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Abstract. 

The hyperbolic Gauss map G of a complete constant mean cur
vature one surface M in hyperbolic 3-space, is a holomorphic map 
from M to the Riemann sphere. When M has finite total curvature, 
we prove G can miss at most three points unless G is constant. We 
also prove that if M is a properly embedded mean curvature one sur
face of finite topology, then G is surjective unless M is a horosphere 
or catenoid cousin. 

We consider complete surfaces M in hyperbolic 3-space IHI3 with 
mean curvature one and of finite total curvature. For a point q E M, the 
Gauss map G sends q to the point at infinity obtained as the positive 
limit of the geodesic of IHI3 starting at q and having H(q) (the mean 
curvature vector of Mat q) as its tangent at q. Bryant has shown that G 
is meromorphic on M and M admits a parametrization by meromorphic 
data analogous to the Weierstrass representation of minimal surfaces in 
Euclidean 3-space lR3 [1], [4]. 

Yu [6] has shown that G can omit at most 4 points of the sphere at 
infinity 800 , unless M is a horosphere and G is constant. For complete 
minimal surfaces in JR3 of finite total curvature, Osserman had shown 
that the Gauss map omits at most 3 points of the sphere, unless M is a 
plane. In this paper we establish a result of this type in IHI3 . 

The conformal type of a complete surface of mean curvature one with 
finite total curvature in IHI3 is finite, i.e., M is conformally a compact 
Riemann surface M with a finite number of points removed (called the 
punctures), but G does not necessarily extend meromorphically to the 
punctures. M is called regular when G does extend meromorphically to 
the punctures. 

Our first result is then: 
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Theorem 1. Let M be a complete surface immersed in IHI3 with 
mean curvature one and of finite total curvature. Then G can omit at 
most 3 points unless G is constant and M is a horosphere. 

Proof If G is not regular, then G has an essential singularity at 
a puncture p0 . By Picard's theorem, G can omit at most two values in 
a neighborhood of this puncture. Thus in the following we can assume 
that G is meromorphic on M, i.e., M is regular. 

Let (g, w) be local Weierstrass data of the minimal cousin of M in 
lR3 (cf. [1], [4] for the details). The induced metric on M is given by 
ds = (1 + lgl 2 )lwl, and the holomorphic quadratic differential 

Q=wdg 

is globally defined on M and meromorphic at each puncture of M, with 
a pole at each puncture which is at worst of order 2. Since dG is 
meromorphic on M (the conformal compactification of M), the 1-form 
w# = -Q/dG is meromorphic on M; in a local conformal coordinate, 
w# = -(g'(z)/G'(z)) w(z). 

The Schwarzian quadratic differentials of g, G and Q are related on 
M ([1], [4]): 

(1) S(g)- S(G) = 2Q, 

where S(g)(z) ((g"/g')'- (1/2)(g"/g') 2 )dz2 . Writing g(z) = a0 + 
zk(a1 + a2z + ... ), a calculation shows that S(g) has at worst a pole of 
order 2 at z and the coefficient of dz2 / z2 is (1 - k2 ) /2. 

Since Q is holomorphic on M, it follows from (1) that the branch 
points and non-simple poles of g and G on M coincide with each other 
and each of them has the same multiplicity (the branching order of gat 
z is defined to be k- 1 = b9 (z)). In particular, w# has no poles on M. 

We next observe that the zeros of w# on M are the poles of G on 
M, and a pole of G of order k is a zero of w# of order 2k. First, suppose 
that z E M is a pole of G of order k. Then k 2 1 and z may, or may 
not, be a pole of g. If it is a pole of g, then z is a pole of g of order k (by 
the Schwarzian derivative relation) and then is a zero of w of order 2k. 
Hence the order of a zero of w# is of twice the order of the pole of G. If z 
is not a pole of g, then it is not a zero of w but a zero of g' of order k -1 
and a pole of G' of order k + 1. Consequently w# also has a zero whose 
order is twice the order of the pole of G. An analogous computation, in 
the case that G has no poles, implies that w# is holomorphic and not 
zero. 

Let Pl, ... ,pr be the punctures, so M = M U {p1, ... ,pr }. After an 
isometry of IHI3 , we can suppose that G has only simple poles on M and 
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has no zeros or poles at the punctures. The metric 

is complete on M, sow# has a pole at each puncture [5]. The order of 
the pole of w# at Pj is given by 

PPi(w#) = .Aq(pj) + ba(pj), 

where Q(z) = ('yj(z- p1 f•Q(Pj) + · · · )dz2 is the Laurent expansion of Q 
at P1. Then the total order of the poles of w# is 

r r 

(2) P(w#) = L:.>..q(pj) + Lba(Pj)· 
j=l j=l 

By Riemann's relation for w# on M, we have 

(3) P(w#)- 2N = 2- 2s, 

where N is the degree of G (so 2N is the order of zeros of w#, since G 
has N simple poles on M) and s is the genus of M. 

Let q~, ... , qk be the points of 800 omitted by G, so that 
c-1 { q1 , ... , qk} C {p~, ... , Pr} (we write G also for the meromorphic ex
tension of G to M). Then we have 

(4) 
r 

kN:::; L (1 + ba(pj)):::; r + b, 
j=l 

where b is the total branching order of G. Here 1 + be (p1) is the total 
number of times that G takes its value at Pj, counted with multiplicity. 

Riemann's relation applied to the 1-form dG on M yields: 

(5) 2N- b = 2- 2s. 

Now by Lemma 3 of [5], we have at each puncture p1: 

Then equation (2) gives: 

(6) 

This last inequality together with the equations (3) and (5) yields: 

P(w#) = 4N- b ;:::: 2r. 
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Then the equation ( 4) implies: 

(7) 4N- kN :2: r :2:1, 

and k is at most 3. 0 

Theorem 2. Let M be a properly embedded surface in IHI3 with 
mean curvature one and of finite topology. If M is not a horosphere nor 
a catenoid cousin, then the Gauss map G of M is surjective. 

Proof. We know that M has finite total curvature and each end of 
M is regular [2]; also each end is asymptotic to an end of a horosphere or 
an end of a catenoid cousin. We also proved in [2] that the asymptotic 
boundary of an end is precisely the limiting value of G at the puncture. 
We can suppose· M has at least two ends, since if M had only one end, 
the asymptotic boundary of M would be one point and M would be a 
horosphere [2]. 

We claim that each end of M is asymptotic to a catenoid cousin 
end. Suppose this were not true. Let E be an end of M asymptotic to a 
horosphere end. We work in the upper half-space model of IHI3 , { x 3 > 0}, 
and assume E is asymptotic to a horosphere x 3 = c > 0. In particular, 
the mean curvature vector of E points up outside of some compact set 
of E. There are no ends of M above E. Indeed, their mean curvature 
vector would also point up (each such end is asymptotic to a horizontal 
horosphere or a catenoid cousin end whose limiting normal points ver
tically up) and M separates IHI3 into two connected components, so no 
such end is above E. 

Then for E > 0, the part A of M above c + E is compact. At the 
highest point of A (if A were not empty) the mean curvature vector of M 
points down. But this highest point can be joined by an arc in IHI3 \ M, 
to a point of E where the mean curvature vector points up. Thus M is 
completely below X3 = c. 

Let E > 0, and let C be a small circle in the plane x 3 = c - E so 
that C is above M. Just as in the proof of the half-space theorem for 
properly immersed minimal surfaces in IR3 [3], one can take a family of 
catenoid cousin ends C(>..), 8C(l) = C with C(l) above M, and C(>..) 
converges to the plane x 3 = c- E as >.. --+ 0. Then some C(>..) would 
touch M at a point q E M, and the maximum principle would yield 
M equals this catenoid cousin. Thus each end of M is asymptotic· to a 
catenoid cousin. 

Next, observe that G is injective on the set of punctures; two distinct 
ends can not be asymptotic to the same point at infinity. This follows 
from the fact that each end is asymptotic to a catenoid cousin end and 
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we know the direction of the mean curvature vector along the end. When 
M is embedded, M separates lHI3 and the mean curvature vector points 
into one of the components of the complement. Thus two ends can not 
be asymptotic to the same point at infinity. 

Now, suppose that G is not surjective and omits a point q. Then 
there is exactly one catenoid cousin type end E of M asymptotic to q. 
Let p EM be the puncture of E such that G(p) = q. We know G has 
local degree one at p. There is no other point p' E M sent to q by G. 
For p' can not be a puncture of M, since G is injective on the punctures, 
and p 1 can not be a point of M because q is a value omitted. Hence the 
degree N of G on M is one. 

We use the same notation as in Theorem 1. At each puncture Pj of 
M, w# has a pole exactly of order 2. So, by equation (3), we have 

2r - 2 = 2 - 2s and r + s = 2. 

Then M is the catenoid cousin (r = 2) and Theorem 2 is proved. D 
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