Advanced Studies in Pure Mathematics 37, 2002 Lie Groups, Geometric Structures and Differential Equations — One Hundred Years after Sophus Lie pp. 173–195

An Approach to the Cartan Geometry I: Conformal Riemann Manifolds

Masatake Kuranishi

Introduction

As is well known F. Klein extracted the essence of the classical geometry by saying that the geometry is the study of properties invariant under the transformations of Lie groups on homogenous spaces. This includes for instance the euclidean geometry and the conformal euclidean geometry. However, this geometry is too rigid to treat geometric objects we meet in reality. B. Riemann was thus led to introduce his geometry generalizing the euclidean geometry.

It is a natural question to ask how to generalize the Riemann's work to the case of an arbitrary classical geometry which is a homogenous space X = G/H, where G is a Lie group and H is its closed subgroup. We call any such generalization a structure modeled after the classical geometry G/H.

E. Cartan [1] gave an answer by introducing "a generalized space". Namely, instead of the space X together with the action of G on X, he considers the projection $\rho_G \colon G \to X$. There is on G the invariant 1-form, say ω_G , valued in the Lie algebra **g** of G. He associate to the classical geometry G/H the pair (G, ρ_G, ω_G) , which is in todays language a Cartan connection ω_G on a principal H-bundle G over X. We recover the homogenous space structure of X because the graphs of the transformations of G are the integral submanifolds of the differential system $\pi_1^*\omega_G - \pi_2^*\omega_G$ on $G \times G$, where π_1 (resp. π_2) is the projection to the first (resp. second) component of $G \times G$. By the structure equation of the Lie algebra we have

(1)
$$d\omega_G + \frac{1}{2}[\omega_G, \omega_G] = 0.$$

Received December 28, 2000. Revised February 4, 2002.

Cartan's generalized space structures are deformations of the above structure. Namely, in todays language, a generalized space structure on a manifold M is a pair (E, ρ, ω) of a principal H-bundle E over M with the projection ρ and a Cartan connection ω on E. We call it a Cartan structure modeled after the homogenous space G/H. E will be called the frame bundle. It has the curvature form

(2)
$$K = d\omega + \frac{1}{2}[\omega, \omega].$$

While developing the modern terminology for Cartan's work, C. Ehresmann [3] made an interesting comment on the problem by saying that a structure modeled after G/H is a space where a homogenous space G/H is attached to each point. We interpret this as saying that, on such a space, neighborhoods of each point are identified infinitesimally (up to certain order) with a neighborhood of a reference point in G/H.

Since Cartan's work many answers to our question are introduced, including the use of Cartan's theory of equivalence and infinite Lie groups. In this note we mainly view the development evolved around these two view points of Cartan and Ehresmann.

We note that the parameter space of structures modeled after G/Hon a manifold is obviously infinite dimensional. Therefore we can think of two approaches to the problem. One is to develop a way to write down all such structures and the other is to find a good way to pick one nice such structure.

A variation of the first order infinitesimal version of Ehresmann's view was started by S. S. Chern [2] under the name G-structure. This G refers to a linear Lie group, not to our G, but more related to our H. Actually a slightly limited case of the G-structure was already considered by H. Weyl as a generalization of the general relativity. The theory of G-structures seems to mainly concerned with the first approach. For surveys see for example S. Kobayashi [5] and T. Ochiai [12].

There are also a lot of works with respect to the second approach. The Levi-Chivita's Riemann geometry may be viewed, in retrospect, as the first satisfactory fusion of Cartan's and Eheresman's viewpoints in the second approach. This is the Cartan connection, with vanishing torsion, on the orthonormal frame bundle. The case for the conformal geometry was worked out by H. Weyl [18], who extracted the conformally invariant components of the curvature tensor called Weyl tensor. CR geometry created by E. Cartan [2], N. Tanaka [16], and S. S. Chern-J. Moser [5] can be considered as the case where the model structure is the unit complex ball with the holomorphic automorphism group. Generalizing his pioneering work on CR structures, N. Tanaka [14]–[16] introduced structures closely related to Cartan's. His work was further developed by T. Morimoto [10], [11] and K. Yamaguchi [17]. The works of A. Cap and J. Slovak for the higher codimensional CR structures are in this volume. There is also a work of R. Miyaoka [9] on the Lie's sphere geometry.

In the cases of the conformal geometry and CR geometry on a manifold M, we may follow the analogy with the Riemann geometry and construct the bundle, say E_1 , using the first order Ehresmann approach. However, it is a principal H/H_1 -bundle for a normal subgroup H_1 of H. We have to enlarge E_1 to a principal H-bundle, say E.

Our attempt to develop a general method to include the cases of Riemann, conformal, and CR as special cases was first outlined in [6] and completed in [7]. It is further developed by Y. Liu [8]. We constructed the above E by applying the Cartan's method of prolongation to E_1 . However, the traditional approach is to use 2-jets as was done, for example, in Kobayashi [5] and Ogiue [13]. Namely, E_1 may be naturally regarded as embedded in J^1 , the space of the 1-jets of maps of G/H to M at a reference point $e \in G/H$. We also have the space of 2-jets J^2 , and the projection $\rho: J^2 \to J^1$. We construct a section $E_1 \to J^2$. Then E is defined as the subspace of J^2 consisting of the orbits of H-action passing points of the image of E^1 in J^2 .

In this paper, we use the Ehresmann approach of the second order and construct E as a quotient space $\rho^{-1}(E_1) \to E$ with a commutative diagram:

$$\begin{array}{ccccc} J^1 & \leftarrow & J^2 \\ \uparrow & & \uparrow \\ E_1 & \leftarrow & \rho^{-1}E_1 \\ \parallel & & \downarrow \\ E_1 & \leftarrow & E \end{array}$$

(3)

When we construct a principal *H*-bundle, say E_2 , so that $E_1 \leftarrow E_2 \subset \rho^{-1}E_1 \subset J^2$. then the vertical downarrow in (3) will induce an isomorphism $E_2 \to E$. Therefore our frame bundle is isomorphic to the traditional one.

Once the frame bundle is constructed, we work locally and find a Cartan connection by imposing conditions on the curvature form. In Kobayashi [5] this was done using the canonical forms of J^2 . We can adopt this method in our frame work. However, we used here a direct method using the definition of the Cartan connections.

The curvature is valued in the Lie algebra \mathbf{g} of G, which has the grading: $\mathbf{g} = \mathbf{g}_{(-1)} + \mathbf{g}_{(0)} + \mathbf{g}_{(1)}$. We designate a suitable subspace

 $\mathbf{g}_{\mathbf{n}} \subset \mathbf{g}_{(0)} + \mathbf{g}_{(1)}$. A Cartan connections on E is called normal when the cuvature takes value in $\mathbf{g}_{\mathbf{n}}$.

In our case the set of normal connections is a family of isomorphic Cartan connections depending on one arbitrary function. It turns out that the Weyl tensor is independent of the connections in the family. Therefore we obtain a unique Weyl curvature form. However, to construct a Cartan connection globally we need to choose locally one connection from the above family in such a way they match up. We do this is this paper.

In §1 we review the case of the homogenous conformal Riemann geometry. We write down several formulas which will be used later. In §2 we construct the frame bundle and the normal Cartan connections along the line mentioned above in the case of conformal geometry. We also show that the $\mathbf{g}_{(1)}$ -part of the normal Cartan connections are obtained using the conformal covariant derivative of Weyl tensor. In the end we construct a global normal conformal Cartan connection.

The literature for the conformal connection is too numerous and very difficult to give a complete reference. As a result we listed only a few which we quoted in this paper. We beg perdon for the omission.

The author is greately benefited by the discussions with Professor Keizo Yamaguchi.

§1. The Homogeous Conformal Space

We fix a nondegenerate $m \times m$ matrix

(1)
$$(\underline{h}_{ij}), \quad i, j = 1, \dots, m.$$

We consider the conformal euclidean geometry based on the metric on \mathbf{R}^m given by

(2)
$$\langle dx, dx \rangle = \underline{h}_{ij} dx^i dx^j.$$

A) Let \mathbf{R}^{m+2} be the euclidean space with the standard chart:

(3)
$$(\xi^0, \dots, \xi^{m+1}) = (\xi^0, \xi', \xi^{m+1}), \quad \xi' = (\xi^1, \dots, \xi^m),$$

from which we remove the origin obtaining the punctured euclidean space $\dot{\mathbf{R}}^{m+2}$. Dividing by the non-zero scalar mutiplication operation, we obtain the projective space

(4)
$$\rho \colon \dot{\mathbf{R}}^{m+2} \to \dot{\mathbf{R}}^{m+2} / \mathbf{C}^* = \mathbf{R}\mathbf{P}^{m+1}.$$

Denote by $[\xi] = [\xi^0, \dots, \xi^{m+1}]$ the homogenous coordinate of \mathbb{RP}^{m+1} .

An Approach to the Cartan Geometry

Consider the hypersurface Φ^m in \mathbf{RP}^{m+1} given by

(5.1)
$$\Phi^m: \phi(\xi) = \langle \xi', \xi' \rangle - 2\xi^0 \xi^{m+1} = 0,$$

where

(5.2)
$$\langle \xi', \xi' \rangle = \underline{h}_{ij} \xi^i \xi^j.$$

We embed \mathbf{R}^m in Φ^m by

(6)
$$\mathbf{R}^m \ni x \to \left[1, x, \frac{1}{2} \langle x, x \rangle\right] \in \Phi^m.$$

B) \mathbf{R}^m itself is not the homogeous space. Its closure Φ^m is the homogenous conformal space, given as follows:

Denote by \tilde{G} the subgroup of $GL(\mathbf{R}, m+2)$ consisting of all matrix g satisfying:

(7)
$$\det g = 1, \quad \phi(g(\xi)) = \phi(\xi).$$

Let G be the subgroup of the projective transformation group induced by \tilde{G} . In view of (5.1) we find that G preserves Φ^m and acts as a transformation group of Φ^m .

We find that \tilde{G} decomposes to the product of the translation group and the isotropy group. Namely,

(9)
$$L = \left\{ l(y) = \begin{pmatrix} 1 & 0 & 0 \\ y & I & 0 \\ w & y^* & I \end{pmatrix} : y = (y^1, \dots, y^m)^{\text{tr}}, \ w = \frac{1}{2} \langle y, y \rangle \right\}$$

where $(y^*)_j = \underline{h}_{jk} y^k$, and H consists of matrixes of the form

(10)
$$h = h(a, t, \beta) = \begin{pmatrix} a & \gamma & b \\ 0 & t & \beta \\ 0 & 0 & a^{-1} \end{pmatrix}, \text{ where }$$

(11)
$$\det t = 1, \quad tt^* = I, \quad \beta = (\beta^1, \dots, \beta^m)^{\mathrm{tr}}$$
$$\gamma_l = a(\beta^* t)_l, \quad \frac{b}{a} = \frac{1}{2} \langle \beta, \beta \rangle,$$

where $(t^*)_j^i = \underline{h}^{ik} \underline{h}_{jl} t_k^l$ and *I* is the identity $m \times m$ -matrix. It is convenient to consider a smaller group where a > 0. The Lie algebra **g** of *G* has the grading:

(12)
$$\mathbf{g} = \mathbf{g}_{(-1)} + \mathbf{g}_{(0)} + \mathbf{g}_{(1)}, \text{ where,}$$

(13.1)
$$\mathbf{g}_{(-1)} = \left\{ \{ \dot{y} \}_{(-1)} = \left(\frac{d(l(s\dot{y}))}{ds} \right)_{s=0} : \dot{y} \in \mathbf{R}^m \right\},$$

(13.2)
$$\mathbf{g}_{(0)} = \mathbf{R}\pi + \{o(m)\}, \text{ where for } \dot{t} \in o(m)$$

(13.3)
$$\{\dot{t}\} = \left(\frac{dh(1, I + s\dot{t}, 0)}{ds}\right)_{s=0}, \quad \pi = \left(\frac{dh(e^s, I, 0)}{ds}\right)_{s=0},$$

(13.4)
$$\mathbf{g}_{(1)} = \left\{ \{ \dot{\beta} \}_{(1)} = \left(\frac{dh(1, I, s\dot{\beta})}{ds} \right)_{s=0} : \dot{\beta} \in \mathbf{R}^m \right\}.$$

(14)
$$\mathbf{h} = \mathbf{g}_{(0)} + \mathbf{g}_{(1)}$$
 is the Lie algebra of H

We find by calculation

(15)

$$Ad(h^{-1})\{\dot{y}\}_{(-1)} = \{at^*\dot{y}\}_{(-1)} - a\langle\dot{y},\beta\rangle\pi + \{at^*\dot{y}\otimes\beta^*t - at^*\beta\otimes\dot{y}^*t\} + \{t^*(b\dot{y} - a\langle\beta,\dot{y}\rangle\beta)\}_{(1)},$$

$$Ad(h^{-1})\pi = \pi + \{t^*\beta\}_{(1)}$$

$$Ad(h^{-1})\{\dot{t}\} = \{t^*\dot{t}t\} + \{t^*\dot{t}\beta\}_{(1)}$$

$$Ad(h^{-1})\{\dot{\beta}\}_{(1)} = \{a^{-1}t^*\dot{\beta}\}_{(1)}.$$

In terms of the decomposition (8) the action of $g\in G$ on $x\in {\bf R}^m\subset \Phi^m$ is given by

(16.1)
$$T_g x = y + \frac{1}{\lambda} \left(tx + \frac{1}{2} \langle x, x \rangle \beta \right), \text{ where }$$

(16.2)
$$\lambda = a \Big(1 + \langle tx, \beta \rangle + \frac{1}{4} \langle \beta, \beta \rangle \langle x, x \rangle \Big).$$

We see now that G acts transitively on Φ^m .

We regard Φ^m as a conformal Riemann manifold as follows: We consider a metric on

(17)
$$\tilde{\Phi}^{m+1} = \rho^{-1}(\Phi^m)$$

given by

(18)
$$ds^2 = \langle d\xi', d\xi' \rangle - 2d\xi^0 \, d\xi^{n+1}.$$

For simplicity we set

(19)
$$F = \mathbf{R}^m.$$

We have a chart $\xi = (c, x)$ on $\rho^{-1}F$ given by

(20)
$$(\xi) = \left(c, cx, \frac{1}{2}c\langle x, x \rangle\right).$$

Then we find that the metric on $\rho^{-1}F$ induced by ds^2 is

(21)
$$c^2(ds)_F$$
, where $(ds)_F = \langle dx, dx \rangle$.

In view of (7) the metric ds^2 on $\tilde{\Phi}^{m+1}$ is invariant under the action of the matrix g. We find by (19), (16), and (10) that

(22)
$$(h\xi) = \left(c_h, c_h T_h x, \frac{1}{2} c_h \langle T_h x, T_h x \rangle\right), \quad c_h = c\lambda.$$

Hence $h\xi$ has the coordinate $(c_h, T_h x)$. Then it follows by (19)–(20) that $\lambda^2 \langle dx, dx \rangle = \langle T_h dx, T_h dx \rangle$. Since $T_{l(y)}$ is a translation, it follows that

(23)
$$(T_g)^*(ds)_F = \lambda^{-2}(ds)_F.$$

We conclude that the action of G on Φ^m is conformal.

C) Denote by $J_0^p(F)$ the space of 2-jets at the reference point 0 of maps of neighborhoods of $0 \in F$ into F. $J_0^p(F)$ has the standard chart $(y, \ldots, p_{j_1 \ldots j_q}^k, \ldots)$, where $q \leq p$. If $J \in J_0^p(\mathbf{R}^m)$ is represented by a map $f = (f^1(x), \ldots, f^m(x))$

(24)
$$y = f(0), \quad p_{j_1 \dots j_q}(J) = \frac{\partial^q f}{\partial x^{j_1} \dots \partial x^{j_q}}(0).$$

We find by calculation

(25)

$$p_j^k(T_h) = \frac{1}{a} t_j^k,$$

$$p_{jl}^k(T_h) = \frac{1}{a} \underline{h}_{jl} \beta^k - \frac{1}{a} \underline{h}_{iq} (t_j^k t_l^i + t_l^k t_j^i) \beta^q.$$

We note that $J_0^1(T_h)$ gives informations on a, t in (10), and we need J_0^2 to get β . We note also that we reach β more quickly by using the conformal factor λ^{-2} of T_h (cf. (23) and (16)), i.e.

(26)
$$\frac{\partial \lambda}{\partial x^j}(0) = a\underline{h}_{jk}(t^{-1})_l^k \beta^l.$$

E) In view of (9)–(10) the Maurer-Cartan form:

(27)
$$\Omega_G = \begin{pmatrix} (\Omega_G)_0^0 & \dots & (\Omega_G)_k^0 & \dots & (\Omega_G)_{m+1}^0 \\ (\Omega_G)_0^j & \dots & (\Omega_G)_k^j & \dots & (\Omega_G)_{m+1}^{j+1} \\ (\Omega_G)_0^{m+1} & \dots & (\Omega_G)_k^{m+1} & \dots & (\Omega_G)_{m+1}^{m+1} \end{pmatrix}$$

has the relations

(28)

$$(\Omega_G)_0^0 + (\Omega_G)_{m+1}^{m+1} = 0, \quad (\Omega_G)_k^{m+1} = \underline{h}_{kl} (\Omega_G)_0^l, \\
(\Omega_G)_k^0 = \underline{h}_{kl} (\Omega_G)_{m+1}^l, \quad \underline{h}_{jl} (\Omega_G)_k^l + \underline{h}_{kl} (\Omega_G)_j^l = 0, \\
(\Omega_G)_{m+1}^0 = (\Omega_G)_0^{m+1} = 0.$$

Since $\Omega_G = g^{-1} dg$, we also find by (8)–(10) that $(\Omega_G)_0^0 = d \log a - a \langle \beta, dy \rangle,$ $(\Omega_G)_0^j = a(t^*dy)^j = a\underline{h}^{jk}\underline{h}_{li}t_k^i dy^l,$ $(\Omega_G)_k^j = (t^*dt)_k^j + a(t^*dy)^j (\beta^*t)_k - a(t^*\beta)^j (dy^*t)_k$ $= \underline{h}^{jl}\underline{h}_{iq}t_l^q (dt_k^i + a\underline{h}_{pr}t_k^p (\beta^r dy^i - \beta^i dy^r)),$ $(\Omega_G)_{m+1}^j = (t^*d\beta)^j + (t^*\beta)^j d \log a + b(t^*dy)^j - a(t^*\beta)^j \langle \beta, dy \rangle$ $= \underline{h}^{jl}\underline{h}_{ki}t_l^i (d\beta^k + \beta^k (d \log a - a \langle \beta, dy \rangle) + b dy^k).$

We use ω_H ro denote the Maurer-Cartan form of H. We also set $\omega_H = h^{-1} dh$. Since ω_H is obtained by setting dy = 0 in the above

(30)
$$\begin{aligned} & (\omega_H)_0^0 = d\log a, \quad (\omega_H)_0^j = 0, \quad (\omega_H)_k^j = (t^* dt)_k^j = \underline{h}^{jl} \underline{h}_{iq} t_l^q dt_k^i, \\ & (\omega_H)_{m+1}^j = (t^* d\beta)^j + (t^*\beta)^j d\log a = \underline{h}^{jl} \underline{h}_{ki} t_l^i (d\beta^k + \beta^k d\log a). \end{aligned}$$

Note that $(\Omega_G)_0^0, \ldots, (\Omega_G)_0^j, \ldots, (\Omega_G)_k^j$ $(j > k), \ldots, (\Omega_G)_{m+1}^j$ form a base. The structure equations:

(31)
$$d(\Omega_G)_s^r + (\Omega_G)_t^r \wedge (\Omega_G)_s^t = 0$$

 $(r, s, t = 0, 1, \dots, m + 1)$ is rewritten, due to the relation (28), as

$$d(\Omega_{G})_{0}^{0} + \underline{h}_{jk}(\Omega_{G})_{m+1}^{j} \wedge (\Omega_{G})_{0}^{k} = 0,$$

$$d(\Omega_{G})_{0}^{j} + \{(\Omega_{G})_{k}^{j} - \delta_{k}^{j}(\Omega_{G})_{0}^{0}\} \wedge (\Omega_{G})_{0}^{k} = 0,$$

(32)

$$d(\Omega_{G})_{k}^{j} + (\Omega_{G})_{i}^{j} \wedge (\Omega_{G})_{k}^{i}$$

$$+ \underline{h}_{kl}\{(\Omega_{G})_{0}^{j} \wedge (\Omega_{G})_{m+1}^{l} - (\Omega_{G})_{0}^{l} \wedge (\Omega_{G})_{m+1}^{j}\} = 0,$$

$$d(\Omega_G)_{m+1}^j + \{(\Omega_G)_i^j + \delta_i^j (\Omega_G)_0^0\} \wedge (\Omega_G)_{m+1}^i = 0.$$

When we regsard Ω_G as a 1-form valued in the Lie algebra **g** of G, the adjoint action of H transforms the components of Ω_G . In fact by (15)

$$(\operatorname{Ad}(h^{-1})\Omega_{G})_{0}^{i} = a(t^{*})_{j}^{i}(\Omega_{G})_{0}^{j},$$

$$(\operatorname{Ad}(h^{-1})\Omega_{G})_{0}^{0} = (\Omega_{G})_{0}^{0} - a\underline{h}_{jk}\beta^{j}(\Omega_{G})_{0}^{k},$$

$$(\operatorname{Ad}(h^{-1})\Omega_{G})_{j}^{i} = (t^{*})_{k}^{i}t_{j}^{l}(\Omega_{G})_{l}^{k}$$

$$(33) + (a(t^{*})_{k}^{i}(\beta^{*}t)_{j} - a(t^{*}\beta)^{i}t_{j}^{l}\underline{h}_{lk})(\Omega_{G})_{0}^{k},$$

$$(\operatorname{Ad}(h^{-1})\Omega_{G})_{m+1}^{i} = (t^{*})_{j}^{i}\left\{a^{-1}(\Omega_{G})_{m+1}^{j} + \beta^{l}(\Omega_{G})_{l}^{j} + \beta^{j}(\Omega_{G})_{0}^{0} - a\beta^{j}\underline{h}_{lk}\beta^{l}(\Omega_{G})_{0}^{k} + \frac{a}{2}\langle\beta,\beta\rangle(\Omega_{G})_{0}^{j}\right\}$$

§2. Conformal Riemann Geometry

We consider the conformal Riemann geometry on a manifold M based on a Riemann metric $(ds^2)_M$. We study the local aspect of the metric near a reference point, say P_0 . Fix a chart $x = (x^1, \ldots, x^m)$ on a neighborhood of P_0 , $x(P_0) = 0$. We write

(1)
$$(ds^2)_M = g_{ij}(x)dx^i dx^j.$$

We assume that the matrix $(g_{ij}(x))$ is conjugate to \underline{h}_{ij} given in §1 (1). As in §1 we denote by F the model conformal structure. We also use F to denote a neighborhood of 0 of the model structure. $(ds)_F = \langle dy, dy \rangle = \underline{h}_{ij} dy^i dy^j$, where y is the standard chart of F. (\underline{h}^{ij}) is the inverse matrix of (\underline{h}_{ij}) .

A) Let $q = q_{ij}(y)dy^i dy^j$ be a quadratic form. We set

(2)
$$\mathbf{tr} \, q = \underline{h}^{ij} q_{ij}(y).$$

Let f be a map of F into M.

Definition 1. We say that f is an attaching map of M at f(0) when there is a function c > 0 on F such that

(3)
$$f^*(ds^2)_M - c(ds^2)_F = O(1), \quad \operatorname{tr}(f^*(ds^2)_M - c(ds^2)_F) = O(2),$$

where O(l) denotes terms in the ideal generated by $y^{i_1} \cdots y^{i_l}$. c will be called the conformal factor of the attaching map. When f satisfies the first equation in (3), we say that f is an attaching map of order 1.

We claim that, for any attching map g of order 1 and for any linear form $c = c_l y^l$ in y, there is an attaching map f with the conformal factor $c+c_0$ such that the 1-jets of f and g agree. The constant c_0 in the above is determined by g. Namely, for an unknown f we set

(4)
$$f^{i}(y) = x_{0}^{i} + p_{j}^{i}y^{j} + \frac{1}{2}p_{jk}^{i}y^{j}y^{k} + \cdots$$

Then

(5)
$$f^*(ds^2)_M = g_{st}(f(y))(p_i^s + p_{ik}^s y^k)(p_j^t + p_{jl}^t y^l)dy^i dy^j + O(2).$$

Hence the equation for f to be an attaching map as above is given by

(6)
$$g_{kl}(x_0)p_i^k p_j^l = c_0 \underline{h}_{ij}, \text{ and with } G_k^i = \underline{h}^{ij} g_{kl}(x_0) p_j^l,$$
$$2G_k^i p_{it}^k + \underline{h}^{ij} \frac{\partial g_{kl}}{\partial y^s}(x_0) p_i^k p_j^l p_t^s = mc_t.$$

Since the matrix (G_i^i) is non-singular, our assertion follows easily.

We say that attaching maps f_1 , f_2 at x_0 with the conformal factors c_1 , c_2 are equivalent when

(7)
$$j_0^1 f_1 = j_0^1 f_2, \quad j_0^1 c_1 = j_0^1 c_2.$$

The equivalent classes of attaching maps will be called the frames of M. Denote by E the set of the frames of M. Let E_1 be the space of 1-jets at 0 of attaching maps. Clearly we have the projection $E \to E_1$:

(8)
$$E \ni \text{the class of } f \to j_0^1 f \in E_1, \text{ and}$$

(9) $E_1 = \mathbf{R}^+$ (the frame bundle of the metric $(ds^2)_M$).

Note by (6) that c_0 is determined by the 1-jets information. Hence E is a manifold with a standard chart:

$$(10) (E_1, c_1, \ldots, c_m).$$

B) If f is an attaching map at x_0 , $f \circ T_h$ is also an attaching map at x_0 because T_h is a conformal map of F. We denote by (the class of $f) \circ R_h$ the above frame. Let the class of f has the standard chart $(x_0, p_j^i, c_1, \ldots c_m)$. Since the conformal factor of $f \circ T_h$ is $\lambda^{-2} c \circ T_h$, we see by (23)–(26) §1, the class of $f \circ T_h$ has the standard chart:

(11)
$$\begin{pmatrix} x_0, p_k^i \frac{1}{a} t_j^k, c_1', \dots, c_m' \end{pmatrix}, \text{ where} \\ c_j' = a^{-3} c_i t_j^i - 2a^{-2} c_0 \underline{h}_{kl} t_j^k \beta^l, \quad mc_0 = \underline{h}^{ij} g_{kl}(x_0) p_i^k p_j^l.$$

We thus have the operation of H on E. In particular, E is a principal H-bundle, where the R_h action of H in the standard chart is given by the above formula.

C) We next discuss local trivializations of E. Let $\mathbf{f}(x)$ be a local section of E. Then the induced local trivialization of E is given by

(12)
$$F \times H \ni (x,h) \to \mathbf{f}(x) \circ R_h.$$

Denote by

(13)
$$\left(x, p_i^i(x), c_1(x), \dots, c_m(x)\right)$$

the standard chart of f(x). Then we see by (11) that in the standard chart the above local trivialization has the expression:

(14)
$$\begin{pmatrix} x, p_k^i(x) \frac{1}{a} t_j^k, c_1, \dots, c_m \end{pmatrix}, \text{ where} \\ c_j = a^{-3} c_i(x) t_j^i - 2a^{-2} c_0(x) \underline{h}_{kl} t_j^k \beta^l, \\ m c_0(x) = \underline{h}^{ij} g_{kl}(x) p_i^k(x) p_j^l(x).$$

Let us change the local section $\mathbf{f}(x)$ to $\mathbf{f}^{\sharp}(x) = \mathbf{f}(x) \circ R_{h(x)}$, inducing a new local chart (x, h^{\sharp}) . We see by (12) that

(15)
$$h = h(x)h^{\sharp},$$

(16)
$$a = a(x)a^{\sharp}, \quad t = t(x)t^{\sharp}, \quad \beta = t(x)\beta^{\sharp} + \frac{1}{a^{\sharp}}\beta(x).$$

D) It is known how to construct a unique Cartan connection locally on E. Nevertheless, we want to go over the construction, because we wish to take up the problem of constructing such Cartan connection globally.

We fix a local trivialization of E induced by a local section $\mathbf{f}(x)$ of E. We work on the domain of the above section and call it M. We use the induced chart (x, h) of E.

We first follow the analogy with the Riemann manifold and construct 1-form Ω_F on E valued in $\mathbf{R}^m = F$. These are the first order coframes of the conformal structure. Namely, we note that E_1 is the space of 1-jets of the first order attaching maps. Hence they are linear maps $T_0F \to TM$. Their dual may be regarded as F-valued 1-forms Ω_F on E_1 . Composing with the projection $E \to E_1$, we thus have a well defined 1-form: Ω_F on E.

In terms of our chart (cf. (12) §1)

(17.1)
$$\Omega_F = \operatorname{Ad}(h^{-1})w_F, \quad w_F = (\dots, w_F^j, \dots), \quad w_F^j = p^{-1}(x)_k^j dx^k.$$

When we set $\Omega_F = (\Omega_F^1, \ldots, \Omega_F^m)$,

(17.2)
$$\Omega_F^j = a(t^{-1})_k^j p^{-1}(x)_l^k \, dx^l.$$

Note by (6) that

(17.3) $(\dots, w_F^j, \dots) \text{ is a section of the 1-st order coframe bundle} \\ \text{of the metric } \frac{1}{mc_0(x)} (ds^2)_M.$

E) A Cartan connection on M has the expression

(18)
$$\Omega = \operatorname{Ad}(h^{-1})w + h^{-1} dh, \quad w \text{ is a } \mathbf{g}\text{-valued 1-form on } W.$$

Note that we have the projection $\rho_F \colon \mathbf{g} \to \mathbf{g}/\mathbf{h} = F$. By a Cartan connection of the conformal structure we mean a Cartan connection Ω such that

(19)
$$\rho \Omega = \Omega_F$$

Hence the Cartan connections of F are of the form

(20)
$$\Omega = \operatorname{Ad}(h^{-1})(w_F + w_H) + h^{-1} dh,$$

where w_H is an 1-form valued in **h**.

To determine Ω we have to determine w_H . We do this by using the curvature of Ω .

F) The curvature form K of Ω is given by

(21)
$$K = d\Omega + \frac{1}{2}[\Omega, \Omega] = \mathrm{Ad}(h^{-1})k$$
, where $k = dw + \frac{1}{2}[w, w]$.

We set (cf. (13) §1)

(22.1)
$$w_H = w_\pi \pi + \{w_0\} + \{w_h\}_{(1)}, \text{ where }$$

(22.2)
$$w_{\pi}$$
 is **R**-valued, $w_0 = ((w_0)_j^i)$ is $o(m)$ -valued,

$$w_{\mathbf{h}} = (w_{\mathbf{h}}^1, \dots, w_{\mathbf{h}}^m)$$
 is \mathbf{R}^m -valued.

In the above, o(m) is with respect to the quadratic form (1) §1. In view of (32) §1 we then find that

(23.1)
$$k = \{k_F\}_{(-1)} + k_{\pi}\pi + \{k_0\} + \{k_{\mathbf{h}}\}_{(1)}, \text{ where}$$
$$k_F^j = dw_F^j + ((w_0)_k^j - w_{\pi}\delta_k^j) \wedge w_F^k,$$
$$(23.2) \qquad k_{\pi} = dw_{\pi} + \underline{h}_{jk}w_{\mathbf{h}}^j \wedge w_F^k,$$
$$(k_0)_k^j = d(w_0)_k^j + (w_0)_l^j \wedge (w_0)_k^l + \underline{h}_{kl}(w_F^j \wedge w_{\mathbf{h}}^l + w_{\mathbf{h}}^j \wedge w_F^l),$$
$$k_{\mathbf{h}}^j = dw_{\mathbf{h}}^j + ((w_0)_k^j + w_{\pi}\delta_k^j) \wedge w_{\mathbf{h}}^k,$$

We note that, since w_0 is o(m)-valued, k_0 defined by the above formula is also o(m)-valued.

G) We first examine the case when

(24.1)
$$K_F^j = 0, \quad K_\pi = 0,$$

which is (by (15) §1 and (21)) equivalent to the conditions:

(24.2)
$$k_F^j = 0, \quad k_\pi = 0.$$

We set

(25)
$$w_{\pi} = w_{\pi l} w_F^l, \quad (w_0)_k^j = (w_0)_{kl}^j w_F^l, \quad w_{\mathbf{h}}^j = (w_{\mathbf{h}})_l^j w_F^l.$$

We first write down the condition on w_0 , w_{π} which is equivalent to the condition: $k_F = 0$. In view of the formula for w_F^j in (17.1) we find

by calculation that

(26)
$$dw_F^j + q_k^j \wedge w_F^k = 0, \text{ where}$$
$$q_k^j = q_{kl}^j w_F^l, \quad q_{kl}^j = (p^{-1})_{j_1}^j \frac{\partial p_k^{j_1}}{\partial x^i} p_l^i.$$

Therefore $k_F^j = 0$ if and only if we can find $A_{kl}^j(y)$ such that

ż

(27)
$$(w_0)_k^j - w_\pi \delta_k^j = q_k^j + A_{kl}^j w_F^l, \quad A_{kl}^j = A_{lk}^j.$$

Since $\underline{h}_{jk}(w_0)_i^j + \underline{h}_{ji}(w_0)_k^j = 0$, we can eliminate w_0 in the above. We thus find that the condition (26) implies that

(28)
$$\frac{\underline{h}_{jk}A_{kl}^{j} + \underline{h}_{jl}A_{ki}^{j} = r_{kli}, \text{ where}}{r_{kli} = -(\underline{h}_{jk}q_{li}^{j} + \underline{h}_{jl}q_{ki}^{j} + 2\underline{h}_{kl}w_{\pi i}).}$$

As in the case of Riemann geometry, this equation has the unique solution. Namely,

(29)
$$A_{kl}^{j} = -\frac{1}{2}(q_{kl}^{j} + q_{lk}^{j}) + \frac{1}{2}\underline{h}^{jj_{1}}\underline{h}_{kk_{1}}(q_{lj_{1}}^{k_{1}} - q_{j_{1}l}^{k_{1}}) \\ + \frac{1}{2}\underline{h}^{jj_{1}}\underline{h}_{ll_{1}}(q_{kj_{1}}^{l_{1}} - q_{j_{1}k}^{l_{1}}) - \delta_{k}^{j}w_{\pi l} - \delta_{l}^{j}w_{\pi k} + \underline{h}^{ji}\underline{h}_{kl}w_{\pi i}.$$

Therefore, it follows by (26) that

(30.1)
$$(w_0)_{kl}^j = \frac{1}{2}(q_{kl}^j - q_{lk}^j) + \frac{1}{2}\underline{h}^{jj_1}\underline{h}_{kk_1}(q_{lj_1}^{k_1} - q_{j_1l}^{k_1}) \\ + \frac{1}{2}\underline{h}^{jj_1}\underline{h}_{ll_1}(q_{kj_1}^{l_1} - q_{j_1k}^{l_1}) - \delta_l^j w_{\pi k} + \underline{h}^{ji}\underline{h}_{kl}w_{\pi i}.$$

We check by calculation that the above w_0 is o(m)-valued. We thus find that for an arbitrary choice of w_{π} there is an unique w_0 for which $k_F = 0$. Recalling the construction of the Levi-Civita connections, in view of (17.3) we may rewrite (30.1) as

(30.2)
$$(w_0)_k^j = (w_0^\sharp)_k^j + H_{lk}^{ji} w_{\pi i} w_F^l, \quad \text{where} H_{lk}^{ji} = \underline{h}^{ji} \underline{h}_{kl} - \delta_l^j \delta_k^i.$$

where $(w_0^{\sharp})_k^j$ is the o(m)-part of the Levi-Civita Cartan connection of the metric $(1/c(x))(ds^2)_M$.

We see by (23.2) that $k_{\pi} = 0$ if and only if

(31)
$$(dw_{\pi})_{jl} = \frac{1}{2} \left(\underline{h}_{jk} (w_{\mathbf{h}}^k)_l - \underline{h}_{lk} (w_{\mathbf{h}}^k)_j \right), \quad dw_{\pi} = (dw_{\pi})_{jl} w_F^j \wedge w_F^l.$$

H) It remains to determine $\underline{h}_{jk}(w_{\mathbf{h}}^k)_l + \underline{h}_{lk}(w_{\mathbf{h}}^k)_j$. The formula for k_0 in (23.2) suggests that we may be able to obtain the above term using k_0 and w_0 . In fact, when we set

(32)
$$d(w_0)_k^j + (w_0)_l^j \wedge (w_0)_k^l = W_{kli}^j w_F^l \wedge w_F^i, \quad W_{kli}^j + W_{kil}^j = 0,$$

we find by calculation that

(33)
$$((k_0)_k^j)_{il} = W_{kil}^j + \frac{1}{2} (\delta_i^j \underline{h}_{kk_1} w_{\mathbf{h}l}^{k_1} - \delta_l^j \underline{h}_{kk_1} w_{\mathbf{h}i}^{k_1} + \underline{h}_{kl} w_{\mathbf{h}i}^j - \underline{h}_{ki} w_{\mathbf{h}l}^j).$$

Therefore

(34)
$$((k_0)_k^j)_{ij} = W_{kij}^j + \frac{1}{2}(2-m)\underline{h}_{kl}w_{\mathbf{h}i}^l - \underline{h}_{ki}w_{\mathbf{h}j}^j.$$

In order to eliminate $w_{\mathbf{h}j}^{j}$ in the above, we multiply \underline{h}^{ki} and add in k, i. We find

(35)
$$\underline{h}^{ki}((k_0)^j_k)_{ij} = \underline{h}^{ki}W^j_{kij} + (1-m)w^j_{\mathbf{h}j}.$$

It then follows by calculation that

(36)
$$A_{ki}^{k_{1}i_{1}}\{((k_{0})_{k_{1}}^{j})_{i_{1}j} - W_{k_{1}i_{1}j}^{j}\} = \frac{1}{2}(1-m)\underline{h}_{kl}w_{\mathbf{h}i}^{l},$$
$$A_{ki}^{jl} = \delta_{k}^{j}\delta_{i}^{l} + \frac{1}{1-m}\underline{h}_{ki}\mathbf{h}^{jl}.$$

Therefore we see that $\underline{h}_{kl}w_{\underline{h}i}^{l} + \underline{h}_{il}w_{\underline{h}k}^{l}$ is determined by k_{0} and W. The condition for k_{0} becomes simpler when we note as in the case of Riemann geometry that

(37)
$$((k_0)_k^j)_{lj} = ((k_0)_l^j)_{kj}.$$

The above follows by taking the exterior derivative of $0 = k_F^j$ in (23.2) and using the formulas in (23.2). In the end the terms containing $w_{\mathbf{h}}$ cancel out.

We impose the condition:

(38)
$$((k_0)_i^i)_{ki} = 0.$$

Since the above condition is equivalent to the condition:

(39)
$$((K_0)_j^i)_{ki} = 0$$
, where $(K_0)_j^i = ((K_0)_j^i)_{ki}\Omega_F^k \wedge \Omega_F^i$,

this is a well defined curvature condition. We find by (36)

(40)
$$\underline{h}_{kl}w_{\mathbf{h}i}^{l} + \underline{h}_{il}w_{\mathbf{h}k}^{l} = \frac{2}{m-1}A_{ki}^{k_{1}i_{1}}\{W_{k_{1}i_{1}j}^{j} + W_{i_{1}k_{1}j}^{j}\}.$$

Therefore it follows by (31)

(41)
$$\underline{h}_{kl}w_{\mathbf{h}i}^{l} = \frac{1}{2}(dw_{\pi})_{ki} + \frac{1}{m-1}A_{ki}^{k_{1}i_{1}}\{W_{k_{1}i_{1}j}^{j} + W_{i_{1}k_{1}j}^{j}\}.$$

We conclude

(42) Proposition. For an arbitrary 1-form w_{π} in (22.1) there is an unique conformal Cartan connection (20), (22) satisfying the conditions:

 $K_F = 0, \quad K_\pi = 0, \quad ((K_0)_j^i)_{ki} = 0.$

 w_0 and w_h of the connection is given by (30.2) and (41).

The above connections will be called normal conformal Cartan connections.

I) We next find an expression of the curvatures. For simplicity we set

(43)
$$\underline{h}_{kj}w_{\mathbf{h}l}^{j} = w_{[kl]} + w_{\langle kl \rangle}, \quad w_{[kl]} = w_{[lk]}, \ w_{\langle kl \rangle} = -w_{\langle lk \rangle}.$$

By (31) and (40)

(44)
$$w_{\langle kl \rangle} = (dw_{\pi})_{kl}, \quad w_{[kl]} = \frac{1}{m-1} A_{kl}^{k_1 i_1} \{ W_{k_1 i_1 j}^j + W_{i_1 k_1 j}^j \}.$$

We then find by (33)

(45)
$$((k_0)_k^j)_{il} = W_{kil}^j + \frac{1}{2} (H_{lk}^{js} \delta_i^t - H_{ik}^{js} \delta_l^t) (w_{[st]} + w_{\langle st \rangle}).$$

To calculate W_{kil}^{j} , we see by (30.2)

(46)
$$dw_{0k}^{j} = dw_{0k}^{\sharp j} + H_{lk}^{ji} d(w_{\pi i}) \wedge w_{F}^{l} + w_{\pi i} H_{lk}^{ji} dw_{F}^{l}.$$

 Set

(47)
$$d(w_{\pi k}) = (w_{\pi[kl]} + w_{\pi\langle kl \rangle})w_F^l, w_{\pi[kl]} = w_{\pi[lk]}, \quad w_{\pi\langle kl \rangle} = -w_{\pi\langle lk \rangle}.$$

Since $dw_{\pi} = d(w_{\pi l}) \wedge w_F^l + w_{\pi i} dw_F^i$, we note by (44) that

(48)
$$w_{\langle kl \rangle} = w_{\pi \langle lk \rangle} - w_{\pi i} \frac{1}{2} \big((w_{0l}^i)_k - (w_{0k}^i)_l - \delta_l^i w_{\pi k} + \delta_k^i w_{\pi l} \big).$$

Therefore

$$(49) \qquad d(w_{0k}^{j}) = d(w_{0k}^{\sharp j}) + H_{qk}^{ji}(w_{\pi[ip]} + w_{\langle pi \rangle})w_{F}^{p} \wedge w_{F}^{q} \\ + w_{\pi i} \Big\{ H_{qk}^{jl} \frac{1}{2} \big((w_{0l}^{i})_{p} - w_{\pi p} \delta_{l}^{i} - (w_{0p}^{i})_{l} + w_{\pi l} \delta_{p}^{i} \big) \\ + H_{lk}^{ji} \big(w_{\pi p} \delta_{q}^{l} - (w_{0q}^{l})_{p} \big) \Big\} w_{F}^{p} \wedge w_{F}^{q}.$$

We also have by (30.2)

(50)
$$\begin{aligned} w_{0l}^{j} \wedge w_{0k}^{l} &= w_{0l}^{\sharp j} \wedge w_{0k}^{\sharp l} + w_{\pi i} \{ H_{qk}^{li}(w_{0l}^{\sharp j})_{p} + H_{pl}^{ji}(w_{0k}^{\sharp l})_{q} \\ &+ H_{pl}^{ji} H_{qk}^{lm} w_{\pi m} \} w_{F}^{p} \wedge w_{F}^{q}. \end{aligned}$$

Hence by (32) we find that

(51)
$$W_{kpq}^{j} = R_{kpq}^{j} + \frac{1}{2} \{ H_{qk}^{ji}(w_{\pi[ip]} + w_{\langle pi \rangle}) - H_{pk}^{ji}(w_{\pi[iq]} + w_{\langle qi \rangle}) \} + w_{\pi i} P_{kpq}^{ij},$$

where $R_{lpq}^j w_f^p \wedge w_F^q$ is the curvature form of the metric $(1/c(x))(ds^2)_M$, and

$$P_{kpq}^{ij} = \frac{1}{4} H_{qk}^{jl} ((w_{0l}^{i})_{p} - w_{\pi p} \delta_{l}^{i} - (w_{0p}^{i})_{l} + w_{\pi l} \delta_{p}^{i}) - \frac{1}{4} H_{pk}^{jl} ((w_{0l}^{i})_{q} - w_{\pi q} \delta_{l}^{i} - (w_{0q}^{i})_{l} + w_{\pi l} \delta_{q}^{i}) + \frac{1}{2} H_{lk}^{ji} ((w_{0p}^{l})_{q} - w_{\pi q} \delta_{p}^{l} - (w_{0q}^{l})_{p} + w_{\pi p} \delta_{q}^{l}) + \frac{1}{2} (H_{qk}^{li} (w_{0l}^{jj})_{p} - H_{pk}^{li} (w_{0l}^{\sharp j})_{q} + H_{pl}^{ji} (w_{0k}^{\sharp l})_{q} - H_{ql}^{ji} (w_{0k}^{\sharp l})_{p}) + \frac{1}{2} (H_{pl}^{ji} H_{qk}^{lm} - H_{ql}^{ji} H_{pk}^{lm}) w_{\pi m}.$$

Therefore we find by (45) that

(53)
$$((k_0)_k^j)_{pq} = R_{kpq}^j + \frac{1}{2} (H_{qk}^{js} \delta_p^t - H_{pk}^{js} \delta_q^t) (w_{[st]} + w_{\pi[st]}) + w_{\pi i} P_{kpq}^{ij}.$$

Summing in j = q in the above, we find by (38)

(54)
$$(H_{jk}^{js} \delta_p^t - H_{pk}^{js} \delta_j^t) (w_{[st]} + w_{\pi[st]}) = -2R_{kpj}^j - 2w_{\pi i} P_{kpj}^{ij}.$$

It turns out by (32) that for an indeterminant X_{st} symmetric in s, t

(55)
$$Y_{kp} = (H_{jk}^{js} \delta_p^t - H_{pk}^{js} \delta_j^t) X_{st} = (2-m) X_{kp} - \underline{h}_{kp} \underline{h}^{st} X_{st}.$$
 Hence
$$X_{st} = K_{st}^{kp} Y_{kp},$$

where
$$K_{st}^{kp} = \frac{1}{2-m} \delta_s^k \delta_t^p + \frac{1}{2} \frac{1}{(m-1)(m-2)} \underline{h}_{st} \underline{h}^{kp}$$
.

Therefore we find that

$$(57) \quad ((k_0)^j_k)_{pq} = R^j_{kpq} - (H^{js}_{qk}\delta^t_p - H^{js}_{pk}\delta^t_q)K^{kl}_{st}R^i_{kli} + w_{\pi i}\tilde{P}^{ij}_{kpq}, \quad \text{where}$$

$$(58) \qquad \tilde{P}^{ij}_{kpq} = P^{ij}_{kpq} - (H^{js}_{qk}\delta^t_p - H^{js}_{pk}\delta^t_q)K^{kl}_{st}R^{ir}_{klr}.$$

We find by calculation that

(59)
$$w_{\pi i} \tilde{P}^{ij}_{kpq} = 0.$$
 Hence

(60)
$$((k_0)_k^j)_{pq} = R_{kpq}^j - (H_{qk}^{js}\delta_p^t - H_{pk}^{js}\delta_q^t)K_{st}^{kp}R_{kpr}^r$$

Note that

(61)
$$(H_{qk}^{js}\delta_{p}^{t} - H_{pk}^{js}\delta_{q}^{t})K_{st}^{il}X_{il} = \frac{1}{m-2}(H_{pk}^{jl}X_{lq} - H_{qk}^{jl}X_{lp}) + \frac{1}{(m-1)(m-2)}(\underline{h}_{qk}\delta_{p}^{j} - \underline{h}_{pk}\delta_{q}^{j})\underline{h}^{il}X_{il}.$$

Then the formula (60) is rewritten as the classical formula for the Weyl tensor:

(62)

$$((k_0)_k^j)_{pq} = R_{kpq}^j + \frac{1}{m-2} (\delta_p^j R_{kq} - \delta_q^j R_{kp} + \underline{h}_{kq} \underline{h}^{jl} R_{lp} - \underline{h}_{kp} \underline{h}^{jl} R_{lq}) + \frac{R}{(m-1)(m-2)} (\delta_p^j \underline{h}_{kq} - \delta_p^j \underline{h}^{kp}), \quad \text{where}$$
(63)

$$R_{kl} = R_{klj}^j, \quad R = \underline{h}^{kl} R_{kl}.$$

(cf. formula (28.12) Chapter 2, Eisenhart [4], where the chart coframe dx^{j} is used. We used the orthonormal coframe w_{F}^{j} .)

J) There is an a priori ground why the cancelation (59) takes place. This is a reflection of the fact that for normal conformal connections we have $k_{\pi} = 0$. In fact, for arbitrary \mathbf{R}^{m} -valued function $\beta(x)$ let us consider a Cartan connection $\underline{\Omega}$ given by

(64)
$$\underline{w}(x) = \operatorname{Ad}(h(1, I, \beta(x))^{-1})w(x).$$

in (18). We see by (15) $\S1$

(65)
$$\underline{w}_{\pi}(x) = w_{\pi}(x) - \underline{h}_{ij}\beta^{j}(x)w_{F}^{i}(x).$$

By (21) the new curvature is given by

(66)
$$\underline{k}(x) = \operatorname{Ad}(h(1, I, \beta(x))^{-1})k(x).$$

We find by (15) §1 that this is a conformal Cartan connection and

(67)
$$\underline{k}_{\pi} = k_{\pi} = 0, \quad \underline{k}_0(x) = k_0(x), \quad \underline{k}_{\mathbf{h}} = k_{\mathbf{h}} + k_0\beta(x).$$

Therefore $\underline{\Omega}$ is a normal connection. When $w_{\pi} = 0$, we see by (53) that the formula for k_0 is given by (60). We see by the above, when

 $w_{\pi} = \underline{h}_{ij}\beta^{j}(x)w_{F}^{i}(x)$, the formula for k_{0} is still given by (60). This means that (59) must be true.

The above formula also prove the followings: Let $\underline{k}_{\mathbf{h}}(x)$ be the $\mathbf{g}_{(1)}$ -part of the curvature form when $\underline{w}_{\pi} = 0$. Then

(68)
$$k_{\mathbf{h}}^{j} = \underline{k}_{\mathbf{h}}^{j} + \underline{h}^{ki} w_{\pi i} (k_{0})_{k}^{j}.$$

(69) **Proposition.** Any two normal conformal Cartan connections are isomorphic.

K) We next write down the expression of $k_{\mathbf{h}}$. In view of (68) it is enough to consider the case $w_{\pi} = 0$. We then find by (41) and (36) that with $w_{\mathbf{h}}^{j} = w_{\mathbf{h}k}^{j} w_{F}^{k}$

(70)
$$w_{\mathbf{h}k}^{j} = \frac{1}{m-1} \underline{h}^{ji} A_{ik}^{pq} (W_{pqr}^{r} + W_{qpr}^{r})$$
$$= \frac{1}{m-1} \underline{h}^{jp} (W_{pkr}^{r} + W_{kpr}^{r}) - \frac{2}{(m-1)^{2}} \delta_{k}^{j} \underline{h}^{pq} W_{pqr}^{r}.$$

Since $w_{\pi[ip]} = 0$ by (47) and $w_{\langle ip \rangle} = 0$ by (44) when $w_{\pi} = 0$ we see by (51)

(71)
$$W_{kpr}^r = R_{kp}.$$

Therefore we find

(72)
$$w_{\mathbf{h}}^{j} = \frac{2}{m-1} \left(\underline{h}^{jl} R_{lk} - \frac{1}{m-1} \delta_{k}^{j} R \right) w_{F}^{k}.$$

It then follows by (23.2) and (68)

(73)
$$k_{\mathbf{h}}^{j} = \frac{2}{m-1} \Big\{ \underline{h}^{jl} (dR_{lk} - R_{li}(w_{0})_{k}^{i}) + \underline{h}^{rl} R_{lk}(w_{0})_{r}^{j} \\ - \frac{1}{m-1} \delta_{k}^{j} dR \Big\} \wedge w_{F}^{k} + \underline{h}^{ki} w_{\pi i} (k_{0})_{k}^{j}.$$

We can also express $k_{\mathbf{h}}^{j}$ by k_{0} and its derivatives, provided m > 3. By (21) (or by calculation) we find by (23.2) that

(74)
$$d(k_0)_k^j = (k_0)_l^j \wedge (w_0)_k^l - (w_0)_l^j \wedge (k_0)_k^l + \underline{h}_{kl}(k_{\mathbf{h}}^j \wedge w_F^l - w_F^j \wedge k_{\mathbf{h}}^l)$$

Noting that for $\alpha = \alpha_{jk}\gamma^j \wedge \gamma^k$ with $\alpha_{jk} = -\alpha_{kj}$ and $\beta = \beta_l \gamma^l$

(75)
$$\alpha \wedge \beta = \frac{1}{3} (\alpha_{jk}\beta_l + \alpha_{kl}\beta_j + \alpha_{lj}\beta_k)\gamma^j \wedge \gamma^k \wedge \gamma^l,$$

we find by (38) that

(76)

$$3((dk_0)_k^j)_{pqj} = ((k_0)_l^j)_{pq}((w_0)_k^l)_j - ((k_0)_k^l)_{pq}((w_0)_l^j)_j - ((k_0)_k^l)_{qj}((w_0)_l^j)_p - ((k_0)_k^l)_{jp}((w_0)_l^j)_q + \frac{h_{kl}\{(k_{\mathbf{b}}^l)_{qj}\delta_p^l + (k_{\mathbf{b}}^j)_{jp}\delta_q^l - (m-3)(k_{\mathbf{b}}^l)_{pq}\}}{(m-3)(k_{\mathbf{b}}^l)_{pq}}$$

Therefore

(77)
$$(3-m)k_{\mathbf{h}}^{i} - 2(k_{\mathbf{h}}^{j})_{pj}w_{F}^{p} \wedge w_{F}^{i} = \tilde{d}k_{0}^{i}, \text{ where}$$

$$(\tilde{d}k_{0}^{i})_{pq}w_{F}^{p} \wedge w_{F}^{q} = \underline{h}^{il}\{3((dk_{0})_{l}^{j})_{pqj}w_{F}^{p} \wedge w_{F}^{q} - ((w_{0})_{l}^{r})_{j}(k_{0})_{r}^{j}$$
(78)

$$+ ((w_0)_r^j)_j (k_0)_l^r + 2(w_0)_r^j \wedge ((k_0)_l^r)_{pj} w_F^p \}.$$

We then conclude that

(79)
$$k_{\mathbf{h}}^{i} = \frac{1}{3-m} \Big\{ \tilde{d}k_{0}^{i} + \frac{1}{2-m} (\tilde{d}k_{0}^{j})_{pj} w_{F}^{p} \wedge w_{F}^{i} \Big\}.$$

For future use we rewrite the formula for $\tilde{d}k_0^i$ in (78). We set, with the proper symmetry, $k_0 = (k_0)_{ij} w_F^i \wedge w_F^j$, $dk_0 = (dk_0)_{ijl} w_F^i \wedge w_F^j \wedge w_F^l$, $df = (df)_i w_F^i$ for a function f. Then

$$(80) \qquad 3(dk_0)_{ijl} = (d(k_0)_{jl})_i + (d(k_0)_{li})_j + (d(k_0)_{ij})_l + (k_0)_{ir}(w_{0l}^r)_j)_j - (k_0)_{ir}(w_{0j}^r)_l + (k_0)_{jr}(w_{0i}^r)_l - (k_0)_{jr}(w_{0l}^r)_i + (k_0)_{lr}(w_{0j}^r)_i - (k_0)_{lr}(w_{0i}^r)_j + 2\{(k_0)_{ij}(w_{\pi})_l + (k_0)_{jl}(w_{\pi})_i + (k_0)_{li}(w_{\pi})_j\}.$$

Therefore by (38)

(81)
$$3(dk_{0i}^{l})_{pql} = (d(k_{0i}^{l})_{pq})_{l} + (k_{0i}^{l})_{pr}(w_{0l}^{r})_{q} - (k_{0i}^{l})_{pr}(w_{0q}^{r})_{l} + (k_{0i}^{l})_{qr}(w_{0p}^{r})_{l} - (k_{0i}^{l})_{qr}(w_{0l}^{r})_{p} + 2(k_{0i}^{l})_{pq}(w_{\pi})_{l}.$$

We then find by (78)

(82)
$$\frac{\underline{h}_{il}\,\tilde{d}k_0^l = (d(k_{0i}^l)_{pq})_l w_F^p \wedge w_F^q - (w_{0i}^r)_l (k_0)_r^l + (w_{0l}^j)_j (k_0)_i^l}{+ 2(w_{0n}^r)_l w_F^p \wedge (k_{0i}^l)_{qr} w_F^q + 2(w_\pi)_l k_{0i}^l}.$$

J) We will show that $k_{\mathbf{h}}$ is also obtained by the conformal covariant derivatives of K_0 . We first recall the definitions. This is valid for any principal *H*-bundle *E* with a Cartan connection Ω (18) given in terms of a local trivialization of *E*. We are considering any homogenous space G/H.

Consider a curve $\mathbf{f}_t = (x_t, h_t)$ in E. We denote its tangent vectors $\dot{\mathbf{f}}_t$ by

(83)
$$(\dot{x}_t, \dot{h}_t)$$
 where $\dot{x}_t = dx/dt, \ h_{t+\epsilon} \equiv h_t(I+\epsilon\dot{h}_t)$

(mod. ϵ^2). \dot{h}_t is h-valued. Let $\Omega(\dot{\mathbf{f}}_t)$ be the evaluation of Ω at $\dot{\mathbf{f}}_t$. Then

(84)
$$\Omega(\mathbf{f}_t) = \mathrm{Ad}((h_t)^{-1})w(x_t, dx(\dot{x}_t)) + \dot{h}_t.$$

 \mathbf{f}_t is called the parallel displacement of \mathbf{f}_0 over the curve x(t) in M when

(85)
$$\rho_{\mathbf{h}}\Omega(\mathbf{f}_t) = 0.$$

Clearly, given x(t) and \mathbf{f}_0 there is an unique parallel displacement. Namely, h_t is obtained by solving the ordinary differential equation:

(86)
$$\dot{h}_t = -\operatorname{Ad}((h_t)^{-1})w_H(x_t, dx(\dot{x}_t)).$$

Let \mathbf{f}_t be a parallel displacement and h_1 be a fixed element in H. Then $R_{h_1}\mathbf{f}$ is also a parallel displacement. Hence it is enough to consider the case: $\mathbf{f}_0 = (x_0, I)$.

Let \mathcal{X}_t be a vector field along the curve \mathbf{f}_t . When we express $\mathcal{X}_t = (X_t, \dot{\phi}_t)$ with $\dot{\phi}_t \in \mathbf{h}$ as in (83), $\Omega(\mathcal{X}_t) = \mathrm{Ad}((h_t)^{-1})w(x_t, dx(X_t)) + \dot{\phi}_t$. We say that \mathcal{X}_t is the parallel displacement of \mathcal{X}_0 along \mathbf{f}_t when for all t

(87)
$$\Omega(\mathcal{X}_t) = \Omega(\mathcal{X}_0).$$

This means that X_t is determined by the equation:

(88.1)
$$\rho_{\mathbf{g/h}} \operatorname{Ad}((h_t)^{-1}) w_F(x_t, dx(X_t)) \\ = \rho_{\mathbf{g/h}} \operatorname{Ad}((h_0)^{-1}) w_F(x_0, dx(X_0)),$$

and ϕ_t is determined by the equation: (88.2)

$$\operatorname{Ad}((h_t)^{-1})w_H(x_t, dx(X_t)) + \rho_{\mathbf{h}} \operatorname{Ad}((h_t)^{-1})w_F(x_t, dx(X_t)) + \dot{\phi}_t$$

= $\operatorname{Ad}((h_0)^{-1})w_H(x_0, dx(X_0)) + \rho_{\mathbf{h}} \operatorname{Ad}((h_0)^{-1})w_F(x_0, dx(X_0)) + \dot{\phi}_0.$

Let $\mathcal{V} = (V, \dot{\psi})$ be a vector field on E, where $V = V^j(x, h)\partial/\partial x^j$, $\dot{\psi} = \dot{\psi}(x, h) \in \mathbf{h}$. Pick a tangent vector \dot{x}_0 of M at x_0 and $\mathbf{f}_0 \in E$ over x_0 . By a conformal covariant derivative at \mathbf{f}_0 of \mathcal{V} to the direction \dot{x}_0 is defined as follows: Take a curve x_t in M such that the tangent vector at t = 0 is \dot{x}_0 . Let \mathbf{f}_t be the parallel displacement of \mathbf{f}_0 and \mathcal{V}_t be the parallel displacement of $\mathcal{V}_{\mathbf{f}_0}$ along \mathbf{f}_t . Then

(89)
$$\nabla_{\dot{x}_0} \mathcal{V}_{\mathbf{f}_0} = \lim_{t \to 0} \frac{1}{t} (\mathcal{V}_{\mathbf{f}_t} - \mathcal{V}_t).$$

Let Θ be a differential g-form on E. For a vector field \mathcal{X} on Ewe define the covariant derivative $\bigtriangledown_{\mathcal{X}} \Theta$ of T by \mathcal{X} as follows: For any vector fields $\mathcal{V}_1, \ldots, \mathcal{V}_g$

(90)
$$\nabla_{\mathcal{X}} \Theta(\mathcal{V}_1, \dots, \mathcal{V}_g) = \mathcal{X}(\Theta(\mathcal{V}_1, \dots, \mathcal{V}_g)) - \Theta(\nabla_{\mathcal{X}} \mathcal{V}_1, \dots, \mathcal{V}_g) - \dots - \Theta(\mathcal{V}_1, \dots, \nabla_{\mathcal{X}} \mathcal{V}_g).$$

Let e^{γ} be a base of **g**. Set $\Omega = \Omega_{\gamma} e^{\gamma}$. Denote by $\ldots, \mathcal{W}^{\gamma}, \ldots$ the base of vector fields dual to $\ldots, \Omega_{\gamma}, \ldots$ For any parallel displacement \mathbf{f}_t of a frame we see clearly $(\mathcal{W}^{\gamma})_{\mathbf{f}_t}$ is the parallel displacement of $(\mathcal{W}^{\gamma})_{\mathbf{f}_0}$ along \mathbf{f}_t . Therefore for any vector field \mathcal{X}

(91)
$$\nabla_{\mathcal{X}}\Theta(\mathcal{W}_1,\ldots,\mathcal{W}_g) = \mathcal{X}(\Theta(\mathcal{W}_1,\ldots,\mathcal{W}_g)).$$

We now consider the case of a normal conformal Cartan connection. We set $K_0 = \rho_{(0)} \operatorname{Ad}(h^{-1})k_0$, where $\rho_{(0)}$ is the projection to the degree 0 part of the grading (12) §1, and calculate $\bigtriangledown W_l K_0$. We have by (15) §1

(92)
$$w_F^j = (p^{-1})_k^j(x)dx^k, \quad w_F^l(x, dx(\mathcal{W}_j)) = a^{-1}t_j^l,$$

(93.1)
$$\mathcal{W}_{l} = a^{-1} p(x)_{r}^{i} t_{l}^{r} \frac{\partial}{\partial x^{i}} + W_{l\pi} \pi + \{W_{l0}\} + \{W_{l\mathbf{h}}\}_{(1)},$$

where

(93.2)
$$W_{l\pi}(x,h) = \underline{h}_{kr} t_l^k \beta^r - w_{\pi i}(x) a^{-1} t_l^i,$$

(93.3)
$$\begin{aligned} W_{l0}(x,h) &= t^* \big(\beta \otimes (t_l)^* - t_l \otimes \beta^* - a^{-1} t_l^i(w_0)_i(x)\big) t, \\ \text{with } t_l &= (t_l^1, \dots, t_l^m). \end{aligned}$$

The above means that as differential operators

(93.4)
$$W_{l\pi}(x,I) = -w_{\pi l}(x) \left(\frac{\partial}{\partial a}\right)_{a=1},$$

(93.5)
$$W_{l0}(x,I) = -(w_{0k}^j)_l(x) \left(\frac{\partial}{\partial t_k^j}\right)_{t=I},$$

We then find that

(94)
$$K_0(\mathcal{W}_p, \mathcal{W}_q) = \frac{1}{2}a^{-2}(t_p^j t_q^r - t_q^j t_p^r)t^*(k_0)_{jr}t.$$

By calculation we now find by (82) and (91) that

(95)
$$\underline{h}_{il}\,\tilde{d}k_0^l = ((\nabla_{\mathcal{W}_l}K_0)_i^l)_{(x,I)}.$$

K) The normal conformal Cartan connections, defined locally, depend on arbitrary functions w_{π} . They determine a unique class up to local isomorphism. In order to define globally a normal conformal Cartan connection, we have to choose w_{π} for each local trivialization of the conformal frame bundle in such a way that they match up on the intersections on the domains of trivializations.

Let (x, \underline{h}) be a local trivialization. Then for a **h**-valued function h(x) we have

$$(96) h = h(x)\underline{h}.$$

For a normal conformal Cartan connection Ω we have two expressions:

(97)
$$\Omega = \operatorname{Ad}(h^{-1})w + h^{-1} dh = \operatorname{Ad}(\underline{h}^{-1})\underline{w} + \underline{h}^{-1} d\underline{h}.$$

Therefore we find by (15) §1 and (30) §1

(98.1)
$$\underline{w}_F^i = a(x)t^*(x)_j^i w_F^j(x),$$

(98.2)
$$\underline{w}_{\pi}(x) = w_{\pi}(x) - a(x)\underline{h}_{jk}\beta(x)^{k}w^{j}(x) + d\log a(x),$$

where as in (10) §1 we set $h(x) = h(a(x), t(x), \beta(x))$.

To find such w_{π} as above we recall that our chart (x, h) is induced by a section $\mathbf{f}(x) = (x, p_j^i(x), c_1(x), \ldots, c_m(x))$ (cf. (12)–(13)) of the frame bundle. We also have $c_0(x) = \underline{h}^{ij}g_{kl}(x)p_i^k(x)p_j^l(x)$. The chart (x, \underline{h}) is induced by $\underline{\mathbf{f}}(x) = R_{h(x)}\mathbf{f}(x) = (x, \underline{p}_j^i(x), \underline{c}_1(x), \ldots, \underline{c}_m(x))$. Hence by (11)

(99)
$$\underline{c}_{j}(x) = \frac{1}{a(x)^{3}} t_{j}^{l}(x) c_{l}(x) - \frac{2}{a(x)^{2}} \underline{h}_{il} t_{j}^{i}(x) \beta^{l}(x) c_{0}(x),$$
$$\underline{c}_{0} = \frac{1}{a(x)^{2}} c_{0}(x).$$

We then find by (98.1) that

(100)
$$w_{\pi} = -\frac{1}{2}d\log c_0 + \frac{1}{2}\frac{c_l}{c_0}w_F^l$$

obeys the transformation law (98). When the above w_{π} is chosen we call it the global normal conformal Cartan connection.

References

- [1] E. Cartan, Notices sur les Travaux Scientifiques, Oeuvres, t. I.1. 17–90.
- [2] S. S. Chern, The geometry of G-structures, Bull. Amer. Math. Soc., 72 (1966), 162–219.
- [3] C. Ehresmann, Les connexions infinitesimales dans un espace fibre differentiable, in Colloque de Topologie. [Bruxelles,1950], 29–55.
- [4] L. S. Eisenhart, Riemannian Geometry, Princeton University Press, 1950.
- [5] S. Kobayashi, Tansformation groups in differential geometry, Springer, 1972.
- [6] M. Kuranishi, Cartan connections and CR structures with non-degenerate Levi-forms, Ast. Soc. Math. de France (1985), 273–288.
- [7] M. Kuranishi, CR geometry and Cartan geometry, Forum Math., 7 (1995), 147–206.
- [8] Y. Liu, Cartan geoemtry, CR geometry and complex geometry, Thesis, Columbia University, 1998.
- [9] R. Miyaoka, Lie contact structures and conformal structures, Kodai Math. J., 14 (1991), 42–71.
- [10] T. Morimoto, Sur la problème d'équivalence des structures géométriques, Japan. J. Math., 9-2 (1983), 293–372.
- T. Morimoto, Geometric structures on filtered manifolds, Hokkaido Math. J., 22 (1993), 263–347.
- [12] T. Ochiai, Geometry associated with semi-simple flat homogenous spaces, Trans. A.M.S., 152 (1970), 1–33.
- [13] K. Ogiue, Theory of conformal connections, Kodai Sem. Rep., 19 (1967), 193–224.
- [14] N. Tanaka, On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ., 10 (1970), 1-82.
- [15] N. Tanaka, On nondegenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math., 2 (1976), 131–190.
- [16] N. Tanaka, On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J., 8 (1979), 23–84.
- [17] K. Yamaguchi, Differential systems associated with simple graded Lie algebras, Advanced Studies in Pure Math., 22 (1993), 413–494.
- [18] H. Weyl, Zur Infinitesimalgeometrie: Einordung der projectiven und konformen Ausfassung, Göttinger Nachrichten (1912), pp. 99–112.

Department of Mathematics Columbia University New York, NY 10027 U. S. A. mk@math.columbia.edu