space). Let 'Y[OJ = ,B[o] + c(O) be the structure 
function of R(0l(M). Then c(o) may be considered as taking values in 

Hom(/\ 2 m, m) 0 . Let cg>l be the bilinear map which defines the bracket 
operation of m. We set 

Then R(0l(M,m) is a principal subbundle of 1(_(0l(M). Its structure 
group, denoted by G(0l(m), consists of all automorphisms of the graded 
Lie algebra m. In other words, 1(_(0l(M, m) is nothing but the set of all 
isomorphisms z: m --t grTxM of graded Lie algebras. 

We shall denote by R(M, m) the universal tower RR(0l(M, m) 
prolonging R(0l(M, m), and by (E(m), G(m)) its skeleton. Hence 
E(m) = m EB g(m), where g(m) is the Lie algebra of G(m). We set 
1(_(k)(M,m) = R(M,m)/fk+I and call it the reduced frame bundle of 
M of order k + 1. 

Now let us examine the structure function of R(M, m). We define a 
bilinear map 

f1m = [, ]: E(m) x E(m) --t E(m) 
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{
[u,v] = [u,v]m 
[A, B] = [A, B]g(m) 
[A,x] =Ax 

(the bracket of m) 

(the bracket of g(m)) 

(the action of g(m) on E(m)) 

for u, v E m, x E E(m), and A, B E g(m). Note that this 
bracket does not satisfy the Jacobi identity. Recall that C(m) has 
the natural representation on Hom(J\2 m,E(m), and note that the 
subspace F Hom(/\ 2 m, E(m)) is C(m)-invariant. Moreover it is easy 
to see that the equivalence class of f3m mod f1 Hom(/\ 2 m, E(m)) is 
fixed by the induced action of C(m) on the quotient space. Hence 
C(m) has the induced affine representation on the affine space f3m + 
f1 Hom(J\2 m,E(m)). Hence: 

Proposition 2.9. The structure function 'YR(M,m) of R(M, m) is 
a Q(k)_equivariant map from R(M, m) to the affine space 

We therefore write 

(2.7) 'YR(M,m) = f3m + C 

with can f1 Hom(J\2 m, E(m))-valued function on R(M, m). 
In applications, most of the first order geometric structures are 

defined as subbundles p(o) of the reduced frame bundle RC0l(M, m). 
Thus the prolongation RP(O) is contained in R(M, m) as an adapted 
subbundle. Clearly the structure function of an adapted subbundle of 
R(M, m) satisfies the same properties as in Proposition 3.5.3. 

2.5.2. Criterion for the existence of Cartan connections. 
Now we can formulate our problem for geometric structures of first 

order as follows: 
Let m = EBp<O mp be a graded Lie algebra and Q(D) a Lie subgroup 

of cCol(m). Let M be a filtered manifold regular of type m. Given a prin­
cipal subbundle (PC0), M, QC0l) ofR(0l(M, m) with structure group Q(o). 
We ask whether there exists a Cartan connection (P, B) naturally asso­
ciated with p(o). 

A little more generally, let us pose the problem for higher order geo­
metric structures. Consider a transitive graded Lie algebra [ = EBpEZ [P 

and write: 
[ = m EB e, 
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where we put: 

m = E9 Ip, t = E9 Ip. 
p<O p2':0 

Let G(m) be the structure group of R(M, m) and g(m) its Lie algebra. 
Then from the universal property of G(m) it turns out that t is a Lie 
subalgebra of g(m). 

Let v be an integer (2 0) such that I is a prolongation of EBp::;v I, 
that is, H1:(m, I)= 0 for r 2 v + 1. 

Let G(m)(v) be the structure group of R(kl(M, m), i.e. G(m)(v) = 

G(m)/fv+l and g(m)(v) its Lie algebra. Then e<v) = t/fv+l = EB;=O Ip is 

a subalgebra of g(m)(v). 
Now given a Lie subgroup K(v) of c<vl(m) with Lie algebra e<vl. 

Let K denotes the maximal subgroup of G(m) such that its Lie algebra 
is t and that K/fv+l = K(v), which we call the prolongation of K(v). 

Note that K acts on I naturally. 
Now we consider the following complex: 

· · ·---> Hom(m, I)~ Hom(/\2 m, I)~ Hom(/\3 m, I)~ .. · 

Since m is a Lie subalgebra of I, the coboundary operator a is defined 
as usual. Note that the group K acts on Hom(/\" m, I) and preserves the 
filtration { fP Hom(/\" m, I)}. 

It being prepared, 

Definition 2.2. We say that a Lie subgroup K(v) c c<vl(m) sat­
isfies the condition (C) if there exists a subspace 

W c f1 Hom(/\2 m, r) 
such that 

i) f1 Hom(/\ 2 m, I) =WEB 8f1 Hom(/\ 1 m, I), 
ii) W is stable under the actions of K on f1 Hom(J\2 m, I). 

If p(vl(M,K(v)) is an adapted subbundle of R(v)(M,m), then the 
structure function /[v] is, according to the decomposition (2.7), written 
as: 

/[v] = [,Bm] [v] + [;(v), 

where [;(v) takes values in 

Now we can state: 
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Theorem 2.3. The notation being as above, let [ ( = m + t) be a 
transitive graded Lie algebra with H; ( m, t) = 0 for r ~ v + 1. Let 
K(v) be a Lie subgroup of c<vl(m) and K its prolongation. Suppose 
that K(v) satisfies the condition (C). Then for any filtered manifold M 
regular of type m and for each adapted subbundle p(v) ofR(v)(M, m) with 
structure group K(v) such that its structure function (;(v) takes value in 
w<v) ( = W/ JV+1 ), we can construct a tower P C R(M, m) in such a way 
that 

i) P is a tower on M with skeleton (t, K), 
ii) The structure function c of P takes values in W. 

iii) The assignment p(v) ,__.., P is compatible with equivalences. 

Thus (P, B) is a Cartan connection of type (t, K) associated with p(v), 
where (} is the canonical form of P. 

Proof. The construction of P proceeds by induction. Assume that 
we have constructed for an lk v) an adapted subbundle p(ll(M, K(l)) of 
n<lJ(M, m) with structure group K(l) = K/f1+1 so that p(l) /fv+l = p(v) 
and that the structure function c<1l takes values in w<v). We put 

where #P(l) is the prolongation of p(l) and c(lH) its structure function. 
Passing to the limit, we obtain: P = proj lim p(l). D 

The following proposition is useful in application. 

Proposition 2.10. The notation being as above, let t( = m + £) 
be a transitive graded Lie algebra with H; ( m, t) = 0 for r ~ v + 1. 
Let K(v) be a Lie subgroup of c<vl(m) and K its prolongation and let 
K(o) = K/f1 . Assume that [ is finite dimensional and that there exists 
a positive definite symmetric bilinear form 

(, ):[x[-d~. 

satisfying: 

i) (tp, [q) = 0 if p =I= q. 
ii) There exists T: t -+ [ such that 

{ 
T(tp) C Lp for p ~ 0 

([A, x], y) = (x, [T(A), y]) for x, y E [, A E t. 

iii) There exists To: K(o) -+ K(o) such that 

(ax, y) = (x, To(a)y) for x, y E [, a E K(o). 
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Then K(v) satisfies the condition (C). 

The proof is same as that given in [Mor93], though we give here a 
statement in a little more general form so as to apply to higher order 
structures(cf. [CSOO]). 

If the Lie algebra [is semi-simple the conditions of Proposition 2.10 
are satisfied. Thus Theorem 2.3 together with Proposition 2.10 covers 
all the existence theorems for Cartan connection hitherto known. 

Proposition 2.10 also applies to the case where [is given as a semi­
direct product of a simple Lie algebra and its irreducible representation, 
which appears in the geometry of holonomic systems of differential equa­
tions ([Tan82], [Tan89], [DKM99]). For further detailed geometric stud­
ies based on Cartan connections, see [SY98], [Yam93], [Yam99], [Yat92]. 

§3. Differential equations on filtered manifolds 

3.0. In this section we develop a general study of differential equa­
tions on filtered manifolds. Let M be a filtered manifold. Recalling that 
the filtration f satisfies 

we say that a local vector field X on M is of weighted order :::; k if X 
is a section of f-k. The minimum of such k is called the weighted order 
of X and denoted by w-ordX. A differential operator P on M is said 
to be of weighted order :::; k if P = I:: X 1 · · · Xr (locally) for local vector 
fields X1, ... , Xr and if I:: w-ord Xi :::; k. The minimum of such k is 
called the weighted order of P and denoted by w-ord P. Since it is only 
under the inequality that we actually use the notion of order, we shall 
often say, by abuse of terminology, that w-ord P = k if w-ord P :::; k. 
This notion of weighted order, which well accords with the filtration 
of a filtered manifold, was rather implicit and disguised into algebraic 
or geometric appearances when we studied transformation groups and 
geometric structures on filtered manifolds in the preceding sections, but 
will become explicit and play a fundamental role in this section. 

3.1. Formal theory. We shall explain rapidly how to treat a system 
of differential equations on a filtered manifold by using weighted orders 
and introduce the notion of weighted involutivity, a sufficient condition 
for the system to be formally integrable. A detailed account together 
with some geometric applications will be treated in [MorOx]. 
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Let us first introduce the notion of a weighted jet bundle. Consider a 
filtered vector bundle (E, f) over a filtered manifold (M, f), that is, avec­
tor bundle E over M of finite rank equipped with a filtration consisting 
of subbundles f = {EP}pEZ and satisfying: 

i) EP :J EP+l 
ii) There exist integers VI, vr such that Ev1 = E, EvT+l = 0. 

Let E denote the sheaf of local sections of E and E a the stalk over 
a E M. First we define a filtration {fk Ea} of Ea by setting fk Ea to be 
the subspace of Ea consisting of s E Ea such that 

(P(ai, s) )(a) = 0 

for any differential operator P and any section ai of the annihilating 
bundle (Ei+l )j_ of Ei+1 whenever 

w-ordP+i < k. 

We then define: 

'JkE= U 'J~E, 'J~E=Ea/fk+1Ea. 
a EM 

We denote by jk and j~ the natural projections E-+ 'Jk E and Ea -+ 'J~E 
respectively. It is easy to see that Jk E is a vector bundle over M. 

There is a natural filtration of Jk E defined by f1 Jk E = 0 for l ~ k + 1 
and by the following exact sequences for l :::; k: 

where 7rkl are the natural projections. 
The vector bundle Jk E equipped with this filtration will be called 

the weighted jet bundle of order k of (E, f) over (M, f). 
Note that if Evi = E then 

Note also that if the filtrations of M and E are trivial, that is 
r-1M = TM, E = E 0 :J E 1 = 0, then the weighted jet bundle JkE 
reduces to the usual jet bundle Jk E. But it should be noted that J1Jk E 
and J 1 Jk E are different since the former respects the filtration of Jk E 
but the latter does not. 

The sub bundle fk'Jk E is called the symbol of Jk E. Let us describe it 
more explicitly. For x E M, let grTxM, grEx be the associated graded 
Lie algebra, graded vector space of (TxM, f) and of (Ex, f) respectively, 
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and U (grTxM) the universal enveloping algebra of grTxM. Let Uz denote 
the set of all homogeneous elements of degree l ( deg ~ = L Pi if ~ = 
A1 ···Am with Ai E grp;TxM.) We denote Hom(U(grTxM),grEx)k the 
set of all linear map f: U ~ gr Ex of degree k, namely f (Uz) C grz+k Ex. 
Then we have the following fundamental exact sequence of bundle maps: 

If the filtrations of M and E are trivial the above exact sequence reduces 
to the well-known one: 

Now some elementary properties are in order: 
(1) As easily seen, the map j~: E.:z: --t Jk Ex preserves the filtration, 

that is 

for l E Z. Hence we have the bundle map: 

(3.2) 

(2) If <p: lE--t IF is a bundle map of degree r, that is, cp(EP) C pp+r 
for all p, then we have the bundle map: 

Now we are going to study differential equations on a filtered mani­
fold, confining our discussion to the linear case for the sake of simplicity. 
It is not difficult to extend the following formulation to the non-linear 
case. 

Let JE, IF be filtered vector bundles over a filtered manifold M. A 
bundle map (of degree r) 

is a linear differential operator of weighted order k and the kernel of <p, 

denoted by R, is a system of linear differential equations. A section s of 
E is a solution of R if cp(jk s) = 0. 

Without loss of generality we may assume that <p is of degree 0 and 
Ek+l = pk+l = o. 
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If rp: Jk E ----+ F is a bundle map of degree 0, it induces bundle maps 
for i :::; k: 

0 ------. R ------. Jk E ~ F ------. 0 

1 1 1 

where we set p(i) = F j Fi+1 . We call cpi (or Ri) differential operator (or 
equation) associated with rp (orR resp.). 

By the following commutative diagram we define O"(Ri) and call it 
the symbol of degree i of R: 

0 0 0 

1 1 1 
0 _______. O"(Ri) _______. Hom(U, gr E)i _______. griF 

1 1 1 
0 _______. Ri JiE 

'Pi p(i) _______. _______. 

1 1 1 
0 _______. Ri-1 Ji-1E 

'Pi-1 p(i-1) _______. _______. 

1 1 
0 0. 

A bundle map rp: Jk E ----+ F of degree 0 gives rise to bundle maps, 

(3.3) 

for all l E Z, called the prolongation of rp, defined by the following 
commutative diagram: 

l 

JzE ~JzF. 

We put q51 = p1rp and R1 = Ker q51, and call <j5 

{R1}l E Z the prolongation of rp orR. We have: 
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1) For i ~ l, fli is the associated equations of order i to R1• 

2) If l ~ k, the prolongation of R1 coincides with R. 
3) Fori :S k, Ri :J fli. 

Before entering to the study of symbols of R, we just have a look at 
the following graded spaces: 

Hom(U,grE) = ffiHom(U,grE)p, 
p 

whose dual space is identified with: 

u 0 (grE)* = EBCU 0 (grE)*)q, 
q 

where 
(U 0 (grE)*)q = E9 Ua 0 (grE)i,, 

a+b=q 

and 
(grE)"b = (gr_bE)*. 

In particular, 
Hom(U,grE); ~ (U 0 (grE)*)-p· 

Hom( U, gr E) is a right U -graded module and U 0 (gr E)* a left U -graded 
module by means of the formula: 

fortE Hom(U,grE), ~ E U, rJ 0 o: E U 0 (grE)*, and we have 

Hom(U,grE)pUq c Hom(U,grE)p+q· 

Now we set 

{ 
a(R1) for l :S k 

St = Hom(U,grE)k for l > k, 

and let sf and sf be the null spaces of St and f>t in (U 0 (grE)*)-l 
respectively, and 

s = ffist, s = ffist 
sj_ = ffisf, sj_ = ffisf. 
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Then we have: 

Proposition 3.1. 

1) _s..L is a left U -module generated by .s..L; _s..L = U .s..L. 

2) .5 is a right U -module. Furthermore, t E Sz for 
t E Hom(U, gr E)z if and only if t E .Sz and if t~ E St+deg ~ for 
any~ E U. 

Since .5 = ffisz is a right U-module, we can consider the following 
differential chain complex: 

defined by: 

(8w)(X1, ... , Xp+l) 

= ~)-l)iw(Xl, ... ,Xi, ... ,Xp+l)Xi 

+ 2) -l)i+iw([Xi, Xi], X1, ... , Xi, ... , Xi, ... , Xp+l) 
i<j 

for wE Hom(/\P grTM,s)r and X1, ... , Xp+l E grTM. 
The cohomology group H'f (grTM, s) is the generalized Spencer coho­

mology group. We can deduce from Theorem 1.1 the following: 

Theorem 3.1. For any x0 E M, there exists a neighbourhood U 
of xo and an integer r0 such that 

for r 2: ro and all p, and for all x E U. 

Now we have: 

Theorem 3.2. Given a differential operator of weighted order k 

Let fli be the ith prolongation. Assume that there exists an integer 
l0 (2: k) which satisfies the following conditions: 

i) fli are vector bundles (i.e., rank constant) fori::; l0 . 

ii) fllo ____, fllo-l ____, · · · ____, fllo-M are all surjective. 
iii) H;(grTM,s) = 0 for r 2: l0 + 1. 

Then for any l > lo it holds: 

i) R1 is a vector bundle. 
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ii) R1 -----* .R1- 1 is surjective. 

In particular, _Roo ( = proj lim R1) -----* _Rlo is surjective. Therefore the 
equation Rk has a formal solution for any prescribed lo-jet in _Rlo. 

This theorem gives a criterion for the existence of formal solutions. 
We say that the equations R is weightedly involutive if the conditions of 
Theorem 3.2 hold. 

This theorem can be extended to the non-linear systems of differen­
tial equations. 

For a single equation the criterion of weighted involutivity is easy: 
It is weightedly involutive if one of the highest order terms does not 
vanish. 

3.2. By the preceding discussion, we have shown that any weight­
edly involutive system of differential equations on a filtered manifold has 
formal solutions. Now we turn to the problem of convergence under the 
category of analyticity. First we shall show that a weightedly involu­
tive system has not always an analytic solution, but does have a formal 
solution satisfying a certain estimate, namely a formal Gevrey solution. 
Next, studying geometric properties offormal Gevrey functions, we shall 
show that if the filtered manifold satisfies the Hormander condition then 
the formal Gevrey functions proves to be analytic functions, which, in 
turn, establish a general existence theorem of analytic solutions for a 
weightedly involutive analytic system of differential equations on a fil­
tered manifold. 

For our purpose, we may assume without loss of generality that our 
filtered manifold is a standard one, that is, a nilpotent Lie group N 
whose Lie algebra n is graded: n = EB~= 1 np (for convenience's sake we 
reverse the gradation) and that the filtration of E is trivial. Choose a 
basis {X1, ... , Xn} of n such that {Xd(p-1)+1, ... , Xd(v)} is a basis of 
np, where d(p) = I:;f=1 dim ni· We define a weight function 

w: {l, ... ,n}----t{l, ... ,J.L} 

by the condition: Xi E nw(i) for all i. For I= (i1, ... , it) E {1, ... , n}1, 

we set 
l 

Xr = xil ... xip w(Xr) = w(I) = L w(ia)· 
a=1 

We will regard Xr as a left invariant differential operator on N of 
weighted order w(I). For a function F in a neighbourhood of a point 
o EN, the values {(XrF)(o): w(I) :S k} determine the weighted k-jet 
j~F ofF at o. 
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Now a general system of non-linear differential equations of weighted 
order k on N can be written as: 

(E) <I>(x, (XrF)(x)) = 0, w(I):::; k, x EN, 

where <I> and Fare vector valued functions taking values in some vector 
spaces, say, W and V respectively. 

We say a weighted l-jet F 1 at o E N (l :2:: k) is an l-jet solution of 
(E) if 

XJ<I>(x, (XrF)(x)) lx=o= 0 

for all J such that w(J) :::; l- k. We say also that an l-jet solution 
is strongly prolongeable (with respect to the weighted order) if for all 
m-jet solution Fm(m :2:: l) such that j;Fm = F 1 there exists (m + 1)-jet 
solution Fm+ 1 satisfying j: Fm+ 1 = Fm. 

We remark that if the system (E) is weightedly involutive then any 
k-jet solution is strongly prolongeable. 

Example 3.1. Let N = JR2 be an abelian Lie algebra with 
non-trivial gradation n = n 1 EB n2 , where n 1 = (jjx), n2 = ( gt) in terms 
of coordinates (x, t) of JR2 . 

Regarding N as a standard filtered manifold, we consider on N the 
following equation: 

(3.4) 

The left-hand side of this equation is homogeneous of weighted order 2 
with respect to this filtration and weightedly involutive since the coeffi­
cient of gt does not vanish(= 1). Hence any 2-jet solution is strongly 
prolongeable in the weighted sense. But if the function a(x, t) vanishes 
at a point then the equation is not Kowalevskayan and is not involu­
tive in the usual sense around the point. Therefore jet solutions are not 
always strongly prolongeable in the ordinary sense. 

Example 3.2. Let (x, y, z) be coordinates of JR3 and consider the 
vector fields: 

a 1 a 
X----y­- ax 2 8z' 

a 1 a 
Y--+-x-

- By 2 8z' 
a 

z = az· 
Since [X, Y] = Z and the other brackets are trivial, {X, Y, Z} span a 
graded Lie algebra ~ = ~1 EB ~2, where ~1 is spanned by X, Y and ~2 
by Z. We identify JR3 with the Heisenberg group H with Lie algebra~­
Consider a differential equation: 

(3.5) (Z + aX2 + bXY + cY2)F = h(x,y,z,XF, YF), 
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where a, b, c, are functions of x, y, z. Since the left-hand side of the 
equation is homogeneous of weighted order two, the equation is weight­
edly involutive. But it is not involutive in the usual sense at the points 
where a, b, c simultaneously vanish. 

Now a fundamental problem is, given an l0-jet solution F 10 with 
l0 ~ k of (E), to find an analytic solution F of (E) such that j~° F = F 10 • 

However, there are not always such analytic solutions as seen for 
the equation (3.4) in Example 3.1. In fact, it is easy to choose function 
a(x, t) and b satisfying a(O, 0) = 0 in such a way that there exists an l-jet 
solution at (0, 0) which cannot be prolonged to any analytic solution. 

Now we introduce the formal Gevrey functions on a graded nilpotent 
Lie group N. A formal function Fat o E N is called formal Gevrey if 
there exist positive constants C, p such that 

(3.6) I(XJF)(o)l:::; Cw(I)! pw(I) for all multi-index I. 

The first fundamental theorem we obtain is the following: 

Theorem 3.3. Given an equation (E). Assume that cfl(x,y1 ) is 
formal Gevrey with respect to x and analytic with respect to YI at (o, y~). 
If Fk = (y~) E Jk(N x V) is a k-jet solution of (E) and strongly pro­
longeable in the weighted sense, there exists a formal Gevrey solution F 
of (E) such that j~F = Fk. 

In the case of Example 3.1 above, the theorem asserts that for any 
prescribed 2-jet solution there exists a formal solution of (3.4) satisfying 
the estimate: 

which means that F is analytic in x but Gevrey of order 2 in t. In 
this case it is rather easy to find such a solution by direct calculation. 
However, already in the case of Example 3.2, it is hard to find a for­
mal Gevrey solution for a prescribed jet solution by direct calculation. 
In general, difficulties occur in finding a good algorithm to determine 
inductively an (l + 1)-jet solution from a given l-jet solution since Fl+1 

is not uniquely determined from F 1. 

To prove the theorem, following the method of Malgrange [Mal72], 
we employ the privileged neighbourhood theorem [Mal77]. In order that 
we generalize the privileged neighbourhood theorem to the universal 
enveloping algebra U(n) of n as follows: 
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Any element of u ( n) being a linear combinations of X I = xil ... xiz ' 

we set 

Ua(n) = { P = Lc1X1 E U(n) I w(XI) =a} 
and U(n) = EeUa(n) be the completion of U(n). 

For p = (p1, ... ,pn) with Pi> 0, define a pseudo-norm l·lp of U(n): 
If Pa E Ua(n) we set 

where the infimum is taken over all expressions Pa = Lw(I)=a CJXI 

of Pa. For P = l:Pa E U(n) we put IPIP = 2:: IPalp and set 

U(p) = {P E U(n) IIPIP < oo} 

u = uu(p). 
p>O 

We see that U is noetherian and that 

Now let 
u: um' = (U x · · · x U) --+ Um 

be a left U-linear map. We say after Malgrange [Ma177] that an JR-linear 
map >.: um - um' is a scission of u if u>.u = u and that >. is adapted 
to a polydisk JP>(p) = {(x1 , ... ,xn); lxil <Pi} if there exists C > 0 such 
that 

for all P E um. Then we have: 

Theorem 3.4 (A non-commutative version of privileged neighbour­
hood theorem). Let u: um' --+ um be a left U-linear map. Then one 
can find a scission >. of u having the following property: The set of all 
JP>(p) to which >. is adapted forms a system of fundamental neighbour­
hoods of zero in JRn. 

This theorem enables us to find a formal solution satisfying a Gevrey 
estimate. 

It then naturally arises the question what the formal Gevrey nmc­
tions are. 
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Let us first examine it in the simplest case of three-dimensional 
Heisenberg group (Example 3.2). A formal Gevrey function on Hat 0 
is a formal function F at 0 satisfying: 

l(xiyi zk F)(O)I ~ Ci!j! (2k)! /+H2k. 

Let D be the contact distribution generated by X and Y, that is, 

Dv = {v E TplR3 I (w, v) = 0}, 

where 
1 1 

w = dz- -xdy + -ydx. 
2 2 

Roughly speaking, a formal Gevrey function is analytic along the 
contact distribution, or a little more precisely, if 'Y(t) is an analytic 
integral curve of D with 'Y(O) = 0 and ifF is formal Gevrey at 0 then 
F o 'Y is analytic since every higher order derivatives can be expressed 
in terms of those of 'Y and (Xiyi F)(O) which satisfy analytic estimates. 
On the other hand, Chow's theorem [Cho40] implies that, since X, Y 
and their bracket generate the tangent space at all point, any point p 
can be joined to 0 by an integral curve of D. This suggests that a formal 
Gevrey function is already something which looks like a "real" function; 
we might attempt to define the value F(p) to be F('Y(t1 )) by taking an 
integral curve 'Y with 'Y(O) = 0, 'Y(h) = p. However, the value might 
depend on the curve chosen. 

To choose "nice" integral curves we will take curves of minimal 
length by making use of sub-riemannian geometry. 

We define an inner product g on the subbundle D by g = (dx) 2 + 
(dy) 2 • Then the length L of an integral curve 'Y(t)(a ~ t ~b) is given 
by: 

1b g("f,'Y)lf2dt. 

If (x(t), y(t), z(t)), a~ t ~ b, is an integral curve joining 0 and (xo, yo, zo) 
then 

zo = 1b dz = ~ 1b x dy - y dx 

L('Y) = 1\x2 + i/)1/2 dt. 

Now in this case we can easily solve the variation problem: If 
a curve 'Y(t) = (x(t), y(t), z(t)), a ~ t ~ b, is of minimal length 
among the integral curves with the fixed endpoints then the projection 
,;y(t) = (x(t),y(t)) must be an arc of a circle. 
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This in mind, we define the exponential mapping: 

'lj;: .IR3 3 ()..,B,t)----> (x,y,z) E .IR3 

(x,y) = ~ei(0+7r/2)(1- ei.>.t), 

z=~Jxdy-ydx. 
Then for each fixed A, 0, the curve 'lj;(A, 0, t) gives a geodesic of this 
subriemannian metric. 

Now let F be a formal Gevrey function at 0. Then, as noted in 
the above, F o 'lj;(A, 0, t) is analytic in t in a neighbourhood of 0. But 
thanks to the good parametrization of integral curves, we see moreover 
that F o 'lj; is analytic in A, 0, t at t = 0. 

Here we recall Gabrielov's theorem ([Gab73], [Izu89], [Tou90]) which 
just applies to our situation: 

Theorem 3.5 (Gabrielov). If \IT: X ----> Y is an analytic map of 
generically maximal rank of analytic spaces. Then a formal function F 
at y E Y is convergent if the pull-back F o \IT is convergent at a point 
X E w- 1 (y) 

Hence we see that a formal Gevrey function on the Heisenberg Lie 
group turns out to be an analytic function. 

The consideration above generalizes to: 

Theorem 3.6. Let N be a Lie group with Lie algebra n = EBr=l ni. 
If n is generated by n1, that is, ni+l = [n1, ~] fori > 0 (Hormander 
condition), then the formal Gevrey functions on N are analytic. 

The outline of a proof is as follows. Let (} be the Maurer-Cartan 
form of N taking values in n, which decomposes as: 0 = I: Bi with Bi 
taking values in ni. We identify the cotangent bundle T* N with N x n* 
by assigning (x, A) EN x n* to A o Bx. Then the Liouville form is given 
by 8 = A o 0 = I: Ai o (Ji, where A = I: Ai with Ai E n *. The symplectic 
form is given by: 

Choosing an inner product ( , ) on ni, we set 
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and let XH be the hamiltonian vector field associated with the energy 
function H, i.e., the vector field determined by XHJd8 = -dH. Let 'Pt 
be the flow generated by XH and 

<I>: N x n* x IR--+ N x n* 

the map defined by <I>(x, >., t) = 'Pt(x, >.) on a neighbourhood U of 
N x n* x {0} Let t: n* x IR --+ {o} x n* x IR c N x n* x IR be the 
canonical injection and 1r: N x n* --+ N the canonical projection and 
put IJT = 1r o <I> o t. This map IJT : n * x IR --+ N is the polar form of 
the exponential map associated to the energy H and w(>., t) gives an 
extremal for each fixed >.. Then we have 

Proposition 3.2. IfF is a formal Gevrey function at o of N the 
pull-back IJT* F is convergent at every point (>., 0) E n* x {0} 

We will also have: 

Proposition 3.3. If n is genemted by n1 then IJT is generically of 
maximal mnk. 

Then Theorem 3.6 follows from above two propositions and Gabrie­
lov's theorem. 

We notice however that our original proof of Proposition 3.3 is not 
complete since it uses a delicate theorem of Strichard ([Str86J and [Str89]). 
Nevertheless, it is quite plausible that Proposition 3.3 can be verified 
concretely from the structure of a nilpotent graded Lie group. 

While B. Jakubczyk has communicated to the author a simpler proof 
of Theorem 3.6 [JakOOJ. His idea is as follows: Let X1. ... , Xn 1 be a basis 
of n1 . In view of Chow's theorem and Sard's theorem we see that there 
exist i1. ... , is E {1, ... , n 1 } such that the map r.p: IR8 --+ N given by 

is generically of maximal rank and it is easy to see that the properties of 
Proposition 3.2 and 3.3 are satisfied for this map r.p. Hence the theorem 
follows from Gabrielov's theorem. 

Finally we have established the following: 

Theorem 3. 7. Let (E) be an analytic system of non-linear partial 
differential equations of weighted order k on a gmded nilpotent Lie group 
N with a Lie algebm n = EB;=l np· Assume that n is generated by n1 . 

If Fk E J~(N x V) is a weighted k-jet solution of (E) at o E N and 
strongly prolongeable, then there exists an analytic ~olution F of (E) 
defined in a neighbourhood of o such that j~ F = Fk. 
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Theorem 3.8. Let (E) be an analytic system of non-linear partial 
differential equations of weighted order k on a graded nilpotent Lie group 

N with a Lie algebra n = EB;=l np. Assume that n is generated by n1 . 

If (E) is weightedly involutive, then there exists an analytic solution for 
any prescribed weighted k-jet solution. 

It should be remarked that the above theorems apply to a wide class 
of systems of non-linear partial differential equations with singularities. 

Thus we are led to a non-trivial generalization of the Cartan-Kahler 
theorem by the nilpotent analysis. 
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