The Gaussian Image of Mean Curvature One Surfaces in \mathbb{H}^{3} of Finite Total Curvature

Pascal Collin, Laurent Hauswirth and Harold Rosenberg

Abstract

. The hyperbolic Gauss map G of a complete constant mean curvature one surface M in hyperbolic 3 -space, is a holomorphic map from M to the Riemann sphere. When M has finite total curvature, we prove G can miss at most three points unless G is constant. We also prove that if M is a properly embedded mean curvature one surface of finite topology, then G is surjective unless M is a horosphere or catenoid cousin.

We consider complete surfaces M in hyperbolic 3 -space \mathbb{H}^{3} with mean curvature one and of finite total curvature. For a point $q \in M$, the Gauss map G sends q to the point at infinity obtained as the positive limit of the geodesic of \mathbb{H}^{3} starting at q and having $\vec{H}(q)$ (the mean curvature vector of M at q) as its tangent at q. Bryant has shown that G is meromorphic on M and M admits a parametrization by meromorphic data analogous to the Weierstrass representation of minimal surfaces in Euclidean 3 -space $\mathbb{R}^{3}[1]$, [4].
$\mathrm{Yu}[6]$ has shown that G can omit at most 4 points of the sphere at infinity S_{∞}, unless M is a horosphere and G is constant. For complete minimal surfaces in \mathbb{R}^{3} of finite total curvature, Osserman had shown that the Gauss map omits at most 3 points of the sphere, unless M is a plane. In this paper we establish a result of this type in \mathbb{H}^{3}.

The conformal type of a complete surface of mean curvature one with finite total curvature in \mathbb{H}^{3} is finite, i.e., M is conformally a compact Riemann surface \bar{M} with a finite number of points removed (called the punctures), but G does not necessarily extend meromorphically to the punctures. M is called regular when G does extend meromorphically to the punctures.

Our first result is then:

[^0]Theorem 1. Let M be a complete surface immersed in \mathbb{H}^{3} with mean curvature one and of finite total curvature. Then G can omit at most 3 points unless G is constant and M is a horosphere.

Proof. If G is not regular, then G has an essential singularity at a puncture p_{0}. By Picard's theorem, G can omit at most two values in a neighborhood of this puncture. Thus in the following we can assume that G is meromorphic on \bar{M}, i.e., M is regular.

Let (g, ω) be local Weierstrass data of the minimal cousin of M in \mathbb{R}^{3} (cf. [1], [4] for the details). The induced metric on M is given by $d s=\left(1+|g|^{2}\right)|\omega|$, and the holomorphic quadratic differential

$$
Q=\omega d g
$$

is globally defined on M and meromorphic at each puncture of M, with a pole at each puncture which is at worst of order 2 . Since $d G$ is meromorphic on \bar{M} (the conformal compactification of M), the 1 -form $\omega^{\#}=-Q / d G$ is meromorphic on \bar{M}; in a local conformal coordinate, $\omega^{\#}=-\left(g^{\prime}(z) / G^{\prime}(z)\right) \omega(z)$.

The Schwarzian quadratic differentials of g, G and Q are related on $\bar{M}([1],[4])$:

$$
\begin{equation*}
S(g)-S(G)=2 Q \tag{1}
\end{equation*}
$$

where $S(g)(z)=\left(\left(g^{\prime \prime} / g^{\prime}\right)^{\prime}-(1 / 2)\left(g^{\prime \prime} / g^{\prime}\right)^{2}\right) d z^{2}$. Writing $g(z)=a_{0}+$ $z^{k}\left(a_{1}+a_{2} z+\ldots\right)$, a calculation shows that $S(g)$ has at worst a pole of order 2 at z and the coefficient of $d z^{2} / z^{2}$ is $\left(1-k^{2}\right) / 2$.

Since Q is holomorphic on M, it follows from (1) that the branch points and non-simple poles of g and G on M coincide with each other and each of them has the same multiplicity (the branching order of g at z is defined to be $\left.k-1=b_{g}(z)\right)$. In particular, $\omega^{\#}$ has no poles on M.

We next observe that the zeros of $\omega^{\#}$ on M are the poles of G on M, and a pole of G of order k is a zero of $\omega^{\#}$ of order $2 k$. First, suppose that $z \in M$ is a pole of G of order k. Then $k \geq 1$ and z may, or may not, be a pole of g. If it is a pole of g, then z is a pole of g of order k (by the Schwarzian derivative relation) and then is a zero of ω of order $2 k$. Hence the order of a zero of $\omega^{\#}$ is of twice the order of the pole of G. If z is not a pole of g, then it is not a zero of ω but a zero of g^{\prime} of order $k-1$ and a pole of G^{\prime} of order $k+1$. Consequently $\omega^{\#}$ also has a zero whose order is twice the order of the pole of G. An analogous computation, in the case that G has no poles, implies that $\omega^{\#}$ is holomorphic and not zero.

Let p_{1}, \ldots, p_{r} be the punctures, so $\bar{M}=M \cup\left\{p_{1}, \ldots, p_{r}\right\}$. After an isometry of \mathbb{H}^{3}, we can suppose that G has only simple poles on M and
has no zeros or poles at the punctures. The metric

$$
d s^{\#}=\left(1+|G|^{2}\right)\left|\omega^{\#}\right|
$$

is complete on \bar{M}, so $\omega^{\#}$ has a pole at each puncture [5]. The order of the pole of $\omega^{\#}$ at p_{j} is given by

$$
P_{p_{j}}\left(\omega^{\#}\right)=\lambda_{Q}\left(p_{j}\right)+b_{G}\left(p_{j}\right),
$$

where $Q(z)=\left(\gamma /\left(z-p_{j}\right)^{\lambda_{Q}\left(p_{j}\right)}+\cdots\right) d z^{2}$ is the Laurent expansion of Q at p_{j}. Then the total order of the poles of $\omega^{\#}$ is

$$
\begin{equation*}
P\left(\omega^{\#}\right)=\sum_{j=1}^{r} \lambda_{Q}\left(p_{j}\right)+\sum_{j=1}^{r} b_{G}\left(p_{j}\right) \tag{2}
\end{equation*}
$$

By Riemann's relation for $\omega^{\#}$ on \bar{M}, we have

$$
\begin{equation*}
P\left(\omega^{\#}\right)-2 N=2-2 s \tag{3}
\end{equation*}
$$

where N is the degree of G (so $2 N$ is the order of zeros of $\omega^{\#}$, since G has N simple poles on M) and s is the genus of M.

Let q_{1}, \ldots, q_{k} be the points of S_{∞} omitted by G, so that $G^{-1}\left\{q_{1}, \ldots, q_{k}\right\} \subset\left\{p_{1}, \ldots, p_{r}\right\}$ (we write G also for the meromorphic extension of G to \bar{M}). Then we have

$$
\begin{equation*}
k N \leq \sum_{j=1}^{r}\left(1+b_{G}\left(p_{j}\right)\right) \leq r+b \tag{4}
\end{equation*}
$$

where b is the total branching order of G. Here $1+b_{G}\left(p_{j}\right)$ is the total number of times that G takes its value at p_{j}, counted with multiplicity.

Riemann's relation applied to the 1-form $d G$ on \bar{M} yields:

$$
\begin{equation*}
2 N-b=2-2 s \tag{5}
\end{equation*}
$$

Now by Lemma 3 of [5], we have at each puncture p_{j} :

$$
\lambda_{Q}\left(p_{j}\right)+b_{G}\left(p_{j}\right) \geq 2
$$

Then equation (2) gives:

$$
\begin{equation*}
P\left(\omega^{\#}\right) \geq 2 r \tag{6}
\end{equation*}
$$

This last inequality together with the equations (3) and (5) yields:

$$
P\left(\omega^{\#}\right)=4 N-b \geq 2 r
$$

Then the equation (4) implies:

$$
\begin{equation*}
4 N-k N \geq r \geq 1 \tag{7}
\end{equation*}
$$

and k is at most 3 .
Theorem 2. Let M be a properly embedded surface in \mathbb{H}^{3} with mean curvature one and of finite topology. If M is not a horosphere nor a catenoid cousin, then the Gauss map G of M is surjective.

Proof. We know that M has finite total curvature and each end of M is regular [2]; also each end is asymptotic to an end of a horosphere or an end of a catenoid cousin. We also proved in [2] that the asymptotic boundary of an end is precisely the limiting value of G at the puncture. We can suppose M has at least two ends, since if M had only one end, the asymptotic boundary of M would be one point and M would be a horosphere [2].

We claim that each end of M is asymptotic to a catenoid cousin end. Suppose this were not true. Let E be an end of M asymptotic to a horosphere end. We work in the upper half-space model of $\mathbb{H}^{3},\left\{x_{3}>0\right\}$, and assume E is asymptotic to a horosphere $x_{3}=c>0$. In particular, the mean curvature vector of E points up outside of some compact set of E. There are no ends of M above E. Indeed, their mean curvature vector would also point up (each such end is asymptotic to a horizontal horosphere or a catenoid cousin end whose limiting normal points vertically up) and M separates \mathbb{H}^{3} into two connected components, so no such end is above E.

Then for $\varepsilon>0$, the part A of M above $c+\varepsilon$ is compact. At the highest point of A (if A were not empty) the mean curvature vector of M points down. But this highest point can be joined by an arc in $\mathbb{H}^{3} \backslash M$, to a point of E where the mean curvature vector points up. Thus M is completely below $x_{3}=c$.

Let $\varepsilon>0$, and let C be a small circle in the plane $x_{3}=c-\varepsilon$ so that C is above M. Just as in the proof of the half-space theorem for properly immersed minimal surfaces in $\mathbb{R}^{3}[3]$, one can take a family of catenoid cousin ends $C(\lambda), \partial C(1)=C$ with $C(1)$ above M, and $C(\lambda)$ converges to the plane $x_{3}=c-\varepsilon$ as $\lambda \rightarrow 0$. Then some $C(\lambda)$ would touch M at a point $q \in M$, and the maximum principle would yield M equals this catenoid cousin. Thus each end of M is asymptotic to a catenoid cousin.

Next, observe that G is injective on the set of punctures; two distinct ends can not be asymptotic to the same point at infinity. This follows from the fact that each end is asymptotic to a catenoid cousin end and
we know the direction of the mean curvature vector along the end. When M is embedded, M separates \mathbb{H}^{3} and the mean curvature vector points into one of the components of the complement. Thus two ends can not be asymptotic to the same point at infinity.

Now, suppose that G is not surjective and omits a point q. Then there is exactly one catenoid cousin type end E of M asymptotic to q. Let $p \in \bar{M}$ be the puncture of E such that $G(p)=q$. We know G has local degree one at p. There is no other point $p^{\prime} \in \bar{M}$ sent to q by G. For p^{\prime} can not be a puncture of M, since G is injective on the punctures, and p^{\prime} can not be a point of M because q is a value omitted. Hence the degree N of G on \bar{M} is one.

We use the same notation as in Theorem 1. At each puncture p_{j} of $M, \omega^{\#}$ has a pole exactly of order 2 . So, by equation (3), we have

$$
2 r-2=2-2 s \text { and } r+s=2
$$

Then M is the catenoid cousin $(r=2)$ and Theorem 2 is proved.

References

[1] R. Bryant, Surfaces of mean curvature one in hyperbolic space, Astérisque, 154-155 (1987), Soc. Math. France, 1988, 321-347.
[2] P. Collin, L. Hauswirth and H. Rosenberg, The geometry of finite topology Bryant surfaces, Ann. of Math., 153 (2001), 623-659.
[3] D. Hoffman and W. Meeks, The strong half-space theorem for minimal surfaces, Invent. Math., 101 (1990), 373-377.
[4] M. Umehara and K. Yamada, Complete surfaces of constant mean curvature-1 in the hyperbolic 3-space, Ann. of Math., 137 (1993), 611638.
[5] M. Umehara and K. Yamada, A duality on CMC-1 surface in the hyperbolic 3-space and a hyperbolic analogue of the Osserman Inequality, Tsukuba J. Math., 21 (1997), 229-237.
[6] Z.-H. Yu, The value distribution of the hyperbolic Gauss map, Proc. Amer. Math. Soc., 125 (1997), 2997-3001.

P. Collin
Université Paul Sabatier
118, route de Narbonne
31062 Toulouse
France
collin@picard.ups-tlse.fr
L. Hauswirth
Université Marne-la-Vallée
Cité Descartes
5, boulevard Descartes
77454 Champs-sur-Marne
Marne-la-vallée
France
hauswirth@math.univ-mlv.fr
H. Rosenberg
Université de Paris 7
2 Place Jussieu
75005 Paris
France
rosen@math.jussieu.fr

[^0]: 2000 Mathematics Subject Classification. Primary 53A10; Secondary 53A35.

