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On 4-dimensional CR-Submanifolds of a
6-dimensional Sphere

Hideya Hashimoto, Katsuya Mashimo and Kouei Sekigawa

Abstract.

We prove several fundamental properties of 4-dimensional CR-
submanifolds of a nearly Kdhler 6-dimensional sphere and construct
explicit examples of such submanifolds.

§1. Introduction

Let S® be the 6-dimensional unit sphere centered at the origin of a
7-dimensional Euclidean space R”. We denote by O the normed algebra
of octonions (or Cayley algebra) and identify the set of pure imaginary
octonions Im O with R”. An almost complex structure on S° is defined
as follows:

JX =X xz, z€S8% X T, (S%,

where X denotes the cross product of octonions. The almost complex
structure J is compatible with the canonical metric { , ) and the almost
Hermitian structure (J, (,)) on S is nearly Kéhler ([F-1)).

In this paper, we shall study 4-dimensional CR-submanifolds of the
nearly Kihler manifold (S, J, (,)). Let M be a submanifold of S¢. We
put Hy = T, M N J(T,M) for x € M and denote by H;- the orthogonal
complement of H, in T, M. If the dimension of H, is constant and
J(HL) € T} M for any x € M, the submanifold M is called a CR
submanifold.

Concerning the existence of almost complex submanifolds and to-
tally real submanifolds of (S, J, (,)), many results have been obtained
(see, [Gr], [Se]). On the other hand, about the existence of CR-submani-
folds, only a result by Sekigawa was known before our previous paper
([H-M]), in which the first and the second authors proved that there
exist many 3-dimensional CR-submanifolds.

One aim of this paper is to give some topological restrictions on
the existence of compact 4-dimensional CR-submanifolds of S%. For
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example, we prove that the Euler number of a compact 4-dimensional
CR-submanifold is equal to zero. We also consider the integrability
of the distributions H and H+. Many examples of 4-dimensional CR-
submanifolds of S will be given in the last section.

The authors wish to express their gratitude to Professor Yasuo Mat-
sushita for his many valuable comments on characteristic classes.

§2. Preliminaries

Let Q be the skew field of all quaternions. The algebra of octonions
O is the direct sum O = Q © Q with the following multiplication:

(qar)'(s7t):(q5_# TatQ+7"5L)) q,7,8,t€Q,

where * means the conjugation in Q. We define a conjugation in O by
(g,7) =(¢*,—7r), q,7 € Q, and an inner product (,) by

(@, >:<w-_y-2ty~_w>, Y

We denote by Go the group of automorphisms of O, that is,
G2 = {g € GL(8,R); g(uv) = g(u)g(v) for any u, v € O}.

Each element of G leaves invariant the identity element (1,0) and its
orthogonal complement Im O. Thus we may regard Gs as a subgroup
of GL(7,R) = GL(Im O).

Now, we define a basis of C ® Im O,

(6, E,E) = (¢,E1, Ea, E3, E1, Eo, E3)
as follows:
e=(0,1)eQeQ,
Ey = iN, Ey = jN, B3 = —kN,
E,=iN, E; =jN, E3 = —kN,
where N = (1 — /—1£)/2, N = (1 + v/—1¢)/2 € C ® O. We denote

also by ¢ the complex linear extension of g € G3. A basis (u, f, ?) of
C ®ImO is said to be admissible, if there exists an element g of Gz
such that (u, f, f) = (¢, E, E)g. We identify an element of G with

an admissible basis by the injection

t: Gy > GL(7,C); g (e, E, E)g.
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We denote by M, 4(C) the set of p x ¢ complex matrices. Let [a]
be the element given by

0 as —az
[a] = | —as 0 ay S M3X3(C)
ag —al 0

for a ="* (a1 as a3 ) € M3x1(C). Then we have

[a]b + [b]a =0,
where a,b € M3.1(C). We adopt the matrix representation of elements
of GL(7, C) with respect to (¢, E, E).

Proposition 2.1 (cf. Bryant [Br]). The pull-back ® of the Maurer-
Cartan form of GL(7,C) is of the form

0 —/=1% /-1
(2.1) ®=|-2y/-16 K [0]
2v/—16 6] R
where k& = (k;") (1 < 4,5 < 3) (resp. 8 = (6 6% 6%)) is an su(3)-
valued (resp. Msy1(C)-valued) left invariant 1-forms. The Maurer-
Cartan equation d® = —® A ® reduces to

(2.2) dd = —rx ANO+[0) A6,
(2.3) de = — Kk AK+30AN"0-(0 N0 I

§3. Structure equations

Let ¢ : M — S% be a 4-dimensional submanifold of S6. We denote
by V (resp. D) the Levi Civita connection of M (resp. S%) and by V+ the
induced connection on the normal bundle of M in S®. We denote by ¢
the second fundamental form and A, the shape operator in the direction
of v. The Gauss and the Weingarten formulas are given respectively by

DX(QD*(Y)) = (p*(VXY)+0(X7Y)7
Dxv = —¢.(A,(X))+V xv,

where X, Y are tangent vector fields and v is a normal vector field.

Let ¢ : M — S® be an oriented 4-dimensional CR-submanifold of
S6. Define an orientation on H-L in such a way that an orthonormal base
{&,&} of 'HI',L for p € M is oriented if and only if {v, J(v), &1, &} is
oriented for some unit vector v € H,,.
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Lemma 3.1. Take an oriented orthonormal base {£1,&2} of ’HI;L
for p € M. The vector & x & is an element of Hy and is independent
of the choice of the base.

We denote by F the bundle of unit vectors of H*. For a vector £ € F
we denote by ¢ the vector such that {£,&’} is an oriented orthonormal
frame of F. We define a mapping ¢ : F — GL(7,C) by

¥(€) = (pon(é),f,f)

where
fo= 5e-v1ae),
o= € VL),
fo = “RxX =y (Ex € —VTTIExE)).
Define C ® Im O-valued functions f3, =; and Z2 on F as follows:

fs (o (&), £, 1)) = fa
Ei ((pom(®), £, 1) =¢
2 ((pom(é),f, f)) =¢.

Note that the image of the mapping v is contained in ¢«(Gz). Also any
element of the fibre is expressed as cos(d) & + sin(6) &'

Proposition 3.2.  Restricting the 1-forms ks and 6 given in
Proposition 2.1 to F, we have the following:

£:0(-2v—1 0% + 5 ® (2v—1 63)
+E2 @ po + E1 @ pa,

(82) *(X) = V-1(r"de(X).5),

(3.1) dpom,

01()2) = ? <7T*d(p(X)7EI> = _ Hl(X)’
63) 2% = Y (rap(8).2) - L)
(34) dfs = mwo 1/) & (—\/—_1 %) +f3® K}33

1 /-1
+52®§( 5 1 +l€32)



4-dimensional CR-Submanifolds of a 6-dimensional Sphere

(35)  d=,

(3.6) d=

(3.7) d(JEs)

(3.8) d(JEy)

_ 1 /-1
—21®—( 2 Hz—/‘isl)

1/1
—-JE2® 3 (§N1 + v —1532>

1/1
+JE1® 5 (‘2‘M2 -V —1H3I>a

V-1
Toth ® (—p2) +f3® (’i23+ 5 Hl)
v—1
+f3® (1{2 — 2 ,LL1>
1 S _
+5,® 5(;@21 + kol + 6% +63)
— JEQ ® (\/ —1&22)

=1 J— —
+JE5:® T(""‘Ql + kol + 6% — 63),

ToY ®(— u1)+f3®<m - \/;—1#2>

— [(— 1
+ f3 (24 <K:13 + 2 [,l,g)
1 R —_
+ EQ ® —(K',12 + K,12 — 03 — 93)

+J._‘2®—-( Kfl +’€1 03"'03)
+ JE1 @ (—V—1k11),

- V-1
fs V-1 (K23 - H1>

2
—E(X)«/—l <—3

v —1 N —
+E]_ ® ——2—(Ii21 - K,21 +03 - 93)

+JE1® = (Kzz +162 -6 - 9_3),

f3®\/—_1( 3 \/2——1112)

—E@\/:T(EF— \/;—_1“2)

Hl) + 5 ® V—1ko?

147
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+E2® (k1% — K12 — 603 4 63)
+El ®\/ —1/4)11

1 — —
+JE,® §(n12 + K12 + 0% +63).

Remark 3.3. From Lemma 3.1, there exists a complex valued
global 1-form © on M* such that 7*© = 63.

Next we give the explicit expression of the integarability conditions
(2.2) and (2.3).

Lemma 3.4. On F, we have the following:

(3.9) dpt = —kiPApt — kol A p?
— k3t A (=2V/=1 63) + 21 A 63,
(3.10) dp? = —kiZApt — k2 A 2
— Ka% A (=2v—1 6%) — 2ut A 63,
v—1
(3.11) ag®* = - 5 (k1% A pt + K23 A p?)

1
—533/\03+ 5,11:1/\[1/2,

3
(3.12) drs® = =k Nrs? + 205 NGB,
j=1
(3.13) dei’ = =D KARS AP (i=1,2),
1 1 j 4 4 2
(3.14) dkg™ = —an N k2! + ot A,
j=1
2 3V-1 |
(3.15) drs' = —anl/\/i33+——2—,u1/\03,
J=1
V 2

(3.16) drs® = = ki® Nkg! +——— A B3,
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Finally we shall represent the connection 1-form <(d51)(X ), Ez> of
the S* bundle F explicitely, in terms of the local data. We put

d
6 = —
T

 (cos(0)¢ +sin(0)¢') = €,

[4

and denote by df its dual 1-form. By (3.6), we obtain

<(d51)(5(), 52> = _%(@1 +ral +6° 4+ 6%)(X)= <Vd7r()~()€1,§2>+d0(X).

In particular, we have (1/2)(k2® + k21)(8p) = 1.

84. Topological restrictions

In this section we prove several topological properties of 4-dimensional
CR-submanifolds of S®. From Lemma, 3.1 and Hopf’s Index theorem, we
immediately obtain the following

Proposition 4.1. Let ¢ : M* — 5% be an oriented 4-dimensional
CR-submanifold of S. Then both of the Euler class of M* and the Euler
class of the complex subbundle H over M vanish. If M* is compact, then
the Euler number x(M?*) is equal to zero. In particular, S*, 5% x S% and
CP? can not be immersed into S® as a CR-submanifold.

Next we shall establish the relations of the various characteristic
classes of the bundles H, H+ and T+M* over M*. We denote by Jy
the restriction to H of the almost complex structure of S®, and J’ the
almost complex structure on H* such that the orientaion determined
by the almost complex structure J; = Jy & J’ on M coincides with that
given on M. We denote by J, the opposite almost complex structure:
Jy = Jy®(—J"). We also denote by J+ the almost complex structure of
T+ M* which is compatible with the orientation of T-M*. Recall that

(4.1) ©* (TS| s = HOHt © TH M.

Let V be the direct sum V = Ht @ T-M*. We denote by Jy the
restriction to V of the almost complex structure J of S¢. We denote by
V(L0 (resp. V(®1) the set of vectors of type (1,0) (resp. (0,1)) in the
complexification V ® C.

Proposition 4.2. Let ¢ : M — S® be an oriented 4-dimensional
CR-submanifold of S®. Then we have in H*(M;Z)

1) e(H) =c(HO) (= cr(HMD, Jy)) =0,
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(2)  p(TM*Y) = {aM 0,0 = {a(THHOM?, T2,
(3)  m(V)=0,
(4) a1 (V(LO)) =0,
where we denote by p1( ) (resp. c1( )) the first Pontrjagin (resp. Chern)
class and by e( ) the Euler class of the respective bundles.

Proof. By Lemma 3.1, we get (1) immediately. For (2), we calcu-
late the second Chern class of the complexified tangent bundle TM*® C
by making use of the above decomposition. Then, we have

(TM*®C) = c(HMO) @HOD gHHLO) ¢HtOD)
= (L= {a™"NP)A~{a@ 7)),

Therefore we have ¢;(TM*®C) = —{c; (H10)}2—{e; (H-(19)}2) from
which we get p1 (TM*) = {c1(HM0)}2 + {e; (HE19))}2, Hence we have
(2).

Next, we prove (3) and (4). From the decomposition ¢* (T §6)| a4
=HOO @ V10 and ¢(T19) S6) = 1, we have

1 =1 + (H(l’o)) + (6] (V(l’o))
+ e (HO) ey (VA0) 4 ey (VDY 4 ¢ (HED) ey (VED),

Thus we obtain (4). Since co(V19) = 0, we have p; (V) = —co(VRC) =
Cl(V(l’O))z — QCQ(V(l’O)) = 0. O

Theorem 4.3. Let ¢ : M* — S8 be an oriented 4-dimensional
CR-submanifold of S®. Then the first Portrjagin class of M* vanishes.
In particular, if M* is compact, its Hirzebruch signature is equal to zero.

Proof. First we can show that the structure group of the vec-
tor bundle V reduces to Sp(1) =~ SU(2). The vector bundle V =
HL @ T+ M* admits two different orthogonal almost complex structures
J'®J+ and Jy. We may easily check that the composition (J'®.J+)oJy
is also an orthogonal almost complex structure on V. Furthermore,
these three orthogonal almost complex structures satisfy the quater-
nionic relations. Thus we get ¢, (V, (J' ® J4)) = 1 (V,—(J' @ J1)) =
—c1(V, (J'@J1)) (see [p.46; Theorem (5.11); Kob)]). Therefore, we have

a(V,(J @ JY) =c(HE, J) + e (THM*, J4) =0,

from which we get immediately c; (H+®19) 4 ¢ (T+(10) M%) = 0. There-
fore, by Proposition 4.2 (2), we obtain the desired result. O
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§5. Distributions 7 and H*

Proposition 5.1.  The totally real distribution H* of an oriented
4-dimensional CR-submanifold ¢ : M — S8 is not involutive.

Proof. By Frobenius’ theorem, H* is involutive if and only if
(5.1) do* =0 mod {6% 63, d6}.

From 3.12, we have

J=1 —
de? = 5 (—V=1+£13(E2) — k2*(E1)) 1 A mod {6°,63,d6},
where {F1, Ey} is the dual basis of {1, p2}. Thus (5.1) is equivalent to

—\/—_1 4= I€13(E2) — 523(E1) = 0.

On the other hand, taking account of (3.5), (3.6) and n*dp(E;) = E; for
1 =1,2, we get

(B = VI (2(0(= R IE) - 3 ),

— =\ 1
H23(E1) = -1 <2<0'(:1,f3),J.:.2>+'2—> .
Finally, by (3.6) and (3.7), we have

—V=1+4 k1%(E2) — 62°(E1)
= —2v-1+2V-1((0(Z2, f3), JE1) — {0(B1, f3), JE2))
—2v/~1 +2v/—-1 ((dEx(F3), JE1 ) — (dZ,(F5), JE3))
= —2V/-1-263(%;)
= —3V-1,
which is a contradaiction. O

As an immediate consequence of Proposition 4.2 (1), we have the
following lemma on the involutivity of the distibution H.

Lemma 5.2. Let ¢ : M* — S° be an oriented 4-dimensional CR-
submanifold of S8. If the distribution H is involutive, then each compact
leaf of H is homeomorphic to a torus.

Let ¢ : M — S® be an oriented 4-dimensional CR-submanifold of
56, Take a (locally defined) oriented orthonormal frame {£1,&} of H*.
We put e; = & x &, ea = J(ey) and denote by w1, we, ws, wy the
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dual 1-forms of ey, es, &1, &, respectively. From Lemma 3.1, wy, wy are
independent of the choice of the frame, and it is easily seen that so is
the 2-form w3 A wy.

Proposition 5.3. Let ¢ : M — S® be an oriented 4-dimensional
CR-submanifold of S. The pull-back by m : F — M of the complex
valued 3-form

(w1 + \/:ng) N ws N\ wy

is equal to 2/—160% A p1 A sz and is a closed form.
Proof. By (3.10), (3.11) and (3.12), we have

d(6® A pg A pg) = — (k3> + ko2 + k1Y) AOP A g A g = 0.
]
Remark 5.4. The proposition 5.3 is equivalent to the fact that
div(e;) = div(J(e1)) = 0.
§6. Examples

In this section, we give two kinds of 4-dimensional CR-submanifolds
of S8. A 4-dimensional submanifold M of S® is a CR-submanifold if and
only if the normal bundle T M of M is a totally real subbundle (namely,
QT+M) = QAQ(TM) = 0, where (2 is the fundamental 2-form of S8
defined by Q(X,Y) = (JX,Y) for X, Y € X(S°)).

Proposition 6.1. Letvy: I — S? C ImQ be a regular curve in
the unit 2-sphere. Then the following immersion v : I x Sp(1) — S is
a 4-dimensional CR-submanifold of S®:

¥(t,q) = ay(t) + ba'e,
where a, b are positive real numbers satisfying a® + b? = 1.
Proof. 1Tt is easy to verify that the vector fields
vi =4(t) x¥(t), ve=0by(t) —ag'e

form an orthonormal frame field of the normal bundle and satisfy
(Vl,J(V2)> =0. O

For an element (z,q) of U(1) x Sp(1), we have an automorphism
7(z, q) of the Cayley algebra defined by

(6.1)  (7(2,9))(r+se) = (qrq") + (zs¢")e, r,5€Q,r+r"=0.
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We denote by L the image of the Lie group homomorphism 7 : U(1) x
Sp(l) — Aut(O) = Ga.

It is easily verified that on each orbit of the action of L on S, there
exists a point of the form ai + (b+ ¢j)e witha > 0, b >0, ¢ > 0 and
a?+b+c? =1

Proposition 6.2. For any positive numbers a,b, ¢ satisfying a® +
b2 + c? =1, the orbit

a(qiq’) + (2(b+cj)g")e, =2€U(1), g € Sp(1),

is a 4-dimensional CR-submanifold of S©.

Proof. We denote by X* a Killing vector field on S8 induced by
X € Ti(U(1) x Sp(1)). If we denote by Xo, X1, X2, X3 the vectors
(2,0),(0,2), (0,7),(0, k) of T1 (U(1) x Sp(1)) respectively, then the tangent
space Ty, (L(po)) of the orbit L(py) through the point py = ai+ (b+cj)e
is spanned by the vectors

XO*(pO) = (bl + Ck)E, Xl*(po) — (—b’[/ —|— ck)g,
X3"(po) = —2ak+(c—bjle, X3"(po) =2aj— (ci+bke.
From
6abc, ifi=0, 7=2,
QX7 (po), X (po)) = ¢ a(5-9a%), ifi=2 j=3,
0, otherwise,

we easily obtain
QA Q(Xo"(po), X1" (po), X2"(po), X537 (po)) = 0.
O

Proposition 6.3. The orbit of L through the point p = ai+(b+cj)e
(a,b,c >0, a®+b*+c? = 1) is a minimal submanifold of S° if and only

if
_3EVET Ve
TV T 7T 8

Proof. With respect to the basis {Xo(po), X1(po), X2(po), X3(po)},
the induced metric g is represented as follows:

4+ -1 0 —2be
. 2 —b b2+c2 0 0
- 0 0 3a% +1 0

—2bc 0 0 32?2 +1
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Since the orbit of the action (6.1) through a point p = (ai) + (b+ cj)e
(a, b, ¢ > 0) is diffeomorphic to U(2), the volume of the orbit is equal
to

const. x det(g) = const. X 4abcy/1 + 3a?.

Considering the extremal of the volume under the condition a?+b%+c? =
1, we obtain the result. O
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