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Cyclic Hypersurfaces of Constant Curvature 

Rafael Lopez 

Abstract. 

We study hypersurfaces in Euclidean, hyperbolic or Lorentz
Minkowski space with the property that it is foliated by a one
parameter family of round spheres. We describe partially such hy
persurfaces with some assumption on its curvature. In general, we 
shall consider the situation that the mean curvature or the Gaussian 
curvature is constant. 

§1. Introduction 

A cyclic hypersurface in (n +I)-dimensional Euclidean space En+l 
is a hypersurface defined by a smooth one-parameter family of round 
( n - 1 )-spheres. We say then that M is foliated by spheres. The first 
example of cyclic hypersurfaces is a hypersurface of revolution, that is, 
a hypersurface which is stable under a group of rotations that leave a 
straight-line pointwise fixed. It has been known that the only minimal 
cyclic surfaces in Euclidean 3-space E 3 are the catenoid (which it is rota
tional [15]) and the examples discovered by Enneper and Riemann in the 
nineteenth century [2], [3], [19]. Riemann's surface is a (non-rotational) 
surface constructed by circles in parallel planes with the exception of a 
discrete set of straight-lines. Moreover, each of these surfaces is invariant 
by a family of translations. In higher dimensions, Jagy proved that a 
cyclic minimal hypersurface in En+l, n ~ 3, must be rotational, that is, 
it is the n-dimensional catenoid [6]. In contrast with the minimal case, 
the only cyclic surfaces in E3 with nonzero constant mean curvature are 
surfaces of revolution [17]. This note is motivated by these examples 
and the possible extensions of these results for other space forms. We 
are interested in studying cyclic hypersurfaces under some assumptions 
on their curvatures. One of our goal in this paper is to exhibit the exis
tence of a family of maximal spacelike surfaces in the Lorentz-Minkowski 
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3-space L 3 that were announced in [9], [10], with similar properties as 
Riemann's examples in E3 . These surfaces are foliated by circles in 
parallel planes with the exception of a discrete set of straight-lines and 
singularities. In this sense, we say that such surface is a 'Riemann type 
surface' in L 3 . See Figure 1 for an example. 

We divide this paper into three parts: 

1. Cyclic hypersurfaces of constant mean curvature in hyperbolic 
space. 

2. Cyclic hypersurfaces of constant mean curvature in Lorentz
Minkowski space. 

3. Cyclic surfaces of constant Gauss curvature in Euclidean space. 

Fig. 1. A 'Riemann type surface' in L 3 . 

§2. Cyclic hypersurfaces of constant mean curvature in hy
perbolic space 

In this section we study cyclic hypersurfaces in the ( n + 1 )-dimensio
nal hyperbolic space Hn+l, for which the spheres that determine the 
hypersurfaces lie in parallel horospheres. Recall that horospheres are 



Cyclic Hyper-surfaces of Constant Curvature 187 

the umbilical hypersurfaces in Hn+1 that are flat. Since there exist no 
intrinsic concept of parallelism in hyperbolic setting, we now give our 
precise definition. 

Definition 2.1. A family of horospheres are called parallel if 
their asymptotic boundaries meet at exactly one point. 

Since the asymptotic boundary of a horosphere is a point, two par
allel horospheres meet at infinity in the same point. In the upper half
space model for Hn+l, parallel horospheres can be viewed as horizontal 
parallel Euclidean hyperplanes or, after a rigid motion, Euclidean n

spheres tangent to the hyperplane Xn+ 1 = 0 at the same point. On 
the other hand, note that in this model, ( n - 1 )-spheres are Euclidean 
( n - 1 )-spheres. 

Theorem 2.2 ([7], [10]). Let M be a hyper-surface in Hn+ 1 of 
constant mean curvature which is foliated by spheres in parallel 
horospheres. Then M is a hypersurface of revolution. 

Proof. Consider the upper half-space model for Hn+I, that is, 
R~+1 = {(x1, ... , Xn+d E Rn+l; Xn+1 > 0} endowed with the metric 

After a rigid motion in the ambient space, we may assume that the horo
spheres are Euclidean hyperplanes in R~+ 1 parallel to the hyperplane 
Xn+l = 0. We pick a piece M' of M bounded by two spheres s1 u S2. 
The proof consists of two parts. 

The first part is done by a standard application of the Alexandrov 
reflection method [1]. We consider reflections across a family of vertical 
parallel geodesic hyperplanes (in Euclidean sense). These hyperplanes 
are also geodesic hyperplanes in Hn+ 1 . Reflections across vertical hy
perplanes are isometries in Hn+ 1 , so the mean curvature remains un
changed. Consider a vertical hyperplane P disjoint from M' and move 
P parallel to itself (for example, to the right) until it touches M' at 
a first point. One continues to move P a little more to the right and 
considers the symmetry through P of the part of M' on the left-side of 
P. Now continue moving P to the right and reflecting the left-side of M' 
until this part touches the part of M' on the right-side of P. The strong 
maximum principle implies reflection symmetry if they contact and the 
Alexandrov reflection process yields that P is a hyperplane of symmetry 
of M'. Thus, for each vertical hyperplane P, some parallel translate of 
P is a hyperplane of symmetry of M' and M' inherits the symmetries of 
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its boundary S1 u S2 . So, the Euclidean centers of the spheres that define 
M 1 lies in a 2-plane. Without loss of generality, we may suppose that 
the curve of centers is parametrized by (c(t), 0, ... , t). It then follows 
that M 1 is defined as the level hypersurface of the function 

n 

f(xl, ... ,xn,t) = (x1- c(t))2 + L:x7- r(t) 2 , 

i=2 

where r(t) > 0 denotes the Euclidean radius of each sphere M 1n{xn+l = 

t}. 
The second part of the proof is done by computing of the mean 

curvature of M 1 in terms of the function f. For this, let N = -\7 f /IV Jl 
be a unit normal vector field of the immersion M 1 ---> E~+1 . Then the 
following formula is well-known: 

where He denotes the mean curvature of M C E~+ 1 , and ,6. and Hess 
are the Laplacian and Hessian operators in En+l, respectively. Choose 
Xn+lN as the Gauss map of M 1 C Hn+l. Then its mean curvature H 
is related with He by the formula H = Xn+lHe + Nn+l, where N = 

(N1, ... , Nn+d· Thus (1) yields 

If the function c(t) is constant, the curve of centers is a straight-line or
thogonal to each hyperplanes of the foliation. Consequently, the spheres 
that define M 1 are coaxial and hence M 1 is a hypersurface of revolution. 

Assume, on the contrary, that M 1 is not a hypersurface of revolution, 
that is, c1 =f. 0. It is computed that 

where A= A(xl, t) = ((x1 - c)c1 + rr1)jr. 
On the other hand, 

8A 1 {( 1)( 11 1 1) ( 1)3 I "} - = - A - r c r - c r - c + c rr . at C1A 
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Let fix a level Xn+l = t 0 . We introduce a new variable A. = .A(x1 , t0 ) 

instead of x 1 . Then (1) and (2) are written respectively as 

(3) nrH(l + .A2 ) 312 = a0 + a1 A. + a2 .A2 , 

(4) nrH(l + .A2 ) 312 = nr.A(l + .A2) + to(ao + a1A. + az.A2 ), 

where the coefficients ai are independent of .A. We take the square of 
both sides of the equation (4) and compare terms by terms. The term 
of the highest degree corresponds to A.6 . Then n 2r 2 H 2 = n 2 r 2 and 
this yields H 2 = 1. Since the square of the left-hand side of ( 4) is a 
polynomial with only terms of even degree in .A, the coefficients of A. 5 

and .A3 vanish on the right-hand side. This yields t0 a2 = 0 and t 0 a0 = 0, 
respectively. However the constant term on the left-hand side of (4) is 
n 2r 2 H 2 = n 2r 2 =/::: 0, obtaining a contradiction. D 

In this context, we recall a theorem of Hsiang [5], which is proved by 
using the Alexandrov reflection principle, stating that a complete em
bedded hypersurface M C Hn+l that remains within a uniform distance 
from a geodesic is a hypersurface of revolution. 

Remark 1. The same reasoning can be carried over to the case 
of Euclidean space En+l. Indeed, squaring (3), the coefficient of .A6 on 
the rights-hand side is 0. As a consequence, we obtain that 'the only 
hypersurfaces in En+l with nonzero constant mean curvature which are 
foliated by (n- !)-spheres in parallel hyperplanes are the hypersurfaces 
of revolution'. 

§3. Cyclic hypersurfaces of constant mean curvature in 
Lorentz-Minkowski space 

Let L n+ 1 be the ( n + 1 )-dimensional Lorentz-Minkowski space, that 
is, Rn+l equipped with the metric ds2 = dxi + ... + dx'?, - dx'?,+ 1 . We 
study cyclic hypersurfaces of constant mean curvature in L n+ 1 . First, 
we prove the Lorentzian counterpart of the previous section. Then we 
investigate the 3-dimensional case, that is, constant mean curvature sur
faces of L 3 foliated by circles. 

3.1. Cyclic hypersurfaces of constant mean curvature in 
Ln+l 

By a similar reasoning as in Theorem 2.2, we obtain the next re
sult which is analogous to what occurs in Euclidean space En+l (see 
Introduction and Remark 1). 
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Theorem 3.1 ([10]). Let Mn be a spacelike hypersurface in 
Ln+l of constant mean curvature H which is foliated by (n- I)-spheres 
in parallel spacelike hyperplanes. Then the following hold. 

1. If H # 0, then M is a hypersurface of revolution. 
2. If H = 0 and 

(a) n 2': 3, then M is a hypersurface of revolution. 
(b) n = 2, then M is a surface of revolution or is a 'Riemann 

type surface'. 

Proof. After a rigid motion of L n+l, we may assume that the paral
lel spacelike hyperplanes are parallel to Xn+l = 0 (in this case, 'spheres' 
are 'Euclidean spheres'). The proof is similar to that for Theorem 2.2 
and so we only give an outline. Note that Alexandrov reflection method 
works as in En+l and Hn+l: indeed, a spacelike hypersurface in Ln+l of 
constant mean curvature locally satisfies an elliptic partial differential 
equation for which we can use the standard maximum principle. We 
compute H through the identity: 

(5) nHIY'fl 3 = (V'f, \i'f)D.f- Hessf(V'f, Y'f), 

where in this case 

n 

\i'j = (JI, · · · 'fn,- fn+I), D.f = Lfi,i- fn+l,n+l' 

Hessf(V'f, V'f) = Lfdjfi,j, 
i,j 

8f 
li=-a , 

Xi 

i=l 

With the same variable A defined in Section 2, the identity (5) reads as 

where the coefficients gi do not depend on A. We follow the same argu
ment by squaring the above equation. Special attention should be paid 
to the case H = 0 and n = 2. In this situation, g1 = g0 = 0, which 
yields the next two ordinary differential equations: 

rc" 
- -2r1 =0 

I ' c 
12 12 , rr' c" 

1 + r - c + rr - -- = 0. 
c' 
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A first integration of both equations can do as in [16, p. 87]. So, the 
first equation leads c' = ar2 , for a constant a. This yields in the second 
equation 1- r'2 + rr11 - a 2r 4 = 0. Consider x = r 2 and y = (r2 )' as the 
new dependent and independent variables. Thus 

dt 1 

dr Ja2r4 + 2br2 + 1 

Then M is parametrized by Xa,b(u, e)= (x(u, e), y(u, e), z(u, e)), where 

Ju u2 

x(u,e)=a V du+ucose, 
a2u4 + 2bu2 + 1 

y(u, e)= usine, 

Ju du 
z(u, e)= ' 

Ja2u4 + 2bu2 + 1 

and a,b E R. D 

The integrals that appear in this parametrization are of elliptic type 
(as it occurs with Riemann's examples in E3 ). We illustrate Theorem 
3.1 by presenting two examples. 

Example 1. Let a = 0. In this case, c' = 0 and the surface is 
rotational. This surface is the Lorentzian catenoid: 

Xo,b(u,e) = (ucose,usine, )uarcsinh(VUu)), 

which is generated by the rotation of the curve ( (1/VU) sinh( VUu), 0, u) 
with respect to the x3-axis. The Lorentzian catenoid is the only maximal 
spacelike surface of revolution in L 3 with respect to a timelike rotation 
aXIS. 

Example 2. Let a = b = 1. The integrals that define M can be 
explicitly calculated. Then M is given by 

X 1,1 ( u, e) = ( u- arctan u + u cos e, u sine, arctan u). 

This surface has a singularity of cone type at the origin. Moreover it is 
asymptotic to the planes x3 = ±1r /2 and at these heights, M has two 
flat ends. The circles that define M converge to straight-lines as u ----t 

±oo. Thus, we can reflect M across them to obtain a simply periodic 
embedded maximal surface invariant by a family of translations. Figure 
1 in Introduction represents precisely this surface. Up to homotheties 
in L 3 , the immersions Xa,b define a one-parameter family of maximal 
spacelike surfaces in L 3 that, in a sense, correspond with Riemann's 
examples in E3 . 
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3.2. Cyclic maximal surfaces in L3 

In this and the next subsection we focus on cyclic surfaces with 
constant mean curvature in L 3 . Recall that a surface in L 3 is called 
nondegenerate if the induced metric on it is nondegenerate. In L 3 , we 
have two possibilities: the induced metric is Riemannian and the surface 
is called spacelike; or the induced metric is Lorentzian and the surface is 
called timelike. In Theorem 3.1 we studied the case that the spheres that 
form the hypersurface are contained in parallel spacelike hyperplanes. 
We want to consider a more general situation on the hyperplanes that 
determine the foliation. First, we give the following definition. 

Definition 3.2. A circle in L 3 is the orbit of a point p under the 
action of a group of rotations in L 3 . 

There exist three families of rotations in L 3 according to the causal 
character of the line L that define each family (see for example [4]). 
For an easy description of the circles obtained in each case, let B = 

(e1 , e2 , e3 ) be the standard basis in L 3 . Then the following hold: 

1. ( timelike axis) If L = span( e3 ), then the circles are Euclidean 
circles in horizontal planes. 

2. (spacelike axis) If L = span(e1 ), then the circles are hyperbolas 
in vertical planes. 

3. (light like axis) If L = span( e2 + e3 ), then the circles are parabo-
las in planes parallel to x 2 - x3 = 0. 

Surfaces of revolution in L 3 of constant mean curvature have been stud
ied in [4], [8], [20]. In the Lorentzian case, a surface with H = 0 every
where is called maximal. Now we are in a position to give the following 
two results for (spacelike or timelike) surfaces (see [9]): 

Theorem 3.3. Let M be a nondegenerate maximal cyclic surface 
in L 3 . Then the planes containing pieces of circles must be parallel. 

Theorem 3.4. Let M be a nondegenerate maximal surface in L3 

foliated by pieces of circles in parallel planes. Then M is a surface of 
revolution or it is contained in a 'Riemann type surface'. 

Proof. [Sketch] For simplicity of the proof of Theorem 3.3, we con
sider the case where the planes containing the circles are spacelike. The 
proof is done by contradiction. Assume that these planes are not par
allel. Let f(u) be an orthogonal curve to each u-plane of the foliation. 
Since r is not a straight-line, we can consider the Frenet frame of f. Re
mark that the unit tangent vector field t(u) tor has a timelike causal 
character. Then t' is a spacelike vector field. Let n( u) be the unit 
spacelike vector field such that t' = ~n, for some function ~ -=f. 0. Put 



Cyclic Hypersurfaces of Constant Curvature 193 

b = tAn. Then Frenet basis associated to r is given by { t, n, b}. Hence 
M can be parametrized by 

X(u, v) = c(u) + r(u)(cosv n(u) + sinv b(u)) r > O,c E L 3 . 

Let us compute the mean curvature H of X by the classical local theory 
(see [18]). Let I= (E,F,G) and II= (e,f,g) be the coefficients of 
the first and the second fundamental forms respectively, and set W = 
EG- F 2 (W is positive if M is spacelike and negative if M is timelike). 
Then the mean curvature H is given by 

(6) H = eG - 2f F + gE. 
2W 

Put c' = at+ (3n + ')'h, where a, (3, ')' are smooth functions on u. Let 
us use the corresponding Frenet equations of r: 

t' l'i:ll, 

n' l'i:t + a-b, 

b' -O"ll. 

Remark that these equations are slightly different from the Euclidean 
case. It follows from (6) that H = 0 is written as 

3 3 

L An(u) cosnv + L Bn(u) sin nv = 0 
n=O n=l 

for some functions An and Bn. This is a linear combination of the 
independent functions sin nv and cos nv. Thus An = Bn = 0 for all n. 
A hard work to obtain explicit expressions of the coefficients An and Bn 
together with the fact that W, r -=f. 0 gives a contradiction. Therefore 
1'i: = 0 and r is a straight-line. When the circles are contained in timelike 
or lightlike planes, the reasoning is analogous, with the observation that 
in each case the Frenet frame of r changes as well as the corresponding 
Frenet equations. A more explicit example of the reasoning of this kind 
can be seen in Theorem 3.5 below. 

The proof of Theorem 3.4 is easier. Now, after a rigid motion in L 3 

we may assume that the circles of M are Euclidean circles, hyperbolas 
or parabolas, depending on the causal character of the planes containing 
the circles. For example, in the case where the planes of the foliation 
are spacelike, we assume without loss of generality that the surface is 
given by 

X(u, v) = (a(u) + r(u) cosv, b(u) + r(u) sin v, u), 
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where a and b are smooth functions on u. If we compute the mean 
curvature, then the similar reasoning to the proof of Theorem 3.1 for 
n = 2 applies. D 

Remark 2. Maximal spacelike surfaces in L 3 can be described in 
terms of complex data. More exactly, there exists a Weierstrass repre
sentation as in the case of minimal surfaces in E 3 . Let M be a Rie
mann surface and X : M ---+ E 3 a conformal minimal immersion. If 
(M, (<fJI, ¢2 , ¢3 )) is the corresponding Weierstrass representation, then 
it is easy to prove that (M, (i¢~, i¢2 , ¢3)) defines a maximal spacelike 
immersion of Min L 3 . This process allows us to obtain a correspon
dence between minimal surfaces in E 3 and maximal spacelike surfaces 
in L 3 . Therefore it is possible to use the complex analysis machinery 
in the study of maximal spacelike surfaces and, in particular, of cyclic 
surfaces. This point of view is developed in [9]. 

3.3. Cyclic surfaces of nonzero constant mean curvature 
in L3 

The case H =f. 0 in L 3 is different from the maximal one, as it is the 
case in the Euclidean ambient (see Introduction and [17]). 

Theorem 3.5 ([11], [12]). Let M be a nondegenerate cyclic sur
face in L 3 with nonzero constant mean curvature. Then either the planes 
containing the circles must be parallel or M is a subset of a pseudohy
perbolic surface or a pseudosphere. 

Comparing with Theorem 3.3, let us first observe that possibly the 
planes are not parallel. But in this case, the surface is contained in a sur
face of revolution. This phenomenon also occurs in E3 : the intersection 
between any smooth one-parameter family of (not necessarily parallel) 
planes with a sphere produces circles. In the Lorentzian space, the role 
of spheres is played by the pseudohyperbolic surfaces H2•1 (r) and the 
pseudospheres S2•1 (r): 

H 2 '1 (r) = {p E L 3 ; (p,p) = -r2 }, 

S2•1 (r) = {p E L 3 ; (p,p) = r 2 }. 

The surfaces H 2•1 (r) and S 2•1 (r) are spacelike and timelike, respectively. 
Moreover, both surfaces have nonzero constant mean curvature IHI = 
1/r. Theorem 3.5 is a revised and corrected version of [11, Th. 1] and 
examples therein: although the examples exhibited in [11] are spacelike 
surfaces with nonzero constant mean curvature and foliated by pieces 
of circles in non-parallel planes, these surfaces are subsets of S 2•1 (r) or 
H2,1(r). 
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Proof. The case that the planes of the foliation are spacelike is 
studied in [11]. It remains the cases that they are timelike or lightlike. 
In order to simplify the presentation, we explicitly discuss the case that 
the planes are lightlike. By contradiction, we assume that the planes are 
not parallel and that, after a homothety in L 3 , the mean curvature of 
M is H = 1/2. In each u-plane of the foliation that defines M, let e 1 ( u) 
and e2(u) be vector fields such (e1,e1) = 1 and (e1,e2) = (e2,e2) = 0. 
Then M is parametrized as 

Denote n = e 1 and t = e 2 , and use null coordinates: for each u, let b( u) 
be the unique lightlike vector orthogonal to n( u) such that 

(t, b) = 1, determinant(t, n, b) = 1. 

With a change on the variables u and v, we assume that t' = ~>:n for 
some function ~>: (see discussion in [9]). Remark that ~>: # 0 because the 
planes are not parallel. The Frenet equations are 

t' K:ll, 

n' at- ~>:b, 

b' -an. 

In the above notation, the surface is parametrized as 

X(u, v) = c + vn + rv2t. 

Put c' = at+ f3n + ryb, for smooth functions a, {3, ry. Squaring the 
identity (6), we obtain 

9 

LAn(u)vn = 0. 
n=O 

This is a polynomial equation on the variable v and thus the coefficients 
An vanish everywhere. The coefficient Ag is given by A 9 = 8~>:3 (2--yr 2 -
r') 3 . Then r' = 2--yr2 . Hence A7 = As = 0 and 

We have two possibilities: 

1. a = 2{3r. Then A 4 = -81a2 ~>:4r2 . In particular, a = 0 and this 
implies W = 0, a contradiction because M is a nondegenerate 
surface. 
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2. u = 2{3r - 8Kr2 . The computation of A4 leads 

Then a = 81r2 = 4r'. By using the Frenet equations, we obtain 

c' = 4r't + {Jn + 1b = - (! -4rt) 
1 

Therefore there exists a point c0 E L 3 such that c c0 -

b/(2r) + 4rt and the parametrization of M is 

Thus 

1 
X( u, v) = c0 + r( 4 + v2)t + vn - 2r b. 

(X(u, v)- co, X(u, v)- co) = -4, 

and M is contained in the pseudohyperbolic surface H 2 '1 (2). 

D 

Let us study the case where the planes containing the circles are 
parallel. As in Theorem 3.4, an easy reasoning leads to 

Theorem 3.6. Let M be a nondegenerate surface in L3 with 
nonzero constant mean curvature which are foliated by pieces of circles 
in parallel planes. Then M is a surface of revolution. 

From Theorems 3.5 and 3.6, we have 

Corollary 3.7 ([11], [12]). All cyclic nondegenerate surfaces in 
L 3 with nonzero constant mean curvature are surfaces of revolution. 

This result claims that there exist no 'Riemann type surfaces' in L 3 

with nonzero constant mean curvature. 

§4. Cyclic surfaces of constant Gauss curvature in Euclidean 
space 

We close this paper with a study of cyclic surfaces in E 3 with con
stant Gaussian curvature. We have the following two results: 

Theorem 4.1. Let M be a surface in E 3 with constant Gauss 
curvature which is foliated by pieces of circles. Then M is contained in 
a sphere or, in the non-spherical case, the planes containing the circles 
of the foliation must be parallel. 
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Theorem 4.2. Let M be a surface in E 3 with constant Gauss 
curvature K which is foliated by pieces of circles in parallel planes. 

1. If K :/= 0, then M is a surface of revolution. 
2. If K = 0, then the surface is not necessarily rotational. How

ever, the curve of centers is a straight-line and the radius of 
the circles is given by a linear function on the parameter of the 
foliation. 

As a consequence of these theorems, we have: 

Corollary 4.3 ([13]). All cyclic surfaces in E 3 with nonzero con
stant Gauss curvature are surfaces of revolution. 

In a sense, this corollary is the analogue of Nitsche's theorem for 
nonzero constant mean curvature cyclic surfaces in E3 . 

Proof. The proof of Theorem 4.1 is similar to Theorem 3.3. By 
contradiction, assume that the u-planes containing the circles are not 
parallel. Consider a curve r( u) orthogonal to each u-p lane. Then M 
can be parametrized in the form 

X(u, v) = c(u) + r(u)(cosvn(u) +sin v b(u)), 

where ( t, n, b) denotes the Frenet frame of r. The formula for the Gauss
ian curvature in local coordinates with respect to X is: 

eg-JZ 
K= EG-F2 . 

By using the Frenet equations as in Theorem 3.3, the above equation 
implies that 

4 4 

L An(u) cosnv + L Bn(u) sin nv = 0. 
n=O n=l 

This is a linear combination of the independent functions cos nv and 
sin nv. Thus An = Bn = 0 for all n. A delicate study with the coef
ficients An, Bn concludes that M is contained in a sphere in the case 
that K > 0 or a contradiction. Theorem 4.2 is proved by considering 
a more explicit parametrization of the surface. After a rigid motion in 
E3 , we may assume that the planes containing the circles are parallel to 
the plane X3 = 0. Then the parametrization of M is in the form 

X(u, v) = (a(u) + r(u) cosv, b(u) + r(u) sinv, u), 

where a, b, r > 0 are smooth functions on u. Then we compute the 
Gaussian curvature K. If K :/= 0, we conclude that a' = b' = 0, that is, 
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the curve of centers of the circles is a vertical straight-line orthogonal to 
each u-plane of the foliation. Thus M is a surface of revolution. In the 
case K = 0, we obtain a" = b" = r 11 = 0. D 

Remark 3. Recently the present author has extended Theorems 
4.1 and 4.2 to the case of the Lorentz-Minkowski space L3 [14]: a non
degenerate cyclic surface in L 3 with nonzero constant Gauss curvature 
is a surface of revolution. The result is divided into two parts. First, it 
is proved that the planes of the foliation are parallel and secondly, we 
prove that the surface is rotational. The proof follows the same steps 
as in Theorems 4.1 and 4.2, but needs to take care of extra complica
tion that there are three cases to distinguish according to the causal 
character of the planes that define the surface (see Theorems 3.3 and 
3.5.) 
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