The Moduli Space of Curves of Genus 4 and Deligne-Mostow's Complex Reflection Groups

Shigeyuki Kondō

§1. Introduction

In this note we shall show that the moduli space of curves of genus 4 is birational to an arithmetic quotient of the 9 -dimensional complex ball and that the arithmetic subgroup is commensurable with one of Deligne-Mostow's complex reflection groups related to hypergeometric functions. Let C be a non-hyperelliptic curve of genus 4 . Then its canonical model is the intersection of a quadric Q and a cubic S in \mathbf{P}^{3}. Let X be the minimal resolution of the triple cover of Q branced along C which is a $K 3$ surface with an automorphism σ of order 3. The period domain of the pairs (X, σ) is a 9 -dimensional complex ball \mathcal{B}. This gives an isomorphism between the moduli space of non-hyperelliptic curves of genus 4 and an arithmetic quotient $(\mathcal{B} \backslash \mathcal{H}) / \Gamma$ where \mathcal{H} is the union of hyperplanes of \mathcal{B} and Γ is an arithmetic subgroup of $\operatorname{Aut}(\mathcal{B})$ (§2, Theorem 1). We remark that \mathcal{H} consists of two components \mathcal{H}_{n} and \mathcal{H}_{h} so that a generic point of \mathcal{H}_{n} (resp. \mathcal{H}_{h}) corresponds to a curve of genus 4 with a node (resp. a hyperelliptic curve of genus 4 plus a point on the quotient of the hyperelliptic curve by the hyperelliptic involution) ($\S 3$, Theorem 2). The method works in some other cases, for example, the moduli space of universal curves of genus 2, 3 or del Pezzo surfaces of degree 1-4 (see Remarks 1-6).

The above $K 3$ surface X has the structure of an elliptic fibration $\pi: X \longrightarrow \mathbf{P}^{1}$ which is induced from a ruling on Q. The automorphism σ acts on each fiber of π as an automorphism of order 3 , and hence the functional invariant of π is constant. Moreover, for a generic X, this fibration has twelve singular fibers of type $I I$ in the sense of Kodaira [Ko],

[^0]and hence this fibration gives twelve points on \mathbf{P}^{1}. This suggests a relation between Γ and Deligne-Mostow's complex reflection groups [DM], [M1], [M2]. In fact, in §4, Theorem 3, we shall show that our group Γ is commensurable with the largest Γ_{μ} in Deligne-Mostow's list where
$$
\mu=\left(\mu_{i}\right)=\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)
$$
(No. 1 in Deligne-Mostow's list [M2] and No. 10 in Thurston's list [T]).
In [K2], we showed that the moduli space of curves of genus three is also birational to an arithmetic quotient of the 6 -dimensional complex ball. In this case we take the 4 -cyclic cover of \mathbf{P}^{2} branched along a smooth plane quartic curve. Then we have a $K 3$ surface with an automorphism of order 4. However this arithmetic subgroup does not appear in Deligne-Mostow's list (the corresponding $K 3$ surface has no elliptic fibration invariant under the automorphism of order 4). We remark that the moduli space of curves of hyperelliptic curves of genus 3 or plane quartic curves with a node is birational to an arithmetic quotient of the 5-dimensional complex ball ($[\mathrm{K} 2], \S 4,5$). Both of these arithmetic subgroups are commensurable with the group Γ_{μ} where
$$
\mu=\left(\mu_{i}\right)=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)
$$
(No. 8 in Deligne-Mostow's list [M2] and No. 3 in Thurston's list [T]).
For recent works related to this paper, we refer the reader to Allcock, Carlson, Toledo [ACT1], [ACT2], van Geemen, Izadi [vG], [vGI], Heckman, Looijenga [HL], Vakil [V].

In this paper we shall use the following notation: A lattice L is a free Z-module of finite rank endowed with an integral non-degenerate symmetric bilinear form \langle,$\rangle . A lattice L$ is even if $\langle x, x\rangle$ is even for each $x \in L$, and unimodular if its discriminant is ± 1. For a lattice L, we denote by L^{*} the dual of L, and by A_{L} the quotient group L^{*} / L. Let L be an even lattice. We extend the bilinear form on L to the one on L^{*} and define

$$
q_{L}: A_{L} \longrightarrow \mathbf{Q} / 2 \mathbf{Z}, \quad q_{L}(x+L)=\langle x, x\rangle+2 \mathbf{Z}, \quad\left(x \in L^{*}\right)
$$

which is called the discriminant quadratic form. We denote by A_{m}, D_{n}, $E_{k}(m \geq 1, n \geq 4, k=6,7,8)$ the negative definite lattice which is defined by the Cartan matrix of type A_{m}, D_{n}, E_{k} respectively. We also denote by U the lattice of signature $(1,1)$ defined by the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

For a lattice L and an integer $m, L(m)$ is the lattice whose bilinear form is the one on L multiplied by m.

Acknowledgement. The author would like to thank Daniel Allcock, Igor Dolgachev and Tomohide Terasoma for valuable conversations. He also would like to thank the referee for useful suggestions.

§2. A ball quotient structure

In this section, we shall show that the moduli space of curves of genus 4 is birational to an arithmetic quotient of a 9 -dimensional complex ball by using the periods of $K 3$ surfaces with an automorphism of order 3 .

Let C be a smooth non-hyperelliptic curve of genus 4 . First we assume that C has no vanishing theta constants. Then its canonical model is the complete intersection of a smooth quadric Q and a cubic S in \mathbf{P}^{3}. Let X be the 3 -cyclic cover of Q branched along C which is a $K 3$ surface with an automorphism σ of order 3 . We denote by L the second cohomology group $H^{2}(X, \mathbf{Z})$. Together with the cup product, L has the structure of a lattice which is even, unimodular and of signature $(3,19)$. Let E (resp. F) be the inverse image of a general fiber of one of the rulings of Q (resp. another ruling of Q). Then E, F are smooth elliptic curves with $\langle E, F\rangle=3$. Since σ has a fixed curve, σ acts on $H^{0}\left(X, \Omega_{X}^{2}\right)$ as a multiplication by a cube root ω of unity (Nikulin [N2], §5). We remark that $U(3)=H^{2}(X, \mathbf{Z})^{\langle\sigma\rangle}$. We have a 9-dimensional family of $K 3$ surfaces with an automorphism of order 3 . The transcendental lattice of a generic member of this family has rank 20 (see the definition of the period domain \mathcal{B} in this section). Hence if C is generic, then the Picard lattice S_{X} of X is generated by E and F, and isometric to $U(3)$.

Next we consider the case that C has a vanishing theta constant. Then its canonical model is the complete intersection of a quadric cone Q^{\prime} and a cubic S. By taking the minimal resolution of the triple covering of Q^{\prime} branched along C, we have a $K 3$ surface X^{\prime} with an automorphism σ of order 3. Let R_{1}, R_{2}, R_{3} be three smooth rational curves obtained by resolution of three rational double points of type A_{1} of the triple cover of Q^{\prime}. Let F be the pull back of a fiber of the ruling of Q^{\prime}. Then F and $R_{1}+R_{2}+R_{3}$ generate the invariant part $H^{2}\left(X^{\prime}, \mathbf{Z}\right)^{\langle\sigma\rangle}$ which is isomorphic to $U(3)$. For generic C with a vanishing theta constant, the Picard lattice of X^{\prime} is generated by F, R_{1}, R_{2}, R_{3} and isomorphic to $U \oplus A_{2}(2)$. By a result of Brieskorn $[\mathrm{B}],\left(X^{\prime}, \sigma\right)$ is a deformation of (X, σ). Thus the action of σ on the cohomology group does not depend on the condition whether C has a vanishing theta constant or not. It is
known that σ^{*} fixes no non-zero vectors in $T \otimes \mathbf{Q}$ (Nikulin [N2], Theorem 3.1).

Let

$$
T=U(3) \oplus U \oplus E_{8} \oplus E_{8}
$$

which is isometric to the orthogonal complement of $H^{2}(X, \mathbf{Z})^{\langle\sigma\rangle}(\simeq$ $U(3)$) in L. Let e, f (resp. e^{\prime}, f^{\prime}) be a basis of $U(3)$ (resp. U) with $e^{2}=f^{2}=0,\langle e, f\rangle=3\left(\right.$ resp. $\left.\left(e^{\prime}\right)^{2}=\left(f^{\prime}\right)^{2}=0,\left\langle e^{\prime}, f^{\prime}\right\rangle=1\right)$. Let ρ_{1} be an isometry of $U(3) \oplus U$ defined by

$$
\begin{aligned}
& \rho_{1}(e)=-2 e+3 e^{\prime}, \quad \rho_{1}(f)=f+3 f^{\prime} \\
& \rho_{1}\left(e^{\prime}\right)=-e+e^{\prime}, \quad \rho_{1}\left(f^{\prime}\right)=-f-2 f^{\prime}
\end{aligned}
$$

Note that ρ_{1} is of order 3 , has no non-zero fixed vectors in $U(3) \oplus U$ and acts on the discriminat of $U(3) \oplus U$ trivially. On the other hand, it is known that the root lattice E_{8} can be regarded as a complex lattice defined over the Eisenstein integers (Allcock [A], §5). In other words, there exists an isometry ρ_{2} on E_{8} of order 3 which has no non-zero fixed vectors in E_{8}. We denote by ρ the isometry of $T=U(3) \oplus U \oplus E_{8} \oplus E_{8}$ defined by

$$
\rho=\left(\rho_{1}, \rho_{2}, \rho_{2}\right)
$$

Note that ρ has order 3 and has no non-zero fixed vectors. Since ρ acts on T^{*} / T trivially, it can be extended to an isometry of $L=U \oplus U \oplus U \oplus$ $E_{8} \oplus E_{8}$ which acts on the orthogonal complement $U(3)$ of T trivially. For simplicity, we also denote by the same ρ this isometry of L.

Now we shall define the period domain for the above $K 3$ surfaces. Let X be a $K 3$ surface with an automorphism σ of order 3 of above type. A marking of the pair (X, σ) is an isometry

$$
\alpha_{X}: H^{2}(X, \mathbf{Z}) \longrightarrow L
$$

with $\alpha_{X} \circ \sigma^{*} \circ \alpha_{X}^{-1}=\rho$ or ρ^{-1}. In the proof of Theorem 1, we shall show the existence of a marking for each pair. (Note that to prove the existence of a marking, it is enough to show this for some pair (X, σ) because our 9-dimensional family of $K 3$ surfaces is irreducible). Let

$$
T \otimes \mathbf{C}=T_{\omega} \oplus T_{\bar{\omega}}
$$

be the decomposition into eigenspaces $T_{\omega}, T_{\bar{\omega}}$ of ρ with eigenvalues $\omega, \dot{\bar{\omega}}$ respectively. Put

$$
\mathcal{B}=\left\{z \in \mathbf{P}\left(T_{\omega}\right):\langle z, \bar{z}\rangle>0\right\}, \quad \Gamma=\{\phi \in O(T): \phi \circ \rho=\rho \circ \phi\}
$$

Note that \mathcal{B} is a bounded symmetric domian of type $I_{1,9}$, that is, a 9-dimensional complex ball. Also note that if $z \in \mathcal{B}$, then $\langle z, z\rangle=0$. Hence \mathcal{B} is contained in a 18 -dimensional bounded symmetric domain \mathcal{D} of type $I V$:

$$
\mathcal{D}=\{z \in \mathbf{P}(T \otimes \mathbf{C}):\langle z, z\rangle=0,\langle z, \bar{z}\rangle>0\}
$$

We call a vector r in T with $r^{2}=-2$ a root. For a root r, we define

$$
H_{r}=\{\omega \in \mathcal{B}:\langle r, \omega\rangle=0\}, \quad \mathcal{H}=\bigcup_{r} H_{r}
$$

where r varies over the set of all roots. It is known that for each X with an automorphism of order $3,\left(H^{2}(X, \mathbf{Z})^{<\sigma^{*}>}\right)^{\perp} \cap S_{X}$ contains no (-2)vectors (Namikawa [Na], Theorem 3.10). Hence a marked $K 3$ surface $\left(X, \sigma, \alpha_{X}\right)$ of above type determines the point $\alpha_{X}\left(\omega_{X}\right)$ in $\mathcal{B} \backslash \mathcal{H}$ where ω_{X} is a nowhere vanishing holomorphic 2-form on X. Thus $\mathcal{B} \backslash \mathcal{H}$ is the period domian of marked $K 3$ surfaces of above type.

We remark that the natural map from $O(U(3))$ to $O\left(q_{U(3)}\right)$ is surjective. In fact $O\left(q_{U(3)}\right)$ is isomorphic to $(\mathbf{Z} / 2 \mathbf{Z})^{2}$. The following isometries of $U(3)$ induce generators of $O\left(q_{U(3)}\right)$: let e, f be a basis of $U(3)$ with $e^{2}=f^{2}=0,\langle e, f\rangle=3$. Then, with respect to this basis, the involutions

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

generate $O\left(q_{U(3)}\right)$. This implies that the restriction map from $O(L)$ to $O(T)$ is surjective (Nikulin [N1] Proposition 1.6.1). Since $\rho \mid U(3)=1$, we can easily see that the natural map from

$$
\tilde{\Gamma}=\{\gamma \in O(L): \gamma \circ \rho=\rho \circ \gamma\}
$$

to Γ is surjective.
Theorem 1. $(\mathcal{B} \backslash \mathcal{H}) / \Gamma$ is isomorphic to the moduli space of nonhyperelliptic curves of genus 4 .

Proof. Let $z \in \mathcal{B}(\subset \mathcal{D})$. It follows from the surjectivity of the period map (Kulikov [Ku], Persson, Pinkham [PP]) that there exist a $K 3$ surface X and an isometry

$$
\alpha_{X}: H^{2}(X, \mathbf{Z}) \longrightarrow L
$$

with $\alpha_{X}\left(\omega_{X}\right)=z$ where ω_{X} is a nowhere vanishing holomorphic 2-form on X.

In the following, we shall show that if $z \in \mathcal{B} \backslash \mathcal{H}$, then X has an automorphism σ with $\alpha_{X} \circ \sigma^{*} \circ \alpha_{X}^{-1}=\rho$, and X is obtained as a 3-cyclic cover of Q or Q^{\prime} branched along a smooth curve C of genus 4 where Q is a smooth quadric and Q^{\prime} is a quadric cone. We may identify $H^{2}(X, \mathbf{Z})$ with L by α_{X}.

First we remark that by the assumption $z \notin \mathcal{H},\left(L^{\langle\rho\rangle}\right)^{\perp} \cap z^{\perp}$ contains no roots. Hence ρ is induced from an automorphism σ of X of order 3 (Namikawa [Na], Theorem 3.10). Since σ acts on $H^{0}\left(X, \Omega_{X}^{2}\right)$ as a multiplication by ω, it acts on the tangent space of a fixed point as

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & \omega
\end{array}\right), \quad\left(\begin{array}{cc}
\omega^{2} & 0 \\
0 & \omega^{2}
\end{array}\right)
$$

Hence the fixed locus of σ consists of the disjoint union of smooth curves and isolated fixed points. Note that the trace of ρ on L is -8 . It follows from the topological Lefschetz fixed point formula that σ fixes a smooth curve C of genus $g(C)>1$. Then by the Hodge index theorem, C is a unique fixed curve with $g(C)>0$. On the other hand, $L^{\langle\rho\rangle}=U(3)$ contains no (-2)-vectors, σ has only one fixed curve C. Let k be the number of isolated fixed points of σ. Then by the topological Lefschetz fixed point formula, we have

$$
k+2-2 g(C)=-6
$$

This implies $g(C) \geq 4$. Let $\{e, f\}$ be a basis of $L^{\langle\rho\rangle}=U(3)$ with $e^{2}=f^{2}=0,\langle e, f\rangle=3$. By the Riemann-Roch theorem, we may assume that both e and f are effective.

Claim. Either e or f is nef.
Proof of Claim. Assume that e is not nef. Then there exists a smooth rational curve R with $\langle R, e\rangle<0$. Since $L^{\langle\rho\rangle}$ contains no (-2)vectors, $R=r^{\prime}+r^{\prime \prime}$ where $r^{\prime} \in U(3)^{*}$ and $r^{\prime \prime} \in\left(U(3)^{\perp}\right)^{*}, r^{\prime \prime} \neq 0$. Since $\left(L^{\langle\rho\rangle}\right)^{\perp} \cap z^{\perp}$ is negative definite, $\left(r^{\prime \prime}\right)^{2}<0$. Put $r^{\prime}=(m e+n f) / 3$ $(m, n \in \mathbf{Z})$. Since $\langle R, e\rangle<0, n<0$. If $m \leq 0$, then r^{\prime} is not effective because we assume that e and f are effective. This contradicts the fact that $3 r^{\prime}=R+\sigma(R)+\sigma^{2}(R)$ is effective. Hence $m>0$. By the equation $-2=2 m n / 3+\left(r^{\prime \prime}\right)^{2}$ and $\left(r^{\prime \prime}\right)^{2}<0$, we have $(m, n)=$ $(1,-1),(1,-2),(2,-1)$. In the last two cases, we have $\left(3 r^{\prime}\right)^{2}=(R+$ $\left.\sigma(R)+\sigma^{2}(R)\right)^{2}=-12$. On the other hand, $R^{2}=-2$ and $R \neq \sigma(R)$, and hence $\left(R+\sigma(R)+\sigma^{2}(R)\right)^{2} \geq-6$. This is a contradiction. Thus $(m, n)=(1,-1)$ and $e-f=3 r^{\prime}$ is effective. On the other hand, if f is not nef, the same argument shows that $f-e$ is effective. This is a contradiction. Hence we have proved the assertion. Q.E.D. for Claim.

Thus we may assume that e is nef, in other words, it gives an elliptic fibration

$$
\pi: X \longrightarrow \mathbf{P}^{1}
$$

Let E be a general fiber of π. Let $C=a e+b f$. Then $6 a b=C^{2}=$ $2 g(C)-2 \geq 6$. If $b>1$, then $C \cdot E \geq 6$. Since C is the fixed curve of σ, σ acts on the base of π trivially. Hence σ acts on E as an automorphism. Now by applying the Hurwitz formula to the pair (E, σ), we have a contradiction. Hence $b=1$. Thus we have the following two cases:

Case 1. f is nef.
Case 2. f is not nef.
In Case $1, a=b=1, g(C)=4$ and $k=0$. By taking the quotient of X by σ, we have a smooth quadric surface $X /\langle\sigma\rangle$.

In Case 2, there exists a smooth rational curve R so that $\langle R, f\rangle<0$. Since $U(3)$ contains no (-2)-vectors, R is not contained in $U(3)$. Let $R_{1}=\sigma(R), R_{2}=\sigma^{2}(R)$. Then $R+R_{1}+R_{2} \in U(3)$. By the same argument as in the proof of the claim, $R+R_{1}+R_{2}=-e+f$. Hence $\left\langle R, R_{1}\right\rangle=0$. Since C is the fixed locus of $\sigma,\langle C, R\rangle=0$. Hence $a=b=1$, $g(C)=4$ and $k=0$. Now by taking the quotient by σ and contracting the (-2 -curve which is the image of R, R_{1}, R_{2}, we have a quadric cone.

Finally we shall show that the isomorphism class of C is uniquely determined by its image in $(\mathcal{B} \backslash \mathcal{H}) / \Gamma$. Let C and C^{\prime} be non-hyperelliptic curves of genus 4 . Let $(X, \sigma),\left(X^{\prime}, \sigma^{\prime}\right)$ be the corresponding $K 3$ surfaces with automorphisms σ, σ^{\prime} of order 3. Assume that their periods are the same in $(\mathcal{B} \backslash \mathcal{H}) / \Gamma$. Since the natural map $\tilde{\Gamma} \longrightarrow \Gamma$ is surjective, there exists a Hodge isometry

$$
\varphi: H^{2}(X, \mathbf{Z}) \longrightarrow H^{2}\left(X^{\prime}, \mathbf{Z}\right)
$$

with $\varphi \circ \sigma^{*}=\left(\sigma^{\prime}\right)^{*} \circ \varphi$. Since $\left(H^{2}(X, \mathbf{Z})^{<\sigma^{*}>}\right)^{\perp} \cap S_{X}$ contains no (-2)vectors, C is an ample class. Obviously $\varphi(C)=C^{\prime}$. It now follows from the Torelli theorem for $K 3$ surfaces (Piatetskii-Shapiro, Shafarevich [PS]) that there exists an isomorphism $f: X^{\prime} \longrightarrow X$ with $f^{*}=\varphi$ and $f \circ \sigma^{\prime}=\sigma \circ f$. By taking the quotient of X, X^{\prime} by σ, σ^{\prime} respectively, f induces an isomorphism between the canonical models of C and C^{\prime}. Q.E.D.

Remark 1. The following was suggested by I. Dolgachev. In the same way as above, we can see that the moduli spaces $\mathcal{M}_{2,1}, \mathcal{M}_{3,1}$ of pointed curves of genus 2 and 3 have a ball quotient structure. Let (C, q) be a pair of a smooth curve of genus 2 (resp. genus 3) and $q \in C$. Then the linear system $\left|K_{C}+2 q\right|$ gives a plane quartic curve \bar{C} with a cusp (resp. a curve \bar{C} of bidegree (3,3) with a cusp in a smooth quadric Q).

By taking the 4-cyclic cover of \mathbf{P}^{2} (resp. the triple cover of Q) branched along \bar{C} and then by taking the minimal resolution of rational double point, we have a $K 3$ surface with an automorphism of order 4 (resp. order 3). This correspondence gives a birational map from $\mathcal{M}_{2,1}$ (resp. $\mathcal{M}_{3,1}$) to an arithmetic quotient of 4-dimensional complex ball (resp. 7dimensional complex ball). In case $\mathcal{M}_{2,1}$, the Picard lattice of a generic member X is isomorphic to $U \oplus D_{4} \oplus D_{4} \oplus A_{1}^{2}$. The pencil of lines on \mathbf{P}^{2} through q induces an elliptic pencil of X with one singular fibers of type I_{0}^{*} and six singular fibers of type $I I I$. In case $\mathcal{M}_{3,1}$, the Picard lattice of a generic member Y is isomorphic to $U(3) \oplus D_{4}$, and a ruling of Q induces an elliptic pencil on Y which has one singular fiber of type I_{0}^{*} and 9 singular fibers of type $I I$.

Remark 2. Let C be a plane quartic curve and let q be a flex. Then by considering the map $\left|K_{C}+2 q\right|$ as above, we can see that the moduli space $\mathcal{M}_{3, \text { flex }}$ of plane quartic curves with a flex is birational to an arithmetic quotient of the 6 -dimensional complex ball. Let X be a generic $K 3$ surface appearing in this family. Then its transcendental lattice, together with an automorphism of order 3, has the structure of a complex lattice defined over the Eisenstein integers $\mathbf{Z}[\omega]$. On the other hand, in [K2], we showed that the moduli space \mathcal{M}_{3} of curves of genus 3 is birational to an arithmetic quotient of the 6 -dimensional complex ball by taking the 4 -cyclic cover of \mathbf{P}^{2} branched along a plane quartic curve. In this case, the transcendental lattice, together with an automorphism of order 4 , has the structure of a complex lattice defined over the Gaussian integers $\mathbf{Z}[\sqrt{-1}]$. By forgetting a flex we have a map

$$
\mathcal{M}_{3, \text { flex }} \longrightarrow \mathcal{M}_{3}
$$

of degree 24 . The author does not know the relation between two complex ball quotient structures.

Remark 3. Let C be a general smooth curve of genus 6. It is known that the canonical model of $C\left(\subset \mathbf{P}^{5}\right)$ lies on a unique del Pezzo surface R of degree 5 (Kollár, Schreyer [KS], Shepherd-Barron [SB]). By taking the double covering of R branched along C, we have a $K 3$ surface X with the covering transformation σ. Let $p: R \longrightarrow \mathbf{P}^{2}$ be a blow up at 4 points. We can easily see that the Picard lattice S of a generic X is isomorphic to $\langle 2\rangle \oplus A_{1}^{4}$ where $\langle 2\rangle$ is generated by the pullback of the class of a line in \mathbf{P}^{2} and A_{1}^{4} correspond to 4 exceptional curves on R. It is known that $O\left(q_{S}\right) \simeq O^{-}\left(4, \mathbf{F}_{2}\right) \simeq S_{5}$ (Morrison-Saito [MS], Corollary 2.4, Lemma 2.5). Let T be the transcendental lattice of X. Let \mathcal{D} be a bounded symmetric domain of type $I V$ associated to T, and
let $\Gamma=O(T)$. Then we can see that the moduli space of curves of genus 6 is birational to the arithmetic quotient \mathcal{D} / Γ. The author does not know whether the moduli of curves of genus 5 has a similar description as an arithmetic quotient or not.

§3. Discriminant locus

In this section we shall discuss the discriminant locus \mathcal{H}. Let $r \in T$ with $r^{2}=-2$. By using the equation

$$
\rho^{2}+\rho+1_{T}=0
$$

we have $\langle r, \rho(r)\rangle=1$. Let Λ_{r} be the lattice generated by r and $\rho(r)$. Obviously $\Lambda_{r} \simeq A_{2}$. Let Λ_{r}^{\perp} be the orthogonal complement of Λ_{r} in T and let M be the orthogonal complement of Λ_{r}^{\perp} in L. We remark here that ρ acts on T^{*} / T because $\rho \mid H^{2}(X, \mathbf{Z})^{\langle\rho\rangle}=1$ (Nikulin [N1], Corollary 1.5.2). Also ρ acts on $\Lambda_{r}^{*} / \Lambda_{r}$ trivially. This follows from the fact that $(r+2 \rho(r)) / 3$ is a generator of $\Lambda_{r}^{*} / \Lambda_{r}$ and $\rho(r+2 \rho(r)) \equiv r+2 \rho(r) \bmod$ $3 \Lambda_{r}$.

Lemma 1. There are two possibilities:
Case (i). $M \simeq U(3) \oplus A_{2}$ and $\Lambda_{r}^{\perp} \simeq U(3) \oplus U \oplus E_{8} \oplus E_{6}$
Case (ii). $M \simeq U \oplus A_{2}$ and $\Lambda_{r}^{\perp} \simeq U \oplus U \oplus E_{8} \oplus E_{6}$.
Proof. First note that M contains $S \oplus \Lambda_{r}$ as a sublattice of finite index where $S=L^{\langle\rho\rangle} \simeq U(3) . M$ is determined by the isotropic subgroup $I=M /\left(S \oplus \Lambda_{r}\right)$ of $A_{S} \oplus A_{\Lambda_{r}}$ with respect to the discriminant quadratic form $q_{S} \oplus q_{\Lambda_{r}}$ (Nikulin [N1], Proposition 1.4.1). Since $A_{S} \oplus A_{\Lambda_{r}} \simeq(\mathbf{Z} / 3 \mathbf{Z})^{3}, I=\{0\}$ or $I=\mathbf{Z} / 3 \mathbf{Z}$. In the case $I=\mathbf{Z} / 3 \mathbf{Z}$, by using Nikulin [N1], Corollary 1.5 .2 , we can see that $q_{M}(a)=-2 / 3$ where a is a generator of $I=\mathbf{Z} / 3 \mathbf{Z}$. Now the assertion follows from Nikulin [N1], Theorem 1.14.2. Q.E.D.

It follows that \mathcal{H} decomposes into two pieces \mathcal{H}^{n} and \mathcal{H}^{h} so that the first case \mathcal{H}^{n} corresponds to the case (i) in Lemma 1. In the following, we shall study $K 3$ surfaces whose periods are in \mathcal{H}.

Case (i): We shall show that the Case (i) in Lemma 1 corresponds to a curve in Q of bidegree $(3,3)$ with a node.

Example 1. Let C be a curve in a smooth quadric Q of bidegree (3,3) with a node p. Let L_{1}, L_{2} be the two lines through p. First blow up at p and denote by E the exceptional curve. Next blow up the two points in which E and the proper transform of C meet. Then take the 3 -cyclic
cover X^{\prime} branched along the proper transforms of C and E. Then X^{\prime} contains an exceptional curve of the first kind which is the pullback of the proper transform of E. By contracting this exceptional curve to a point q, we have a $K 3$ surface X. On X, there are 4 smooth rational curves $F_{1}, F_{2}, F_{3}, F_{4}$ which are the inverse images of L_{1}, L_{2} and the exceptional curves which appeared in the second blow up. They meet together at one point q. Each triple of F_{j} defines an elliptic pencil with singular fiber of type $I V$ and a 3 -section. For generic C as above, these 4 curves F_{j} generate the Picard lattice of X isometric to $U(3) \oplus A_{2}$, where $U(3)$ is generated by $F_{1}+F_{2}+F_{3}, F_{1}+F_{2}+F_{4}$ and A_{2} is generated by F_{1}, F_{2}. It is known that X has a finite group of automorphisms and the F_{i} (i $=1,2,3,4$) are all the smooth rational curves on X (e.g., Nikulin [N3], §4, p.661).

Next we shall show that a generic point of \mathcal{H}^{n} corresponds to a $K 3$ surface mentioned in Example 1. Let z be a generic point in \mathcal{H}^{n} which is orthogonal to a root $r \in T$ with $\Lambda_{r}^{\perp} \simeq U(3) \oplus U \oplus E_{8} \oplus E_{6}$. Let Y be the $K 3$ surface whose period is z. Then the Picard lattice of Y is isomorphic to $M \simeq U(3) \oplus A_{2}$. Since the dual graph of all smooth rational curves on Y depends only on the Picard lattice, Y contains exactly 4 smooth rational curves $F_{j}^{\prime}(1 \leq j \leq 4)$ which form the same dual graph as that of F_{j} on $X: F_{j}^{\prime} \cdot F_{k}^{\prime}=1,(j \neq k)$. Let ρ^{\prime} be the isometry of L given by

$$
\rho^{\prime}=\left(1_{M}, \rho \mid \Lambda_{r}^{\perp}\right) .
$$

Obviously $\left(L^{\left\langle\rho^{\prime}\right\rangle}\right)^{\perp} \cap z^{\perp}=0$, and hence it is induced from an automorphism σ^{\prime} of order 3 (Namikawa [Na], Theorem 3.10). On the other hand, by the topological Lefschetz fixed point formula, σ^{\prime} fixes a smooth curve C^{\prime} of genus $g\left(C^{\prime}\right)>1$. Now take any triple, for example, $F_{1}^{\prime}, F_{2}^{\prime}, F_{3}^{\prime}$ and consider the linear system $\left|F_{1}^{\prime}+F_{2}^{\prime}+F_{3}^{\prime}\right|$ which defines an elliptic pencil $\pi: Y \longrightarrow \mathbf{P}^{1}$. By the Hodge index theorem, each fiber meets C^{\prime}, and hence σ^{\prime} acts on the base of π trivially. Thus σ^{\prime} acts on a general fiber as an automorphism of order 3 , and hence the functional invariant of π is equal to 0 . Hence the singular fiber $F_{1}^{\prime}+F_{2}^{\prime}+F_{3}^{\prime}$ is of type $I V$. This implies that the four $F_{i}^{\prime}(i=1,2,3,4)$ meet each other at one point q. Since σ^{\prime} acts on M trivially, σ^{\prime} preserves each F_{i}^{\prime}. Since σ^{\prime} acts on a fiber as an automorphism of order 3, it fixes 3 points on it. Hence C^{\prime} meets a fiber at three points. Now we can easily conclude that C^{\prime} meets each F_{i}^{\prime} at one point, the fixed point set of σ^{\prime} consists of $\{q\}$ and C^{\prime}, and $g\left(C^{\prime}\right)=3$. Thus Y is obtained by the same way as X in Example 1.

Case (ii): We shall show that the Case (ii) in Lemma 1 corresponds to a smooth hyperelliptic curve of genus 4 plus a point.

Example 2. Let C be a hyperelliptic curve of genus 4. Then C is given by the equation

$$
y^{2}=\prod_{i=1}^{10}\left(x_{0}-\lambda_{i} x_{1}\right)
$$

which is unique up to automorphisms of \mathbf{P}^{1}. Let $\left(x_{0}: x_{1}, y_{0}: y_{1}\right)$ be a bi-homogeneous coordinate of $\mathbf{P}^{1} \times \mathbf{P}^{1}$. Then C can be embeded in $\mathbf{P}^{1} \times \mathbf{P}^{1}$ as follows:

$$
y_{0}^{2} \cdot \prod_{i=1}^{5}\left(x_{0}-\lambda_{i} x_{1}\right)+y_{1}^{2} \cdot \prod_{i=6}^{10}\left(x_{0}-\lambda_{i} x_{1}\right)=0
$$

Let E be the divisor defined by $y_{0}=0$. Let L be a general fiber of the ruling given by

$$
p:\left(x_{0}: x_{1}, y_{0}: y_{1}\right) \longrightarrow\left(x_{0}: x_{1}\right)
$$

Note that the fiber given by $x_{0}=\lambda_{i} x_{1}$ is tangent to C. By taking elementary transformations at the intersection of C and E, we have the Hirzebruch surface \mathbf{F}_{5}. Let C^{\prime}, E^{\prime} be the proper transform of C, E respectively. Let R be a rational surface obtained by blowing up \mathbf{F}_{5} at three points which are the intersection of C^{\prime}, E^{\prime} and L. Let $C^{\prime \prime}, E^{\prime \prime}, L^{\prime \prime}$ be the proper transform of $C^{\prime}, E^{\prime}, L$ respectively. Let Y^{\prime} be the 3 -cyclic cover of R branched along the divisor $C^{\prime \prime}+E^{\prime \prime}+L^{\prime \prime}$. The inverse image of $L^{\prime \prime}$ is a (-1) - curve. By contracting this we have a $K 3$ surface Y. We can see that the ruling p induces a structure of an elliptic pencil

$$
\pi: Y \longrightarrow \mathbf{P}^{1}
$$

which has one singular fiber of type $I V$ and 10 singular fibers of type $I I$, and a section. Here the singular fiber of type $I V$ corresponds to L, ten singular fibers of type $I I$ corresponds to fibers $x_{0}+\lambda_{i} x_{1}$ and E corresponds to a section of π. For a generic C, the Picard lattice of Y is generated by three components of the singular fiber of type $I V$ and a section, which is isomorphic to $U \oplus A_{2}$. In this case, $\operatorname{Aut}(Y)$ is finite and Y contains exactly 4 smooth rational curves (e.g., Nikulin [N3], §4, p.661).

Next we shall show that a generic point of \mathcal{H}^{h} corresponds to a $K 3$ surface mentioned in Example 2. Let z be a generic point in \mathcal{H}^{h} which
is orthogonal to a root $r \in T$ with $\Lambda_{r}^{\perp} \simeq U \oplus U \oplus E_{8} \oplus E_{6}$. Let Y^{\prime} be the $K 3$ surface whose period is z. Then the Picard lattice of Y^{\prime} is isomorphic to $M \simeq U \oplus A_{2}$. Since the dual graph of all non-singular rational curves on Y^{\prime} depends only on the Picard lattice, Y^{\prime} contains exactly 4 smooth rational curves $F_{j}(0 \leq j \leq 3)$ which form the same dual graph as that of Example 2. Here we assume that F_{1}, F_{2}, F_{3} form the dual graph of a singular fiber of type I_{3} or of type $I V$, and F_{0} meets F_{1}. Then the linear system $\left|F_{1}+F_{2}+F_{3}\right|$ defines an elliptic pencil $\pi: Y \longrightarrow \mathbf{P}^{1}$ which has one singular fiber of type I_{3} or of type $I V$, and a section F_{0}. Let ρ^{\prime} be the isometry of L given by

$$
\rho^{\prime}=\left(1_{M}, \rho \mid \Lambda_{r}^{\perp}\right)
$$

Obviously $\left(L^{\left\langle\rho^{\prime}\right\rangle}\right)^{\perp} \cap z^{\perp}=0$, and hence ρ^{\prime} is induced from an automorphism σ^{\prime} of order 3 (Namikawa [Na], Theorem 3.10). On the other hand, by the topological Lefschetz fixed point formular, σ^{\prime} fixes a smooth curve C^{\prime} of genus $g\left(C^{\prime}\right)>1$. By the Hodge index theorem, each fiber meets C^{\prime}, and hence σ^{\prime} acts on the base of π trivially. Hence F_{0} is a fixed curve of σ^{\prime}. Also σ^{\prime} acts on a general fiber as an automorphism of order 3 , and hence the functional invariant is a constant. Hence the singular fiber $F_{1}+F_{2}+F_{3}$ is of type $I V$ and all irreducible singular fibers are of type $I I$. Thus π has one singular fiber of type $I V$ and 10 singular fibers of type $I I$. Since σ^{\prime} acts on a general fiber as an automorphism of order 3 , it fixes 3 points on a general fiber, i.e., C^{\prime} meets a fiber at two points. Let q be the singular point of the fiber $F_{1}+F_{2}+F_{3}$. Then we can easily conclude that C^{\prime} meets each F_{2}, F_{3} at one point $(\neq q)$ and the fixed point set of σ^{\prime} consists of $\{q\}, F_{0}$ and C^{\prime}. It follows from the topological Lefschetz fixed point formula that the genus of C^{\prime} is 4 . Therefore Y is obtained by the same way as X in Example 2. Thus we have

Theorem 2. A generic point in \mathcal{H}^{n} (resp. in $\left.\mathcal{H}^{h}\right)$ corresponds to a curve in Q of bidegree (3,3) with a node (resp. a pair of a hyperelliptic curve of genus 4 and a point on the quotient of the hyperelliptic curve by the hyperelliptic involution).

Remark 4. (i) The above theorem 2 tells us that \mathcal{B} / Γ looks like a blow up of the moduli space of curves of genus 4 along the hyperelliptic locus.
(ii) There is a family of codimension 1 in the moduli space of curves of genus 4 which consists of smooth curves with a vanishing theta null. In this case, the corresponding generic $K 3$ surface contains smooth rational curves, but the covering transformation does not fix them (see the proof of Theorem 1, Case 2) and the periods of these (generic) $K 3$ are
contained in $\mathcal{D} \backslash \mathcal{H}$. The Picard lattice of a generic $K 3$ surface in this family is isometric to

$$
U \oplus A_{2}(2)
$$

This lattice contains $U(3) \oplus A_{2}(2)$ as a sublattice of finite index and the factor $U(3)$ corresponds to the Picard lattice of a generic member of 9 -dimensional family.

Remark 5. Recall that the anti-bicanonical map of a del Pezzo surface of degree 1 is the double cover of a quadric cone in \mathbf{P}^{3} branched along the canonical curve C of genus 4 (Demazure [D]). Then C has a vanishing theta null. This gives a birational map from the moduli space of del Pezzo surfaces of degree 1 to the moduli space of curves of genus 4 with vanishing theta constant. Thus the moduli space of del Pezzo surfaces of degree 1 can be written as a ball quotient, too. Heckman, Looijenga [HL] and Vakil [V] studied this case from a different point of view. In case of del Pezzo surfaces of degree 2 or 3, van Geemen (unpublished), Kondo [K2], Allcock, Carlson, Toledo [ACT1],[ACT2] gave a ball quotient structure for this moduli space. In the case of del Pezzo surfaces of degree 4 , the moduli space is also a ball quotient (e.g. Heckman, Looijenga [HL]): A del Pezzo surface of degree 4 is the complete intersection of two quadrics Q_{1}, Q_{2} in \mathbf{P}^{4}. The discriminant locus of the pencil of quadrics defined by Q_{1} and Q_{2} gives five points on \mathbf{P}^{1}. This gives a correspondence between the moduli space of del Pezzo surfaces of degree 4 and a compact arithmetic quotient of 2-dimensional complex ball which appeared in Shimura [S], Terada [Te], Deligne-Mostow [DM].

Remark 6. Del Pezzo surfaces of degree 4 are also related to $K 3$ surfaces with an automorphism of order 5. Let C be the plane quintic curve defined by

$$
y^{5}=\prod_{i=1}^{5}\left(x-\xi_{i} z\right)
$$

which corresponds to five points $\left\{\left(\xi_{i}: 1\right)\right\}$ on \mathbf{P}^{1} (see Remark 5). Let σ be an automorphism of \mathbf{P}^{2} given by

$$
\sigma(x, y, z)=(x, \zeta y, z)
$$

where ζ is a primitive 5 -th root of unity. Let L be the line defined by $y=0$ which is fixed under the action of σ. Let X be the minimal resolution of the double cover branched along the sextic curve $C+L$. Then X is a $K 3$ surface and σ can be lifted to an automorphism of X of order 5 . We can see that the period domain of these $K 3$ surfaces is a 2-dimensional complex ball. The pencil of lines through ($0: 1: 0$) lifts
to a pencil of curves of genus 2 on the $K 3$ surface which has two base points. A general member of this pencil is a smooth curve of genus 2 with an automorphism of order 5 and this pencil contains five singular members corresponding to five lines

$$
x-\xi_{i} z=0,(1 \leq i \leq 5)
$$

§4. Deligne-Mostow's complex reflection groups

In this section we shall show that Γ is commensurable with an arithmetic subgroup of $\mathbf{P} U(1,9)$ which appeared in Deligne-Mostow's list. The idea of the proof of Theorem 3 is due to T. Terasoma.

Let $\left\{\infty, 0,1, x_{2}, \ldots, x_{d+1}\right\}$ be a set of $d+3$-distinct points in \mathbf{P}^{1}. For each integer i, with $0 \leq i \leq d+1$, and $i=\infty$, let μ_{i} be a real number such that the following equality holds:

$$
\sum_{i} \mu_{i}=2 .
$$

In [DM], for each $\mu=\left\{\mu_{i}\right\}$, Deligne and Mostow defined a subgroup Γ_{μ} of the automorphism group of a d-dimensional complex ball, which is the monodromy group of a hypergeometric equation.

Let $S_{1} \subset S=\{\infty, 0,1, \ldots, d+1\}$ and assume that $\mu_{s}=\mu_{t}$ for all $s, t \in S_{1}$. We assume that $\mu_{s}>0$ for all $s \in S$ and $\left\{\mu_{s}\right\}$ satisfies the condition
$(\Sigma I N T):$ For all $s \neq t$ such that $\mu_{s}+\mu_{t}<1,\left(1-\mu_{s}-\mu_{t}\right)^{-1}$ is an integer if s or t is not in S_{1}, and a half-integer if $s, t \in S_{1}$.
Deligne and Mostow [DM],[M1] showed that this condition is a sufficient condition for which Γ_{μ} is a lattice in $\mathbf{P} U(1, d)$, i.e., Γ_{μ} is discrete and has cofinite volume. Conversely if Γ_{μ} is discrete and $d>3$, then μ satisfies the condition ($\Sigma I N T$) (Mostow [M2]). In [DM], [M1], Deligne and Mostow determined all such μ and listed them in case $d \geq 5$. Note that Thurston gave a correction of their list ([T]).

Now we shall show that our group Γ is commensurable with Γ_{μ}, where $\mu=\left\{\mu_{i}\right\}, \mu_{i}=1 / 6$ for all $i=\infty, 0,1, \ldots, 10$ (No. 1 in DeligneMostow's list [M2] and No. 10 in Thurston's list [T]).

Let C be a curve defined by

$$
y^{6}=\prod_{i=1}^{12}\left(x-\xi_{i}\right)
$$

Let σ be the covering transformation of C over \mathbf{P}^{1}. Consider the action of σ on $H^{1}(C, \mathbf{C})$. Let $H^{1}(C, \mathbf{C})_{-\omega}$ be the eigenspace of σ with eigenvector $-\omega$ where ω is a primitive cube root of unity. Let (,) be the symplectic form on $H^{1}(C, \mathbf{Z})$. Then $\psi(x, y)=\sqrt{-3}(x, \bar{y}), x, y \in H^{1}(C, \mathbf{C})_{-\omega}$, is a hermitian form on $H^{1}(C, \mathbf{C})_{-\omega}$. This space is defined over the Eisenstein integers $\mathbf{Z}[\omega]$. Deligne and Mostow showed that the signature of ψ is $(1,9)$ and that Γ_{μ} is an arithmetic subgroup of $\left(\mathbf{P} U\left(H^{1}(C, \mathbf{C})_{-\omega}\right), \psi\right)$.

In the following we shall use the same notation as in §2. Recall that the $K 3$ surface X has an elliptic fibration π induced from a ruling of the smooth quadric Q. For a generic X, π has twelve singular fibers of type $I I$ in the sense of Kodaira [Ko]. Note that π has no sections. Let $S=U(3)$ be the Picard lattice for a generic X and let $T=U(3) \oplus$ $U \oplus E_{8} \oplus E_{8}$ be the transcendental lattice. Since $\rho \mid S=1, \rho$ acts trivially on the discriminant group $S^{*} / S \simeq T^{*} / T$. Let $\alpha \in T^{*} / T$ be the non-zero isotropic vector corresponding to the class of a fiber of π under the canonical isomorphism $S^{*} / S \simeq T^{*} / T$. By adding vectors in T^{*} representing α to T, we have an even lattice T^{\prime} which contains T as a sublattice of index 3. Hence T^{\prime} is unimodular and isometric to $U \oplus U \oplus E_{8} \oplus E_{8}$. Since ρ fixes α, ρ induces an isometry $\rho^{\prime \prime}$ of T^{\prime} of order 3 . We denote by ρ^{\prime} the isometry $-\rho^{\prime \prime}$ of order 6 . By the surjectivity of the period map for $K 3$ surfaces, there exists a $K 3$ surface Y whose transcendental lattice is isometric to T^{\prime} and whose period is the same as that of X. Since T^{\prime} is unimodular, ρ^{\prime} can be extended to an isometry of $H^{2}(Y, \mathbf{Z})$ acting on $\left(T^{\prime}\right)^{\perp}(\simeq U)$ trivially. Hence it follows from the Torelli theorem that ρ^{\prime} is represented by an automorphism of order 6. Since the Picard lattice of Y is isomorphic to U, Y has an elliptic fibration π^{\prime} with a unique section (Kondo [K1], Lemma 2.1). If ρ^{\prime} acts on the base of π^{\prime} non trivially, then the set of fixed points of ρ^{\prime} is contained in two fibers. On the other hand the Lefschetz number of ρ^{\prime} is -6 (see the proof of Theorem 1). With this observation it follows from the topological Lefschetz fixed point formula that ρ^{\prime} acts on the base trivially. Thus every smooth fiber has an automorphism of order 6 which fixes the intersection point with the section. Hence the functional invariant of this elliptic fibration is a constant. Since $\operatorname{Pic}(Y) \simeq U$, every singular fiber is irreducible, and hence it is of type $I I$. We remark that $\pi^{\prime}: Y \longrightarrow \mathbf{P}^{1}$ is nothing but the Jacobian fibration of π.

By the theory of elliptic surfaces with a section (Kodaira [Ko]), we can easily see that there exists a Galois cover of Y with the Galois group $G \simeq \mathbf{Z} / 6 \mathbf{Z}$, which is birational to $C \times E$ where C is a $\mathbf{Z} / 6 \mathbf{Z}$-cover of \mathbf{P}^{1} ramified at 12 points and E is an elliptic curve with a complex multiplication ω (a cube root of unity). We denote by σ (resp. τ) an automorphism of C (resp. E) of order 6. We may assume that (σ, τ) is
a generator of G. Denote by f the rational map from $C \times E$ to Y. Then

$$
f^{*}\left(T^{\prime} \otimes \mathbf{Q}\right) \simeq\left(H^{1}(C, \mathbf{Q}) \otimes H^{1}(E, \mathbf{Q})\right)^{G}
$$

and
$\left(H^{1}(C, \mathbf{C}) \otimes H^{1}(E, \mathbf{C})\right)^{G} \simeq H^{1}(C)_{-\omega} \otimes H^{1}(E)_{-\bar{\omega}} \oplus H^{1}(C)_{-\bar{\omega}} \otimes H^{1}(E)_{-\omega}$.
Moreover the action of ρ^{\prime} on $T^{\prime} \otimes \mathbf{Q}$ is compatible with that of τ on $f^{*}\left(T^{\prime} \otimes \mathbf{Q}\right)$. The above isomorphisms give an isomorphism between two hermitian spaces $T_{-\omega}^{\prime}=\left\{x \in T^{\prime} \otimes \mathbf{C}: \rho^{\prime}(x)=-\omega x\right\}$ and $H^{1}(C, \mathbf{C})_{-\omega}$, which is defined over $\mathbf{Q}(\omega)$. Since both Γ_{μ} and

$$
\Gamma^{\prime}=\left\{g \in O\left(T^{\prime}\right): g \circ \rho^{\prime}=\rho^{\prime} \circ g\right\}
$$

are arithmetic, Γ_{μ} is commensurable with Γ^{\prime}. On the other hand, by definition of T^{\prime}, Γ is commensurable with Γ^{\prime}, and hence with Γ_{μ}. Thus we have

Theorem 3. Γ is commensurable with Γ_{μ} where

$$
\mu=\left(\mu_{i}\right)=\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)
$$

Remark 7. In [A], Allcock proved that Γ_{μ} in Theorem 3 is isomorphic to the hyperbolic reflection group of the complex lattice over the Eisenstein integers $\mathbf{Z}[\omega]$ whose real form is $U \oplus U \oplus E_{8} \oplus E_{8}$. We also remark that van Geemen gave a similar correspondence between the curve C as above and some $K 3$ surface (see [vG], Example 3.11).

Remark 8. In [K2], we showed that the moduli space of curves of genus 3 is birational to a ball quotient by taking the 4 -cyclic cover of \mathbf{P}^{2} branched along a plane quartic curve. The corresponding discrete group does not appear in Deligne-Mostow's list (the corresponding K3 surface has no elliptic fibration invariant under the action of the automorphism of order 4). However, for example, in case of hyperelliptic curves of genus 3 or plane quartic curves with a node, the corresponding generic $K 3$ surface has an elliptic fibration with 8 singular fibers of type $I I I$ (see [K2], §5). The same argument as above shows that the corresponding arithmetic subgroup is commensurable with Γ_{μ} where

$$
\mu=\left(\mu_{i}\right)=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)
$$

(No. 8 in Deligne-Mostow's list [M2] and No. 3 in Thurston's list [T]). Allcock informed the author that he showed the commensurability in this
case by a different way. Shiga [Sh] suggested a relation between DeligneMostow's complex reflection groups and elliptic $K 3$ surfaces with a section in some special cases. In the case of del Pezzo surfaces of degree 4 (see Remark 6), the pencil of curves of genus 2 with an order 5 automorphism on the $K 3$ surface works like the elliptic pencil in the above cases.

References

[A] D. Allcock, The Leech lattice and complex hyperbolic reflections, Invent. math., 140 (2000), 283-301.
[ACT1] D. Allcock, J. A. Carlson and D. Toledo, A complex hyperbolic structure for the moduli of cubic surfaces, C.R. Acad. Sci. Paris, Ser. I, 326 (1998), 49-54.
[ACT2] D. Allcock, J. A. Carlson and D. Toledo, The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geometry (to appear), math $\dot{A} G / 0007048$.
[B] E. Brieskorn, Die Auflösung der rationalen Singularitäten holomorpher Abbildungen, Math. Ann., 178 (1968), 255-270.
[DM] P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math. IHES, 63 (1986), 5-89.
[D] M. Demazure, Surfaces de del Pezzo, II-V, Lecture Notes in Math., Springer-Verlag, 777 (1980), 23-69.
[vG] B. van Geemen, Half twists of Hodge structure of CM-type, J. Math. Soc. Japan, 53 (2001), 813-833.
[vGI] B. van Geemen and E. Izadi, Half twists and the cohomology of hypersurfaces, math.AG/0008170.
[HL] G. Heckman and E. Looijenga, The moduli space of rational elliptic surfaces, Advanced Study in Pure Math., 36, Math. Soc. Japan, (2002), 185-248.
[Ko] K. Kodaira, On compact analytic surfaces, II-III, Ann. Math., 77, 78 (1963), 563-626, 1-40.
[KS] J. Kollár, F. O. Schreyer, The moduli of curves is stably rational for $g \leq 6$, Duke Math. J., 51 (1984), 239-242.
[K1] S. Kondō, Automorphisms of algebraic $K 3$ surfaces which act trivially on Picard groups, J. Math. Soc. Japan, 44 (1992), 75-98.
[K2] S. Kondō, A complex hyperbolic structure for the moduli space of curves of genus three, J. reine angew. Math., 525 (2000), 219-232.
[Ku] V. S. Kulikov, Degenerations of $K 3$ surfaces and Enriques surfaces, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 1008-1042.
[MS] D. R. Morrison, M.-H. Saito, Cremona transformations and degrees of period maps for $K 3$ surfaces with ordinary double points, Advanced

Studies in Pure Math., 10 (1987), Algebraic Geometry, Sendai, 1985, pp. 477-513.
[M1] G. D. Mostow, Generalized Picard lattices arising from half-integral conditions, Publ. Math. IHES, 63 (1986), 91-106.
[M2] G. D. Mostow, On discontinuous action of monodromy groups on the complex n-ball, Jour. A. M. S., 1 (1988), 555-586.
[Na] Y. Namikawa, Periods of Enriques surfaces, Math. Ann., 270 (1985), 201-222.
[N1] V. V. Nikulin, Integral symmetric bilinear forms and its applications, Math. USSR Izv., 14 (1980), 103-167.
[N2] V. V. Nikulin, Finite automorphism groups of Kähler K3 surfaces, Moscow Math. Soc., 38 (1980), 71-137.
[N3] V. V. Nikulin, Discrete reflection groups in Lobachevsky spaces and algebraic surfaces, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI (1987), 654-671.
[PP] U. Persson and H. Pinkham, Degenerations of surfaces with trivial canonical bundle, Ann. Math., 113 (1981), 45-66.
[PS] I. Piatetski-Shapiro, I. R. Shafarevich, A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izv., 5 (1971), 547-587.
[SB] N. I. Shepherd-Barron, Invariant theory for S_{5} and the rationality of M_{6}, Compositio Math., 79 (1989), 13-25.
[Sh] H. Shiga, On K3 modular functions (in Japanese), Sugaku, 38 (1986), 116-132.
[S] G. Shimura, On purely transcendental fields automorphic functions of several variables, Osaka J. Math., 1 (1964), 1-14.
[Te] T. Terada, Fonctions hypergéométrique F_{1} et fonctions automorphes I, II, J. Math. Soc. Japan, 35; ibid 37 (1983; ibid 1984), 451-475; ibid 173-185.
[T] W. P. Thurston, Shape of polyhedra and triangulations of the sphere, Geometry \& Topology Monograph, 1, 511-549.
[V] R. Vakil, Twelve points on the projective line, branched covers, and rational elliptic fibrations, Math. Ann., 320 (2001), 33-54.

Nagoya University
Nagoya, 464-8602
Japan

[^0]: Received January 31, 2001.
 2000 Mathematics Subject Classification: 14H15, 14J28, 22E40. Keywords: moduli, curves of genus 4, K3 surface, complex reflection group.

