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On 4-dimensional CR-Submanifolds of a 
6-dimensional Sphere 

Hideya Hashimoto, Katsuya Mashimo and Kouei Sekigawa 

Abstract. 

We prove several fundamental properties of 4-dimensional CR­
submanifolds of a nearly Kahler 6-dimensional sphere and construct 
explicit examples of such submanifolds. 

§1. Introduction 

Let 8 6 be the 6-dimensional unit sphere centered at the origin of a 
7-dimensional Euclidean space R 7 . We denote by 0 the normed algebra 
of octonions (or Cayley algebra) and identify the set of pure imaginary 
octonions Im 0 with R 7 . An almost complex structure on 8 6 is defined 
as follows: 

where x denotes the cross product of octonions. The almost complex 
structure J is compatible with the canonical metric ( , ) and the almost 
Hermitian structure ( J, (, ) ) on 8 6 is nearly Kahler ( [F-I]). 

In this paper, we shall study 4-dimensional CR-submanifolds of the 
nearly Kahler manifold (86 , J, (,) ). Let M be a submanifold of 8 6 • We 
put 1tx = TxM n J(TxM) for x E M and denote by rtt the orthogonal 
complement of 1tx in TxM. If the dimension of 1tx is constant and 
J(rtt) C TfM for any x E M, the submanifold Miscalled a CR 
submanifold. 

Concerning the existence of almost complex submanifolds and to­
tally real submanifolds of (86 , J, (,) ), many results have been obtained 
(see, [Gr], [Se]). On the other hand, about the existence of CR-submani­
folds, only a result by Sekigawa was known before our previous paper 
([H-M]), in which the first and the second authors proved that there 
exist many 3-dimensional CR-submanifolds. 

One aim of this paper is to give some topological restrictions on 
the existence of compact 4-dimensional CR-submanifolds of 8 6 • For 
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example, we prove that the Euler number of a compact 4-dimensional 
CR-submanifold is equal to zero. We also consider the integrability 
of the distributions 1-{ and 1-{ j_. Many examples of 4-dimensional CR­
submanifolds of S6 will be given in the last section. 

The authors wish to express their gratitude to Professor Yasuo Mat­
sushita for his many valuable comments on characteristic classes. 

§2. Preliminaries 

Let Q be the skew field of all quaternions. The algebra of octonions 
0 is the direct sum 0 = Q EB Q with the following multiplication: 

(q, r) · (s, t) = (qs- t< r, tq + r s'), q, r, s, t E Q, 

where ' means the conjugation in Q. We define a conjugation in 0 by 
(q, r)' = (q', -r), q, r E Q, and an inner product (,) by 

(x. y' + y. x') 
(x, y) = 2 , x, y E 0. 

We denote by G 2 the group of automorphisms of 0, that is, 

G 2 = {g E GL(8, R); g(uv) = g(u)g(v) for any u, v E 0}. 

Each element of G 2 leaves invariant the identity element (1, 0) and its 
orthogonal complement Im 0. Thus we may regard G 2 as a subgroup 
of GL(7,R) = GL(ImO). 

Now, we define a basis of C ® Im 0, 

as follows: 
c:=(0,1)EQEBQ, 

E1 =iN, E2 = jN, E3 = -kN, 

E1 =iN, E2 =jN, E3 = -kN, 

where N = (1- Hc:)/2, N = (1 + Ac:)/2 E C ® 0. We denote 
also by g the complex linear extension of g E G 2 . A basis ( u, J, f) of 
C ® Im 0 is said to be admissible, if there exists an element g of G 2 

such that (u, J, f) = (c:, E, E)g. We identify an element of G 2 with 
an admissible basis by the injection 

~ : G 2 ----> GL(7, C) ; g f--+ (c:, E, E)g. 
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We denote by Mpxq(C) the set of p x q complex matrices. Let [a] 
be the element given by 

for a= t (a1 a2 a3 ) E M3xl(C). Then we have 

[a]b + [b]a = 0, 

where a, b E M3 x 1 (C). We adopt the matrix representation of elements 
of GL(7, C) with respect to (s, E, E). 

Proposition 2.1 (cf. Bryant [Br]). Thepull-backlP ofthe Maurer­
Cartan form of GL(7, C) is of the form 

(2.1) cp = (-2J=r e 
2y'=I7J [B] 

where K, = ("'Ji) (1 :::; i,j :::; 3) (resp. e = t (81 82 83 )) is an _su(3)­
valued (resp. M 3 x 1 (C)-valued) left invariant 1-forms. The Maurer­
Cartan equation dlP = -lP 1\ ip reduces to 

(2.2) 
(2.3) 

- "' 1\ e + [e] 1\ e, 
- "' 1\ "' + 3e 1\ t e- (te 1\ e) Js. 

§3. Structure equations 

Let r.p : M --+ S 6 be a 4-dimensional submanifold of S 6 • We denote 
by \7 (resp. D) the Levi Civita connection of M (resp. S 6 ) and by Vj_ the 
induced connection on the normal bundle of M in S 6 . We denote by a 

the second fundamental form and Av the shape operator in the direction 
of v. The Gauss and the Weingarten formulas are given respectively by 

r.p*(\7 x Y) +a( X, Y), 

-cp*(Av(X)) + Vj_xv, 

where X, Y are tangent vector fields and v is a normal vector field. 
Let r.p : M --+ S 6 be an oriented 4-dimensional CR-submanifold of 

S6 • Define an orientation on 1-l j_ in such a way that an orthonormal base 
{6,6} of 1-l:}; for p EM is oriented if and only if {v, J(v), 6, 6} is 
oriented for some unit vector v E 1-lp. 



146 H. Hashimoto, K. Mashimo and K. Sekigawa 

Lemma 3.1. Take an oriented orthonormal base {~1, 6} of 'H* 
for p E M. The vector 6 X 6 is an element of 'Hp and is independent 
of the choice of the base. 

We denote by F the bundle of unit vectors of 'Hj_. For a vector~ E F 
we denote by e the vector such that { ~' e} is an oriented orthonormal 
frame of F. We define a mapping '¢ : F--+ GL(7, C) by 

where 

'¢(~) = (cp 0 7r(~), f,f) 

1 
2(~- HJ~), 

~((-HJ(), 

- h x 12 = -~ (~ x e- J=IJ(~ x o). 
2 

Define C Q9 Im 0-valued functions h, 81 and 82 on F as follows: 

f3((cp 0 7r(0, f,f)) = h, 
31 ((cp 0 7r(~), f,f)) = ~' 
22 ((cp o 1r(~), f, 7)) =e. 

Note that the image of the mapping'¢ is contained in L(G2)· Also any 
element of the fibre is expressed as cos( e) ~ + sin( e) e. 

Proposition 3.2. Restricting the 1-forms ""ij and ei given in 
Proposition 2.1 to F, we have the following: 

(3.1) dcp 0 7r* 

(3.2) e3 (X) 

e1 (X) 

(3.3) e2 (X) 

(3.4) df3 

r3 0 ( -2V=I e3 ) + r3 0 (2H e3 ) 

+ 82 0 J.L2 + 81 0 J.L1, 

R \ 1r*dcp(X), r3), 

A;* -~)A -- 2- \ 1r dcp(X), .::.1 = - 2-J.L1(X), 

A; - ) A -- 2- \ 1r*dcp(X), 3 2 = - 2-J.L2(X), 

1r o '¢ 0 ( -R e3 ) + r3 0 ""33 
~ 1 (A 2) + =-2 0 2 - 2-J.L1 + ""3 
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(3.5) 

(3.6) d81 

~ 1 (A 1) - .::.1 0 2 -2-f-12 - l'b3 

- J32 0 ~ (~f..l1 + HK32) 

+ J31 0 ~ ( ~ f..l2 - HK31) ' 

7f 0 'lj; 0 ( -f..l2) + f3 0 ( K2 3 + ~ f..l1) 

+ f3 0 ( K2 3 - ~ f..l1) 

+ 21 0 ~(K2 1 + K2 1 + rP + 03) 

- J32 0 ( HK22) 

A 1- 3-+ J31 0 - 2-( -K2 + K2 1 + (} - 03), 

( 3 A ) 7f 0 'lj; 0 ( -f..l1) + f3 0 K1 - - 2-f..l2 

+ f3 0 (K13 + ~ f..l2) 

1 2 - 3 -+ 32 0 2(K1 + K1 2 - (} - 03) 

A 2- 3-+ J32 0 - 2-( -K1 + K1 2 - (} + 03) 

+ J81 0 ( -V-1K1 1 ), 

. ( A) f3 0 V-1 K2 3 - --T-f-11 

- 11(- A ) 11 2 - f3 0 Y -1 K2 3 + - 2-f-11 + 32 0 Y -1K2 

A 1- 3-+ 31 0 - 2-(K2 - K2 1 + (} - 03) 

1 1 - 3 -+ J31 0 2(K2 + K2 1 - (} - 03), 

11( 3 A ) f3 0 Y -.1 K1 + - 2 -f-12 

- f3 0 V-1 ( K1 3 - ~ f..l2) 
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- A( 2 -2 3 3) + .::.2 ® - 2- K:1 - K:1 - 8 + 8 

+Bl ® HK:I 1 

+ JB2 ® ~ ( K:1 2 + K:1 2 + 83 + 83). 

Remark 3.3. From Lemma 3.1, there exists a complex valued 
global1-form 8 on M 4 such that n*8 = 83. 

Next we give the explicit expression of the integarability conditions 
(2.2) and (2.3). 

Lemma 3.4. On F, we have the following: 

(3.9) 

(3.10) 

(3.11) 

(3.12) dK:3 3 

(3.13) dK:ii 

(3.14) dK:2 1 

(3.15) dK:31 

(3.16) dK:32 

-K:11 1\ ILl_ K:21 1\ IL2 

- K:3 1 1\ ( -2v=:t 83) + 2~L2 1\83, 
_K:12 1\ ILl _ K:22 1\ IL2 

- K:3 2 1\ ( -2R 83)- 2~L 1 1\83, 

A ---(K:l3 /\ILl+ l'i:23 /\~L2) 
2 

1 
_ l'i:3 3 1\ 83 + 2 ~L 1 1\ ~L 2, 

3 
"'""'3. 3-

- ~ l'i:j 1\ l'i:3J + 28 1\ 83' 
j=l 

3 

-2: l'i:/ 1\ l'i:ij- 83 1\83 (i = 1, 2), 
j=l 

3 4 
- 2:/'i:/ /\i'i:2j + 31Ll /\IL2, 

J=l 

~ 1 · 3A 1 -
- ~ l'i:j 1\ l'i:3J + -2- IL 1\ 83' 

j=l 
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Finally we shall represent the connection 1-form \ (d3I)(X), 32 ) of 

the S 1 bundle F explicitely, in terms of the local data. We put 

d I . 8e = de e=o (cos( e)~ + sm( e)() = (, 

and denote by de its dual1-form. By (3.6), we obtain 

In particular, we have (1/2)(K2 1 + K2 1 )(8e) = 1. 

§4. Topological restrictions 

In this section we prove several topological properties of 4-dimensional 
CR-submanifolds of S6 . From Lemma 3.1 and Hopf's Index theorem, we 
immediately obtain the following 

Proposition 4.1. Let <p : M 4 ----> S 6 be an oriented 4-dimensional 
CR-submanifold of S 6 . Then both of the Euler class of M 4 and the Euler 
class of the complex subbundle 7-{ over M vanish. If M 4 is compact, then 
the Euler number x(M4 ) is equal to zero. In particular, S4 , S 2 X S 2 and 
CP2 can not be immersed into S 6 as a CR-submanifold. 

Next we shall establish the relations of the various characteristic 
classes of the bundles 7-{, 7-{j_ and Tj_ M 4 over M 4 . We denote by h-t 
the restriction to 7-{ of the almost complex structure of S 6 , and J' the 
almost complex structure on 7-{j_ such that the orientaion determined 
by the almost complex structure J 1 = JH E9 J' on M coincides with that 
given on M. We denote by Jz the opposite almost complex structure: 
J2 = JH E9 (-J'). We also denote by J j_ the almost complex structure of 
Tj_ M 4 which is compatible with the orientation of Tj_ M 4 • Recall that 

( 4.1) 

Let V be the direct sum V = 7-{j_ E9 Tj_ M 4 . We denote by Jv the 
restriction to V of the almost complex structure J of S 6 . We denote by 
V(l,O) (resp. vco,l)) the set of vectors of type (1,0) (resp. (0,1)) in the 
complexification V Q9 C. 

Proposition 4.2. Let <p : M ----> S 6 be an oriented 4-dimensional 
CR-submanifold of S 6 . Then we have in H*(M; Z) 

(1) e(7-f) = c1 (7-f(l,O))(= c1 (7-f(l,O), JH)) = 0, 
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P1 (T M4) = { c1 (7-l_l(1,0), J') p = -{ c1 (T_i(1,o) M4' J _l )}2, 

p1(V) = 0, 
c1 (V( 1,o)) = 0, 

where we denote by P1 ( ) ( resp. c1 ( ) ) the first Pontrjagin ( resp. Chern) 
class and by e( ) the Euler class of the respective bundles. 

Proof. By Lemma 3.1, we get (1) immediately. For (2), we calcu­
late the second Chern class of the complexified tangent bundle T M 4 Q9 C 
by making use of the above decomposition. Then, we have 

c(7-l(1,o) EB 7-{(0,1) EB 7-{_1_(1,0) EB 7-{_1_(0,1)) 

(1- {c1(7-l(1,0))}2)(1- {c1(7-l_i(1,0))}2). 

Therefore we have c2(TM4Q<JC) = -{c1(7-l(1•0l)P-{c1(7-{_i(1•0))} 2, from 
which we get P1 (T M 4) = { c1 (7-{(1•0))}2 + { c1 (7-l_i(1•0)) V Hence we have 
(2). 

Next, we prove (3) and ( 4). From the decomposition rp* (T(1,o) S 6 ) IM4 
= 7-{(1,0) EB y(1,o) and c(T(1,o) S 6 ) = 1, we have 

1 1 + c1(7-{(1,0)) + c1(V(1,0)) 

+ c1(7-{(1,0))c1(V(1,0)) + c2(y(1,0)) + c1(7-{(1,0))c2(V(1,0)). 

Thus we obtain (4). Since c2(V(1•0)) = 0, we havep1(V) = -c2(VQ<JC) = 
c1(V(1,o))2- 2c2(V(1,o)) = 0. 0 

Theorem 4.3. Let rp : M 4 ----> S 6 be an oriented 4-dimensional 
CR-submanifold of S 6 . Then the first Portrjagin class of M 4 vanishes. 
In particular, if M 4 is compact, its Hirzebruch signature is equal to zero. 

Proof. First we can show that the structure group of the vec­
tor bundle V reduces to Sp(1) ~ SU(2). The vector bundle V = 

7-l _i EB T_i M 4 admits two different orthogonal almost complex structures 
J'EBJ_i and Iv. We may easily check that the composition (J'EBJ_i)oJv 
is also an orthogonal almost complex structure on V. Furthermore, 
these three orthogonal almost complex structures satisfy the quater­
nionic relations. Thus we get c1 (V, ( J' EB J _i)) = c1 (V, - ( J' EB J _i)) = 

-c1(V, (J' EBJ_i)) (see [p.46; Theorem (5.11); Kob]). Therefore, we have 

from which we get immediately c1 (7-l_i(1•0l) + c1 (T_i(1,o) M 4) = 0. There­
fore, by Proposition 4.2 (2), we obtain the desired result. D 
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§5. Distributions H and Hj_ 

Proposition 5.1. The totally real distribution Hj_ of an oriented 
4-dimensional CR-submanifold r.p : M --+ S 6 is not involutive. 

Proof. By Frobenius' theorem, Hj_ is involutive if and only if 

(5.1) 

From 3.12, we have 

where { E 1 , E2} is the dual basis of {Mr, Md. Thus (5.1) is equivalent to 

On the other hand, taking account of (3.5), (3.6) and n*dr.p(E;) = 3; for 
i = 1, 2, we get 

H (2(u(B2,h),JBr)- ~), 

H (2(u(Br,h),JB2) + ~). 

Finally, by (3.6) and (3.7), we have 

-H + "'r 3 (E2)- r;,2 3 (Er) 

-2H + 2H ( (u(B2, h), JBr)- (u(Br, h), JB2)) 

-2J=I + 2J=1 ( (dB2(f3), JBr)- (dB1 (f3), JB2)) 

-2H- 2e3(f3) 

-3H, 

which is a contradaiction. 0 
As an immediate consequence of Proposition 4.2 (1), we have the 

following lemma on the involutivity of the distibution H. 

Lemma 5.2. Let r.p : M 4 --+ S 6 be an oriented 4-dimensional CR­
submanifold of S 6 . If the distribution H is involutive, then each compact 
leaf of H is homeomorphic to a torus. 

Let r.p : M --+ S 6 be an oriented 4-dimensional CR-submanifold of 
S6 • Take a (locally defined) oriented orthonormal frame { 6, 6} of H j_. 

We put e1 = 6 x 6, e2 = J(er) and denote by w1, w2, w3, w4 the 
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dual1-forms of ei, e2 , 6, ~2 , respectively. From Lemma 3.1, WI, w2 are 
independent of the choice of the frame, and it is easily seen that so is 
the 2-form W3 1\ W4. 

Proposition 5.3. Let r.p : M ____, S 6 be an oriented 4-dimensional 
CR-submanifold of S 6 . The pull-back by 1r : F ____, M of the complex 
valued 3-form 

(wi + Hw2) 1\ w3 1\ w4 

is equal to 2y'=IB3 1\ f.li 1\ f.l2 and is a closed form. 

Proof By (3.10), (3.11) and (3.12), we have 

d( 83 1\ f.li 1\ f.l2) = - ( /'\,3 3 + /'\,2 2 + "'II) 1\ 83 1\ f.li 1\ f.l2 = 0. 

D 

Remark 5.4. The proposition 5.3 is equivalent to the fact that 
div(ei) = div(J(ei)) = 0. 

§6. Examples 

In this section, we give two kinds of 4-dimensional CR-submanifolds 
of S 6 . A 4-dimensional submanifold M of S 6 is a CR-submanifold if and 
only if the normal bundle Tj_ M of M is a totally real sub bundle (namely, 
rl(Tj_ M) = 0 1\ rl(TM) = 0, where 0 is the fundamental 2-form of S6 

defined by rl(X, Y) = (JX, Y) for X, Y E X(S6 )). 

Proposition 6.1. Let '"Y : I ____, S 2 c Im Q be a regular curve in 
the unit 2-sphere. Then the following immersion 'ljJ :I X Sp(1) ____, S 6 is 
a 4-dimensional CR-submanifold of S 6 : 

where a, b are positive real numbers satisfying a2 + b2 = 1. 

Proof It is easy to verify that the vector fields 

VI = )'(t) X '"'f(t), v2 = b'"'((t)- aq'c 

form an orthonormal frame field of the normal bundle and satisfy 
(vi, J(v2)) = 0. D 

For an element (z, q) of U(1) x Sp(l), we have an automorphism 
T(z, q) of the Cayley algebra defined by 

(6.1) (T(z, q))(r + sc) = (qrq') + (zsq')c, r, sEQ, r + r' = 0. 



4-dimensional CR-Submanifolds of a 6-dimensional Sphere 153 

We denote by L the image of the Lie group homomorphism T: U(1) x 
5p(1)--+ Aut(O) = Gz. 

It is easily verified that on each orbit of the action of L on 5 6 , there 
exists a point of the form ai + (b + cj)s with a ?: 0, b ?: 0, c ?: 0 and 
a2 + b2 + c2 = 1. 

Proposition 6.2. For any positive numbers a, b, c satisfying a 2 + 
b2 + c2 = 1, the orbit 

a(qiq<) + (z(b + cj)q<) s, z E U(1), q E 5p(1), 

is a 4-dimensional CR-submanifold of 5 6 . 

Proof. We denote by X* a Killing vector field on 5 6 induced by 
X E T1 (U(1) x 5p(1)). If we denote by X 0 ,X1,X2,X3 the vectors 
( i, 0), (0, i), (0, j) ,(0, k) of T1 (U(1) x 5p(1)) respectively, then the tangent 
space Tp0 ( L(p0 )) of the orbit L(po) through the point Po = ai + (b + cj)s 
is spanned by the vectors 

Xo*(po) =(bi+ck)s, xl *(po) = ( -bi + ck)s, 
Xz *(po) = -2ak + (c- bj)s, x3 *(po) = 2aj- (ci + bk)c. 

From 

{ 
6abc, 

O(Xt(Po), Xj(po)) = a(5- 9a2 ), 

0, 

if i = 0, j = 2, 
if i = 2, j = 3, 
otherwise, 

we easily obtain 

D 

Proposition 6.3. The orbit of L through the point p = ai+(b+cj)s 
(a, b, c ?: 0, a 2 + b2 + c2 = 1) is a minimal submanifold of 5 6 if and only 
if 

-J3+V57 a- 24 ' 
b = c = J21- vm_ 

48 

Proof. With respect to the basis { Xo (Po), X 1 (Po), Xz (Po), X3 (Po)}, 
the induced metric g is represented as follows: 

0 
0 

3a2 + 1 
0 

-2bc ) 
0 
0 . 

3a2 + 1 
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Since the orbit of the action (6.1) through a point p = (ai) + (b + cj)c 
(a, b, c > 0) is diffeomorphic to U(2), the volume of the orbit is equal 
to 

const. x det(g) = const. x 4abcV1 + 3a2 • 

Considering the extremal of the volume under the condition a2 +b2 +c2 = 
1, we obtain the result. D 
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