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Introduction 

As is well known F. Klein extracted the essence of the classical 
geometry by saying that the geometry is the study of properties invariant 
under the transformations of Lie groups on homogenous spaces. This 
includes for instance the euclidean geometry and the conformal euclidean 
geometry. However, this geometry is too rigid to treat geometric objects 
we meet in reality. B. Riemann was thus led to introduce his geometry 
generalizing the euclidean geometry. 

It is a natural question to ask how to generalize the Riemann's work 
to the case of an arbitrary classical geometry which is a homogenous 
space X= GjH, where G is a Lie group and His its closed subgroup. 
We call any such generalization a structure modeled after the classical 
geometry G /H. 

E. Cartan [1] gave an answer by introducing "a generalized space". 
Namely, instead of the space X together with the action of G on X, 
he considers the projection pe: G ----+ X. There is on G the invariant 
1-form, say we, valued in the Lie algebra g of G. He associate to the 
classical geometry G/H the pair (G,pe,we), which is in todays lan
guage a Cartan connection we on a principal H-bundle Gover X. We 
recover the homogenous space structure of X because the graphs of the 
transformations of G are the integral submanifolds of the differential 
system rriwe- rr2we on G x G, where 1r1 (resp. 1r2) is the projection to 
the first (resp. second) component of G x G. By the structure equation 
of the Lie algebra we have 

(1) 
1 

dwe + 2[we,we] = 0. 
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Cartan's generalized space structures are deformations of the above 
structure. Namely, in todays language, a generalized space structure on 
a manifold M is a pair (E, p, w) of a principal H-bundle E over M with 
the projection p and a Cartan connection w on E. We call it a Cartan 
structure modeled after the homogenous space G I H. E will be called 
the frame bundle. It has the curvature form 

(2) 
1 

K = dw + 2[w,w]. 

While developing the modern terminology for Cartan's work, 
C. Ehresmann [3] made an interesting comment on the problem by say
ing that a structure modeled after G I H is a space where a homogenous 
space G I His attached to each point. We interpret this as saying that, on 
such a space, neighborhoods of each point are identified infinitesimally 
(up to certain order) with a neighborhood of a reference point in GIH. 

Since Cartan's work many answers to our question are introduced, 
including the use of Cartan's theory of equivalence and infinite Lie 
groups. In this note we mainly view the development evolved around 
these two view points of Cartan and Ehresmann. 

We note that the parameter space of structures modeled after G I H 
on a manifold is obviously infinite dimensional. Therefore we can think 
of two approaches to the problem. One is to develop a way to write 
down all such structures and the other is to find a good way to pick one 
nice such structure. 

A variation of the first order infinitesimal version of Ehresmann's 
view was started by S. S. Chern [2] under the name G-structure. This 
G refers to a linear Lie group, not to our G, but more related to our H. 
Actually a slightly limited case of the G-structure was already considered 
by H. Weyl as a generalization of the general relativity. The theory of 
G-structures seems to mainly concerned with the first approach. For 
surveys see for exampleS. Kobayashi [5] and T. Ochiai [12]. 

There are also a lot of works with respect to the second approach. 
The Levi-Chivita's Riemann geometry may be viewed, in retrospect, 
as the first satisfactory fusion of Cartan's and Eheresman's viewpoints 
in the second approach. This is the Cartan connection, with vanish
ing torsion, on the orthonormal frame bundle. The case for the con
formal geometry was worked out by H. Weyl [18], who extracted the 
conformally invariant components of the curvature tensor called Weyl 
tensor. CR geometry created by E. Cartan [2], N. Tanaka [16], and 
S. S. Chern-J. Moser [5] can be considered as the case where the model 
structure is the unit complex ball with the holomorphic automorphism 
group. 
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Generalizing his pioneering work on CR structures, N. Tanaka 
[14]-[16] introduced structures closely related to Cartan's. His work was 
further developed by T. Morimoto [10], [11] and K. Yamaguchi [17]. The 
works of A. Cap and J. Slovak for the higher codimensional CR struc
tures are in this volume. There is also a work of R. Miyaoka [9] on the 
Lie's sphere geometry. 

In the cases of the conformal geometry and CR geometry on a man
ifold M, we may follow the analogy with the Riemann geometry and 
construct the bundle, say E 1, using the first order Ehresmann approach. 
However, it is a principal HI Hrbundle for a normal subgroup H1 of H. 
We have to enlarge E 1 to a principal H~bundle, say E. 

Our attempt to develop a general method to include the cases of 
Riemann, conformal, and CR as special cases was first outlined in [6] 
and completed in [7]. It is further developed by Y. Liu [8]. We con
structed the above E by applying the Cartan's method of prolongation 
to E 1. However, the traditional approach is to use 2-jets as was done, for 
example, in Kobayashi [5] and Ogiue [13]. Namely, E 1 may be naturally 
regarded as embedded in Jl, the space of the 1-jets of maps of G I H to 
M at a reference point e E G I H. We also have the space of 2-jets J2, 
and the projection p: J2 ----+ J 1. We construct a section E 1 ----+ J 2 • Then 
E is defined as the subspace of J2 consisting of the orbits of H-action 
passing points of the image of E 1 in J2. 

In this paper, we use the Ehresmann approach of the second order 
and constructE as a quotient space p-1(Et)----+ E with a commutative 
diagram: 

J1 +-- J2 

i i 
(3) E1 +-- p-1E1 

II l 
E1 +-- E 

When we construct a principal H-bundle, say E2 , so that E 1 +-- E2 C 

p-1 E 1 C J 2 • then the vertical downarrow in (3) will induce an iso
morphism E2 ----+ E. Therefore our frame bundle is isomorphic to the 
traditional one. 

Once the frame bundle is constructed, we work locally and find a 
Cartan connection by imposing conditions on the curvature form. In 
Kobayashi [5] this was done using the canonical_ forms of J 2 . We can 
adopt this method in our frame work. However, we used here a direct 
method using the definition of the Cartan connections. 

The curvature is valued in the Lie algebra g of G, which has the 
grading: g = g( _1) + g(o) + g(1). We designate a suitable subspace 



176 M. Kuranishi 

gn C g(o) + g(l). A Cartan connections on E is called normal when the 
cuvature takes value in gn. 

In our case the set of normal connections is a family of isomor
phic Cartan connections depending on one arbitrary function. It turns 
out that the Weyl tensor is independent of the connections in the fam
ily. Therefore we obtain a unique Weyl curvature form. However, to 
construct a Cartan connection globally we need to choose locally one 
connection from the above family in such a way they match up. We do 
this is this paper. 

In §1 we review the case of the homogenous conformal Riemann 
geometry. We write down several formulas which will be used later. In §2 
we construct the frame bundle and the normal Cartan connections along 
the line mentioned above in the case of conformal geometry. We also 
show that the g(1)-part of the normal Carlan connections are obtained 
using the conformal covariant derivative of Weyl tensor. In the end we 
construct a global normal conformal Cartan connection. 

The literature for the conformal connection is too numerous and 
very difficult to give a complete reference. As a result we listed only a 
few which we quoted in this paper. We beg perdon for the omission. 

The author is greately benefited by the discussions with Professor 
Keizo Yamaguchi. 

§1. The Homogeous Conformal Space 

We fix a nondegenerate m x m matrix 

(1) (hij), i,j=1, ... ,m. 

We consider the conformal euclidean geometry based on the metric on 
Rrn given by 

(2) (dx, dx) = Rij dxi dxi. 

A) Let Rrn+2 be the euclidean space with the standard chart: 

from which we remove the origin obtaining the punctured euclidean 
space :ftrn+2 • Dividing by the non-zero scalar mutiplication operation, 
we obtain the projective space 

(4) 

Denote by [eJ = [e0 , ... , ern+l] the homogenous coordinate of RPrn+t. 
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Consider the hypersurface cpm in RPm+1 given by 

(5.1) 

where 

(5.2) 

We embed Rm in cpm by 

(6) Rm 3 X--+ (1,x, ~(x,x)] E c:l?m. 

B) Rm itself is not the homogeous space. Its closure cpm is the 
homogenous conformal space, given as follows: 

Denote by G the subgroup of GL(R, m+2) consisting of all matrix g 
satisfying: 

(7) det g = 1, ¢(g(~)) = ¢(~). 

Let G be the subgroup of the projective transformation group 
induced by G. In view of (5.1) we find that G preseeves cpm and acts as 
a transformation group of cpm. 

We find that G decomposes to the product of the translation group 
and the isotropy group. Namely, 

(8) 

(9) 

G=L·H, 

L ~ { l(y) ~ G J. ;) . _ ( 1 'm)tr . Y- y , ... ,y ' 

where (y*)j = fljkyk, and H consists of matrixes of the form 

h ~ h(a,t,/3) ~ G "( J} (10) t where 
0 

dett = 1, tt* =I, (3 = ((3\ ... ,/3m)tr, 
(11) 

"fl = a(f3*t)z, 
b 1 
~ = 2 (/3' /3)' 

where (t*)j = fliklljztL and I is the identity m x m-matrix. It is conve
nient to consider a smaller group where a > 0. The Lie algebra g of G 
has the grading: 

(12) g = g(-1) + g(o) + g(1)• where, 
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(13.1) 

(13.2) 

(13.3) 

(13.4) 

(14) 
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{ . (d(l(sy))) . m} 
g(-1) = {Y}(-1) = ds s=O: y E R ' 

g(o) = R1r + {o(m)}, where fori E o(m) 

{t}=(dh(1,I+st,O)) , 7r=(dh(e8 ,J,O)) , 
ds s=O ds s=O 

-{{(3'} -(dh(1,I,s/J)) ·(3· Rm} g(1) - (1) - ds . E . 
s=O 

h = g(o) + g(1) is the Lie algebra of H. 

We find by calculation 

Ad(h-1){y}(_1) = {at*'!i}(-1)- a(y,(3)1r 

+ {at*y ® (3*t- at*(3 ® y*t} + {t*(by- a((3, y)f3)}(1)' 

(15) Ad(h-1)7r = 1r + {t*f3}cl) 

Ad(h-1){t} = {t*it} + {t*tf3}(1) 

Ad(h-1){/J}(l) = {a-1t*/J}cl)· 

In terms of the decomposition (8) the action of g E G on x E Rm C 

<I>m is given by 

(16.1) T9x=y+~(tx+~(x,x)f3), where 

(16.2) A = a ( 1 + (tx, (3) + ~ ((3, (3) (x, x)). 

We see now that G acts transitively on <I>m. 
We regard <I>m as a conformal Riemann manifold as follows: We 

consider a metric on 

(17) 

given by 

(18} 

For simplicity we set 

(19) 

We have a chart~= (c, x) on p-1 F given by 

(20) (~) = ( c, ex, ~c(x, x)). 
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Then we find that the metric on p-1 F induced by ds2 is 

(21) c2 (ds)p, where (ds)p = (dx,dx). 

In view of (7) the metric ds2 on <'[>m+l is invariant under the action of 
the matrix g. We find by (19), (16), and (10) that 

(22) (h~) = ( ch, chThx, ~ch (Thx, Thx)), ch = c>.. 

Hence h~ has the coordinate (ch, Thx). Then it follows by (19)-(20) that 
>.. 2 (dx, dx) = (Th dx, Th dx). Since Tl(y) is a translation, it follows that 

(23) 

We conclude that the action of G on ll>m is conformal. 
C) Denote by J6(F) the space of 2-jets at the reference point 0 of 

maps of neighborhoods of 0 E F into F. J6(F) has the standard chart 
(y, ... ,Pt .. )q' .. . ), where q :S p. If J E J6(Rm) is represented by a map 

f = ( p (X), · · . , jm (X)) 

(24) 

(25) 

y = f(O), 
oqf 

PJ.l J. (J) = . . (0) . ... q oxJl ... oxJq 

We find by calculation 

k 1 k 
Pj (Th) = -tj, 

a 

k ( ) - 1 (3k 1 ( k i k i )(3q ~~n --~~ --h~~~+~~ . a a 

We note that JJ(Th) gives informations on a, tin (10), and we need 
J6 to get (3. We note also that we reach (3 more quickly by using the 
conformal factor >..-2 of Th (cf. (23) and (16)), i.e. 

8>.. -1 k l 
(26) oxJ (0) = ahjk(t )l (3. 

E) In view of (9)-(10) the Maurer-Cartan form: 

(
(S1a)8 · · · (S1a)~ · · · (S1a)~+l) 

(27) Sla = (Sla )~ ... (Sla ){ ... (Sla )tn:j:1 

(S1a)~+l · ·. (S1a);;"+1 · · · (S1a):+i 

has the relations 

(S1a)8 + (S1a):!i = 0, (S1a);;"+1 = hkt(Sla)&, 

(28) (S1a)£ = hkl(Sla)~+1' hjl(Sla)~ + hkl(Sla); = 0, 

(S1a)~+1 = (S1a)~+ 1 = 0. 
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(29) 
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Since !10 = g-1 dg, we also find by (8)-(10) that 

(!1a)8 = dloga- a((J,dy), 

(no )i = a(t* dy )i = afl.ik fl.lit1 dy1, 

(na){ = (t*dt){ + a(t*dy)i((J*t)k- a(t*(J)i(dy*t)k 

= fl.j 1fl.iqti ( dt1 + all.prtf: ((Jr dyi - (Ji dyr))' 

( na )t,.+l = ( t* d(J)i + ( t* (J)i d log a + b( t* dy )i - a( t* (J)i ((3' dy) 

= fl.i1fl.kit1( d(Jk + (Jk( dlog a- a((J, dy)) + b dyk). 

We use WH ro denote the Maurer-Cartan form of H. We also set WH = 
h-1 dh. Since WH is obtained by setting dy ~ 0 in the above 

(wH)g = dloga, (wH)i = 0, (wH){ = (t*dt){ = fl.i1ll.iqt[ dti, 
(30) . . . "l . k k 

(wH);,+ 1 = (t*d(J)3 +(t*(J)Jd1oga=f1.3 fl.kiti(d(J +(3 dloga). 

Note that (!1a)8, ... , (na)i, ... , (na){ (j > k), ... , (na)t,.+1 form a base. 
The structure equations: 

(31) 

(r, s, t = 0, 1, ... ,m + 1) is rewritten, due to the reltion (28), as 
0 . k 

d(Oa)0 + fl.ik(na);,+l A (!1a)0 = o, 
. . . 0 k 

d(Oa)b + {(na)~- 8~(na)0 } A (!1a)0 = 0, 

(32) d(Oa){ + (na){ A (na)1 
j l l j -+ fl.kl{(na)o A (!1a)m+1- (Oa)o A (!1a)m+1}- 0, 

d(Oa)t,.+l + {(Oa){ + o{(na)8} A (Oa)~+l = o. 
When we regsard Oa as a 1-form valued in the Lie algebra g of 

G, the adjoint action of H transforms the components of Oa. In fact 
by (15) 

(Ad(h-1)!1a)b = a(t*);(na)i, 

(Ad(h-1)!1a)8 = (na)8- afl.ik(Ji(na)~, 

(Ad(h-1)!1a); = (t*)1t~(na)~ 
(33) + (a(t*)1(fJ*t)i- a(t*(J)it~f1.1k)(na)~, 

(Ad(h-1 )!1a)~+l = (t*);{ a-1(!1a)t,.+l + (J1(!1a){ + [Ji(na)8 

· l ( )k a ( ) ( )i} - a(J3 fuk(J na 0 + 2 (J, (3 na 0 . 



An Approach to the Cartan Geometry 181 

§2. Conformal Riemann Geometry 

We consider the conformal Riemann geometry on a manifold M 
based on a Riemann metric (ds2)M· We study the local aspect of the 
metric near a reference point, say P0 . Fix a chart x = (x1 , ... , xm) on a 
neighborhood of P0 , x(Po) = 0. We write 

(1) 

We assume that the matrix (gij(x)) is conjugate to h.ii given in §1 (1). 
As in §1 we denote by F the model conformal structure. We also use F to 
denote a neighborhood of 0 of the model structure. (ds)F = (dy, dy) = 
h.ii dyi dyi, where y is the standard chart of F. (h.ii) is the inverse matrix 
of (h.ij ). 

A) Let q = Qij(y)dyi dyi be a quadratic form. We set 

(2) trq = h.iiQij(y). 

Let f be a map ofF into M. 

Definition 1. We say that f is an attaching map of M at /(0) 
when there is a function c > 0 on F such that 

where 0( l) denotes terms in the ideal generated by yi1 • • • yiz. c will be 
called the conformal factor of the attaching map. When f satisfies the 
first equation in (3), we say that f is an attaching map of order 1. 

We claim that, for any attching map g of order 1 and for any linear 
form c = ClY1 in y, there is an attaching map f with the conformal factor 
c+eo such that the 1-jets off and g agree. The constant Co in the above 
is determined by g. Namely, for an unknown f we set 

(4) 

Then 

Hence the equation for f to be an attaching map as above is given by 

9kt(xo)pfp~ = co!J.ii' and with G1 = !J.ij 9kt(Xo)P~, 
(6) i k ij 8gkl k l 8 -

2GkPit +h. ays (xo)PiPjPt - mCt. 
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Since the matrix ( G}) is non-singular, our assertion follows easily. 
We say that attaching maps h, h at xo with the conformal factors 

c1, c2 are equivalent when 

(7) 

The equivalent classes of attaching maps will be called the frames 
of M. Denote byE the set of the frames of M. Let E 1 be the space of 
1-jets at 0 of attaching maps. Clearly we have the projection E........, E 1: 

(8) E 3 the class off........, jJJ E E 1, and 

(9) El = a+(the frame bundle of the metric (ds2)M ). 

Note by (6) that c0 is determined by the 1-jets information. Hence E is 
a manifold with a standard chart: 

(10) 

B) If f is an attaching map at xo, f o Th is also an attach
ing map at x 0 because Th is a conformal map of F. We denote by 
(the class of f) o Rh the above frame. Let the class off has the standard 
chart (x0 ,p}, c1, ... em)· Since the conformal factor off oTh is>. - 2coTh, 
we see by (23)-(26) §1, the class off o Th has the standard chart: 

(11) 
(xa,Pt~tj,c~, ... ,c~), where 

I _ -3 ·ti 2 -2 h tk(Jl _ hij ( ) k l cj- a Ci j- a CO-kl j , mea-_ gkl xo PiPj· 

We thus have the operation of HonE. In particular, Eisa principal 
H-bundle, where the Rh action of H in the standard chart is given by 
the above formula. 

C) We next discuss local trivializations of E. Let f(x) be a local 
section of E. Then the induced local trivialization of E is given by 

(12) F X H 3 (X' h) ........, f (X) 0 Rh. 

Denote by 

(13) (x, pj (x), c1 (x), ... , cm(x)) 

the standard chart of f(x). Then we see by (11) that in the standard 
chart the above local trivialization has the expression: 

(x,pt(x)~tj,cl,···,cm), where 

(14) Cj = a-3ci(x)t;- 2a-2ca(x)flk1tj(31, 
. . k l 

mca(x) = ll'1 gkz(x)pi (x)pj(x). 
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Let us change the local section f(x) to f#(x) = f(x) oRh(x)• inducing 
a new local chart (x, h#). We see by (12) that 

h = h(x)h#, (15) 

(16) a= a(x)a#, 
1 

t = t(x)t#, {3 = t(x)f3# + a#f3(x). 

D) It is known how to construct a unique Cartan connection locally 
on E. Nevertheless, we want to go over the construction, because we 
wish to take up the problem of constructing such Cartan connection 
globally. 

We fix a local trivialization of E induced by a local section f(x) 
of E. We work on the domain of the above section and call it M. We 
use the induced chart (x, h) of E. 

We first follow the analogy with the Riemann manifold and construct 
1-form OF onE valued in Rm =F. These are the first order coframes of 
the conformal structure. Namely, we note that E 1 is the space of 1-jets of 
the first order attaching maps. Hence they are linear maps T0 F --+ T M. 
Their dual may be regarded as F-valued 1-forms OF on E1. Composing 
with the projection E --+ Et, we thus have a well defined 1-form: OF 
onE. 

In terms of our chart (cf. (12) §1) 

(17.1) 0F=Ad(h-1 )wF, WF=( ... ,w~, ... ), ~=p-1 (x)idxk. 

When we set OF = (0~, ... , 0[!: ), 

(17.2) 

Note by (6) that 

( ... , w~, ... ) is a section of the 1-st order co frame bundle 
(17.3) 

of the metric \ ) (ds2)M. 
mco x 

E) A Cartan connection on M has the expression 

(18) 0 = Ad(h- 1 )w + h-1 dh, w is a g-valued 1-form on W. 

Note that we have the projection PF: g--+ g/h =F. By a Carlan 
connection of the conformal structure we mean a Cartan connection 0 
such that 

(19) 
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Hence the Cartan connections of F are of the form 

(20) 
n = Ad(h-1)(wF + WH) + h-l dh, 

where WH is an 1-form valued in h. 

To determine n we have to determine WH· We do this by using the 
curvature of n. 

F) The curvature form K of !1 is given by 

(21) K = dD + ~[D,D] = Ad(h-1)k, 
1 

where k=dw+ 2[w,w]. 

We set ( cf. (13) §1) 

(22.1) 

(22.2) 

WH = W1r1r + {wo} + {wh}(l), where 

W1r is R-valued, w0 = ((w0 )~) is o(m)-valued, 

Wh = (w~, ... , w~) is R=-valued. 

In the above, o(m) is with respect to the quadratic form (1) §1. In view 
of (32) §1 we then find that 

(23.1) k = {kF h-1) + k1r1r + {ko} + {kh}c1), where 
j_ j j j k 

kF- dwF + ((wo)k- w1r8k) 1\ wF, 

(23.2) 

. k 
k1r = dw1r + 111kwi, 1\ wF, 

. . . l . l . l 
(ko)i = d(wo)i + (wo)f 1\ (wah+ llk1 (w~ 1\ wh + wi,l\ wF), 

. . . . k 
ki, = dwi, + ((wo)i + w7r8i) 1\ wh, 

We note that, since w0 is o(m)-valued, k0 defined by the above formula 
is also o(m)-valued. 

G) We first examine the case when 

(24.1) K} = 0, K1r = 0, 

which is (by (15) §1 and (21)) equivalent to the conditions: 

(24.2) 

We set 

(25) 

We first write down the condition on w0 , W1r which is equivalent to 
the condition: kF = 0. In view of the formula for w~ in (17.1) we find 
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by calculation that 

. . k 
dw::,. + qJ. 1\ Wp = 0, where 

..J ..J l ..J - ( -l)j 8p{/ i 
'l.k = 'l.kzwp, 'l.kl- P ii 8xi Pz· 

(26) 

Therefore k~ = 0 if and only if we can find Ai1 (y) such that 

(27) 

Since h.jk(wo){ + h.ji(wo){ = 0, we can eliminate w0 in the above. We 
thus find that the condition (26) implies that 

(28) 
h.ikAiz + h.jzAL = Tkli, where 

rkli = -(h.jkqfi + h.jzq{i + 2h.kzw1ri)· 

As in the case of Riemann geometry, this equation has the unique solu
tion. Namely, 

(29) 

Therefore, it follows by (26) that 

. 1·. 1 .. k k 
(woH,z = 2(Qkz- qfk) + 2,h.mh.kk1 (qz/1 - qi:l) 

+ 1hjilh ( 11 h ) /jj + hjih 2- -lh qkj1 - qilk - l W1rk - -klW1ri• 

(30.1) 

We check by calculation that the above w0 is o(m)-valued. We thus 
find that for an arbitrary choice of W1r there is an unique w0 for which 
kp = 0. Recalling the construction of the Levi-Civita connections, in 
view of (17.3) we may rewrite (30.1) as 

(30.2) h H ji - hjih /jj/ji w ere lk -- -kl- l k· 

where ( wg){ is the o( m )-part of the Levi-Civita Cartan connection of 
the metric (1jc(x))(ds2)M· 

We see by (23.2) that k1r = 0 if and only if 

(31) 
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H) It remains to determine frjk(w~)l + frtk(w~)j. The formula for ko 
in (23.2) suggests that we may be able to obtain the above term using 
k0 and w0 • In fact, when we set 

(32) 

we find by calculation that 

(33) ((ko){)i! = wtil + ~(8{l!.kk1 w~~- 8{l!.kk1 w~~+ frktwt -l!.kiwht)· 

Therefore 

(34) 

In order to eliminate wf,_j in the above, we multiply l!.ki and add ink, i. 
We find 

(35) 

It then follows by calculation that 

A~~i1 f((ko){Jhj- wtli} = ~(1- m)l!.ktWhi> 

"l 0 l 1 "l A3k. = 83k8. + --hk·h3 
• • 1-m- • 

(36) 

Therefore we see that frktwJ.i + f!.ilwJ.k is determined by ko and W. The 
condition for k0 becomes simpler when we note as in the case of Riemann 
geometry that 

(37) 

The above follows by taking the exterior derivative of 0 = k~ in (23.2) 
and using the formulas in (23.2). In the end the terms containing wh 

cancel out. 
We impose the condition: 

(38) 

Since the above condition is equivalent to the condition: 

(39) ((Ko)])ki = 0, 

this is a well defined curvature condition. We find by (36) 

(40) h t +h t _ 2 Ak1i1{Wi +Wi } -klwhi -ilwhk- m _ 1 ki k1id i1kd · 
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Therefore it follows by (31) 

(41) 
I 1 1 k . . . 

llkzwhi = -(dw1r)ki + --Akf1 {Wk i 3· + Wf k 3·}. 2 m-1 11 11 

We conclude 

(42) Proposition. For an arbitrary 1-form W1r in (22.1) there is an 
unique conformal Cartan connection (20), (22) satisfying the conditions: 

Kp = 0, K1r = 0, ((Ko);)ki = 0. 

w0 and Wh of the connection is given by (30.2) and (41). 

The above connections will be called normal conformal Cartan con
nections. 

I) We next find an expression of the curvatures. For simplicity we 
set 

( 43) flkjW~z = W[kl) + W(kl), W[kl) = W[!k), W(kl) = -W(!k) · 

By (31) and (40) 

(44) (d ) 1 Ak1i1 {Wi + wi } W(kl) = W1r k!, W[kl] = m _ 1 kl k1id i 1 kd · 

We then find by (33) 

(45) ((ko){)i! = WL1 + ~(H/:o!- Hf:of)(w[stJ + W(st))· 

To calculate Wiw we see by (30.2) 

(46) 

Set 

(47) 
d( W1rk) = ( W1r[kl] + W1r(kl) )w~, 

W1r[kl) = W1r[lk], W1r(kl) = -w1r(lk) · 

Since dw1r = d(w1r1) 1\ w~ + w1ri dw}, we note by (44) that 

(48) W(kl) = W7r(lk)- W7ri~((wbz)k- (wbk)l- ofw7rk + O~W1rz). 
Therefore 

d(w~k) = d(wg{) + Ht~(w1r[ip] + W(pi))w~ 1\ w} 

( 49) + w1ri { Ht~ ~ ( ( wbz)p - w7rpof - ( wbp)z + w1rzo~) 
+ H/~(w7rpo~- (w~q)P) }w~ 1\ w}. 
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We also have by (30.2) 

j z "j "z {Hli ( "j) Hji( "l ) Woz 1\ Wok = Woz 1\ Wok + w1ri qk Woz P + pl Wok q 
(50) 

H jiHlm } p 1\ q + pl qk W1rm WF Wp· 

Hence by (32) we find that 

(51) 

. . 1 .. .. 
wzpq = Ripq + 2{H~~(w7r[ip] + W(pi))- H~~(w7r[iq] + W(qi))} 

Pij 
+ W1ri kpq' 

where Rfpqwf 1\ w'} is the curvature form of the metric (1/c(x))(ds2)M, 
and 

(52) 

Therefore we find by (45) that 

(53) ((ko)I)pq = Ripq + ~(H~~8~- H;~8~)(w[st] + W7r[stJ) + W1fip~~q· 
Summing in j = q in the above, we find by (38) 

(54) (Hj~8~- H~~8j)(w[st] + W7r[stj) = -2R{pj- 2w1fip~~j" 

It turns out by (32) that for an indeterminant Xst symmetric in s, t 

(55) Ykp = (HJ~8~- H~~8j)Xst = (2- m)Xkp -llkpllstXst· Hence 

Xst = K:fYkp, 

kp- 1 k p 1 1 kp 
where Kst - --8s8t + -( )( )hstfl . 2-m 2 m-1 m-2 

(56) 

Therefore we find that 

(57) ((ko){)pq = R{pq- (H~~8~- H~~8~)K:fR1li + w1fip~~q' where 

(58) 
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We find by calculation that 

(59) WrriPt~q = 0. Hence 

(60) ( (ko){)pq = R{pq - (Hi~8~- H~~8~)K:f Rkpr· 

Note that 

(Hjs 8t Hjs 8t)Ki1 X - 1 (Hjl X Hj 1 X ) qk p - pk q st il - m _ 2 pk lq - qk lp 

1 · · ·z 
+ (m- 1)(m- 2) (llqk8~- llpk8~)11" xil. 

(61) 

Then the formula (60) is rewritten as the classical formula for the Weyl 
tensor: 

(62) 
((ko){)pq = R{pq + ~2 (8~Rkq- 8~Rkp + flkqllj 1Rzp 

m-

- flkpflj 1Rzq) + (m _ 1~m _ 2) (8~flkq- 8~f1_kP), where 

(63) Rkz = R{1j, R = f1_k1Rkl· 

(cf. formula (28.12) Chapter 2, Eisenhart [4], where the chart coframe 
dxJ is used. We used the orthonormal coframe w~.) 

J) There is an a priori ground why the cancelation (59) takes place. 
This is a reflection of the fact that for normal conformal connections 
we have krr = 0. In fact, for arbitrary Rm-valued function (3(x) let us 
consider a Cartan connection _0_ given, by 

(64) JQ(x) = Ad(h(1,I,(3(x))- 1 )w(x). 

in (18). We see by (15) §1 

(65) 

By (21) the new curvature is given by 

(66) k(x) = Ad(h(1, I, (J(x))- 1 )k(x). 

We find by (15) §1 that this is a conformal Cartan connection and 

(67) Err= krr = 0, k_0 (x) = ko(x), Eh = kh + kof3(x). 

Therefore n is a normal connection. When Wrr = 0, we see by (53) 
that the formula for k0 is given by (60). We see by the above, when 
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W1r = flijf3i(x)w}(x), the formula for k0 is still given by (60). This 
means that (59) must be true. 

The above formula also prove the followings: Let k.h ( x) be the 
g(1)-part of the curvature form when 1J2.1r = 0. Then 

(68) 

(69) Proposition. 
isomorphic. 

Any two normal conformal Cartan connections are 

K) We next write down the expression of kh· In view of (68) it is 
enough to consider the case W1r = 0. We then find by (41) and (36) that 

"th j j k w1 wh = whkwF 

(70) 

i - 1 hiiApq(Wr wr ) whk - --1- ik pqr + qpr m-

- 1 hjp(wr + wr ) 2 8jhpqwr - --- pkr kpr - ( )2 k- pqr· m-1 m-1 

Since w1r[ip] = 0 by (47) and w(ip) = 0 by (44) when W1r = 0 we see 
by (51) 

(71) 

Therefore we find 

(72) j - 2 ( jl 1 j ) k wh - -- fl Rzk - --8kR Wp. 
m-1 m-1 

It then follows by (23.2) and (68) 

(73) 
k~ = m ~ 1 {llj1(dRzk- Rzi(wo)1) + flr1Rzk(wo)t 

We can also express k~ by k0 and its derivatives, provided m > 3. 
By (21) (or by calculation) we find by (23.2) that 

(74) d(ko){ = (ko)f 1\ (wo)~- (wo)f 1\ (ko)~ + flk1 (k~ 1\ w~- w~ 1\ ki.). 

Noting that for a = OOjk'"Yj 1\ '"Yk with OOjk = -akj and f3 = f3n 1 

(75) 1 . k l 
a/\{3 = 3(ajkf3z +akzf3j +azjf3khJ /\'"'( 1\"f, 
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we find by (38) that 

(76) 

Therefore 

(77) (3- m)k~- 2(kf.)pjw'fc 1\ w},. = dkb, where 

(dkb)pqw'fc 1\ wj., = l!i1{3((dko)f)pqjw'fc 1\ wj.,- ((wo)l)j(ko)~ 
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(78) 
+ ((wo)~)j(ko)l + 2(wo)~ 1\ ((ko)l)pjwf;,}. 

We then conclude that 

(79) k~ = - 1-{dkb + - 1-(dkb)Piw'fc 1\ w}..}. 
3-m 2-m 

For future use we rewrite the formula for dkb in (78). We set, with 
the proper symmetry, ko = (k~)ijW},. 1\ w~, dko = (dko)ijlw} 1\ w~ 1\ w~, 
df = (df)iw} for a function f. Then 

(80) 

3(dko)ijl = (d(ko)jl)i + (d(ko)zi)j + (d(ko)ij)l + (ko)ir(w~1 )j 

- (ko)ir(w~j)l + (ko)jr(w~i)l- (ko)jr(W~z)i 

+ (ko)zr(w~j)i- (ko)zr(w~i)j 

+ 2{(ko)ij(w1r)l + (ko)jz(w?r)i + (ko)li(w?r)j}· 

Therefore by (38) 

3(dkbi)pql = (d(kbi)pq)l + (kbi)pr(w~z)q- (kbi)pr(w~q)l 

+ (kbi)qr(w~p)l- (kbi)qr(w~z)p + 2(kbi)pq(w1r)z. 
(81) 

We then find by (78) 

l!il dkb = (d(kbi)pq)zw'fc 1\ wp- (w~i)z(ko)~ + (wbz)j(ko)~ 
(82) 

+ 2(w~p)zw'fc 1\ (kbi)qrWp + 2(w1l")zkbi· 

J) We will show that kh is also obtained by the conformal covari
ant derivatives of K 0 . We first recall the definitions. This is valid for 
any principal H-bundle E with a Cartan connection 0 (18) given in 
terms of a local trivialization of E. We are considering any homogenous 
space GjH. 



192 M. Kuranishi 

Consider a curve ft = (xt, ht) in E. We denote its tangent vectors 

ft by 

(83) (±t, ht) where Xt = dxjdt, ht+< = ht(I + Eht) 

(mod. E2 ). ht is h-valued. Let fl(ft) be the evaluation of f2 at ft. Then 

(84) 

ft is called the parallel displacement of f0 over the curve x(t) in M when 

(85) 

Clearly, given x(t) and f0 there is an unique parallel displacement. 
Namely, ht is obtained by solving the ordinary differential equation: 

(86) 

Let ft be a parallel displacement and h 1 be a fixed element in H. 
Then Rh 1 f is also a parallel displacement. Hence it is enough to consider 
the case: f0 = (x0 , I). 

Let Xt be a vector field along the curve ft. When we express Xt = 
. . 1 . 

(Xt, c/Jt) with cPt E has in (83), fl(Xt) = Ad((ht)- )w(xt, dx(Xt)) + cPt· 
We say that Xt is the parallel displacement of X0 along ft when for all t 

(87) 

This means that Xt is determined by the equation: 

(88.1) 
Pg/h Ad((ht)-1 )wF(xt, dx(Xt)) 

= Pg/h Ad((ho)- 1 )wF(xo, dx(Xo)), 

and J;t is determined by the equation: 
(88.2) 

Ad((ht)- 1 )wH(xt, dx(Xt)) +Ph Ad((ht)- 1 )wF(Xt, dx(Xt)) + ¢t 

= Ad((ho)- 1 )wH(xo, dx(Xo)) +Ph Ad((ho)- 1 )wF(xo, dx(Xo)) + ¢o. 

Let V = (V,~) be a vector field onE, where V = VJ(x,h)8/8xJ, 
~ = ~(x, h) E h. Pick a tangent vector ±o of M at xo and fo E E 
over x 0 . By a conformal covariant derivative at f0 of V to the direction 
±0 is defined as follows: Take a curve Xt in M such that the tangent 
vector at t = 0 is ±0 . Let ft be the parallel displacement of f0 and Vt be 
the parallel displacement of Vr0 along ft. Then 

(89) 
. 1 

V±o Vro = hm -(Vr,- Vt)· 
t---;0 t 
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Let 8 be a differential g-form on E. For a vector field X on E 
we define the covariant derivative \j x8 of T by X as follows: For any 
vector fields V1, ... , V9 

(90) 
Vx8(Vl, ... , V9 ) = X(8(Vt. ... , V9 ))- 8(\JxVt. ... , V9 ) 

- · · ·- 8(Vt. ... , \lxV9 ). 

Let e'Y be a base of g. Set 0 = 07e"~. Denote by ... , W"~, ... the 
base of vector fields dual to ... , 0 7 , .•.. For any parallel displacement ft 
of a frame we see clearly (W7 )r, is the parallel displacement of (W7 )r0 

along ft. Therefore for any vector field X 

(91) 

We now consider the case of a normal conformal Cartan connection. 
We set K 0 = P(o) Ad(h- 1)k0 , where P(o) is the projection to the degree 
0 part of the grading (12) §1, and calculate \Jw1K 0 . We have by (15) §1 

(92) w~ = (p- 1 ){(x)dxk, w~(x,dx(Wj)) = a-1 t~, 

where 

(93.2) 

(93.3) 

Wz1r(x, h)= ll.krt~{3r- W11"i(x)a- 1tf, 

Ww(x, h) = t* (f3 ® (tz)* - tz ® {3* - a-1tf( wo)i(x) )t, 

with tz = (tL ... , ti). 

The above means that as differential operators 

(93.4) 

(93.5) 

We then find that 

(94) Ko(Wp, Wq) = ~a-2 (t~t~- t~t;)t*(ko)jrt. 

By calculation we now find by (82) and (91) that 

(95) 
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K) The normal conformal Cartan connections, defined locally, 
depend on arbitrary functions w1r· They determine a unique class up 
to local isomorphism. In order to define globally a normal conformal 
Cartan connection, we have to choose W1r for each local trivialization of 
the conformal frame bundle in such a way that they match up on the 
intersections on the domains of trivializations. 

Let (x, fl.) be a local trivialization. Then for a h-valued function 
h(x) we have 

(96) h = h(x)fl. 

For a normal conformal Cartan connection 0 we have two expressions: 

(97) 0 = Ad(h-1 )w + h-1 dh = Ad(fl.-1 )!!!. + fl.- 1 dfl. 

Therefore we find by (15) §1 and (30) §1 

(98.1) 

(98.2) 

!!!.~ = a(x)t*(x)}w1,(x), 

!!i.1r(x) = w11"(x)- a(x)fljkf3(x)kwi(x) + dloga(x), 

where as in (10) §1 we set h(x) = h(a(x),t(x),{3(x)). 
To find such W1r as above we recall that our chart (x, h) is induced by 

a section f(x) = (x,p~(x), c1 (x), ... , c.n(x)) (cf. (12)-(13)) of the frame 

bundle. We also have eo(x) = flij9kz(x)pf(x)p;(x). The chart (x,fl) 
is induced by f(x) = Rh(x)f(x) (x,E~(x),fh(x), ... ,fm(x)). Hence 

by (11) 

() 1 l) ( 2 i l 
fj x = a(x)3 tj(x cz x)- a(x)2 fliltj(x)f3 (x)co(x), 

1 
fo = a(x)2 eo(x). 

(99) 

We then find by (98.1) that 

(100) 

obeys the transformation law (98). When the above W1r is chosen we call 
it the global normal conformal Cartan connection. 
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